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Abstract - When a machine makes an anomalous noise, it
is often necessary to take measures such as stopping the
factory lines. Thus, we have been making a system to detect
machine failure using sounds. The feature of the proposed
system is that it converts voice data into an image using
wavelet transform, and then uses the image as input to
determine anomalies using machine learning. The important
thing in this system is the size of the audio data to make it
easier to transmit. In addition, the evaluation criteria are
based on the learning accuracy of machine learning, rather
than the traditional judgment by human ears. In this paper,
audio signal compression using wavelet transform is
discussed. We will consider reducing the size of audio data
without removing abnormal sounds contained in the audio
data. The features of abnormal sound on the time-frequency
plane by applying some different conversion methods are
compared each other. Using images showing the obtained
features, machine learning was used to distinguish between
normal audio and audio containing abnormalities.
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1 INTRODUCTION

When an abnormality occurs in a machine operating in a
factory, it is necessary to stop the factory line in order to deal
with the problem. However, this reduces the factory's
operating hours, and if the abnormality goes unnoticed for a
long period of time, even if the factory line is stopped and
measures are taken, it may result in significant losses for the
company. Therefore, it is necessary to detect abnormalities or
signs related to abnormalities and respond to them quickly.

Factory equipment always makes some kind of noise, and
if an abnormality occurs, the machines make sounds that are
different from normal sounds. Only experienced engineers
can naturally detect the slightest anomalous machine noises,
and up until now, maintenance and inspection of equipment
at factory production sites has relied on the experience and
intuition of veteran engineers. In recent years, due to the
influence of generational change in companies, there has been
an issue regarding the succession of maintenance work
techniques at factories and other work sites. Thus, factories
are becoming increasingly smart factories. This technology
detects failures and signs of failure in mechanical equipment
without relying on human intuition.

In factories and other places, the presence or absence of
faults or failures is often based on sounds observed at specific
locations, and a system that observes the sounds at relevant

locations in a noisy environment and notifies of abnormalities
is useful, so various methods have been proposed [1].
Scalograms, which are images of information obtained by
wavelet transformation, are used to understand and extract
feature values, but there are few examples of directly
inputting this into machine learning, and there are no
examples of this in a surround environment such as a factory.

We propose an audio compression method for machine
learning in this paper. We have proposed a method in which
audio data of inside a factory is processed to image data using
wavelet transformation, its characteristics are clarified using
some processes, and then machine learning is applied [2-4].
By grasping the characteristics from the time variation of the
frequency characteristics, the accuracy of judging normality
or abnormality could be improved. The important thing in this
system is the size of the audio data to make it casier to
transmit. A feature of the proposed method is the evaluation
criteria for audio compression. The evaluation criteria of
audio compression are based on the learning accuracy of
machine learning, rather than the traditional judgment by
human ears. Data compression is performed so as not to
remove features that are important for machine learning in the
proposed method.

Figure 1 shows the overall figure of the system we are
developing. In the first stage, machine learning is performed
using only normal sounds.

First, we apply wavelet transformation to each sound,
visualize each sound data. Second, feature extraction
processes are applied to the image data. This becomes the
input data for machine learning. The wavelet transform uses
a basis that shortens the time width at high frequencies and
widens the time width at low frequencies, thus providing
local frequency information and efficient time-frequency
analysis. Time domain is essential for environmental sounds
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Figure 1: Proposed remote monitoring type system
configuration for anomalous sound detection.
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and the operating sounds of factory machinery. The Al
learned from this input data is used to analyze the voice data
collected in real time, and if an event occurs in which
abnormal voice is observed, an alert is sent to the
administrator (by email, etc.).

An important point in our system is how to collect and
transfer audio data. There are multiple machines in a factory
and multiple factories, but it is not realistic to install a server
for each machine and each factory for the collected data. It is
desirable to transfer the collected data in real time and
consolidate it on one server. In such a situation, the size of the
voice data is important. The smaller the size of the voice data,
the easier it is to collect and transfer. However, this requires
that the compressed voice data can be analyzed to determine
whether it is a normal sound or an abnormal sound. This will
make it possible in the future to build a system that stores
collected data on the cloud, as shown in Fig. 2, and allows for
real-time understanding of the situation from remote
locations.

In this paper, we examined the compression method of
audio data for anomalous sound detection system in factories
for early failure detection using machine learning, thus we
will report. In addition, discrimination was performed using
images that applied wavelet transform as data for machine
learning for abnormal sound detection.

When detecting anomalies using this method, the data is
transferred and then analyzed to determine whether or not
there is an abnormality; therefore, the proposed system is not
suitable for capturing the moment an abnormality occurs and
issuing an alarm. However, since the proposed system
replaces the work of engineers, who listen to the sounds made
by machines when they perform specific actions during
inspections and judge the situation, it does not support
immediate detection of abnormalities.

In this study, we hypothesize a system that observes and
monitors sound, compresses and analyzes the sound using
wavelet transform, and aims to verify the possibility and
usefulness of applying this to sound source preservation and
anomaly detection.

2 WAVELET TRANSFORM

There are two types of wavelet transform. One is continuous
wavelet transform(abbreviated as CWT in the following text

and figures) and the other is discrete wavelet
transform(abbreviated as DWT in the following text and
figures).

The wavelet transform is known as a method for analyzing
both time and frequency. The wavelet transform is a method
that calculates accurate frequency information by increasing
the time width in the low-frequency region and calculates
accurate time information by decreasing the time width in the
high-frequency region. In the wavelet transform, the original
waveform is expressed as an appropriate waveform P(t). This
Y(t) is called the mother wavelet, and the one that is
appropriate for the waveform to be analyzed is selected
appropriately. The mother wavelets used in this study are
Morse, Molet, and Bump for the CWT, and SYM4 and
DB4 for the DWT [5].

The CWT has applications such as detecting abnormal
signals, and the DWT is used as a standard for image
compression, and its applications are being actively discussed.

A typical analysis method used for audio signals is the
Fourier transform, which includes frequency information but
loses time domain. In contrast, the wavelet transform
preserves time information, making it possible to analyze
even sudden signal fluctuations. It is also possible to perform
flexible operations such as varying the time interval
according to the frequency domain, making it possible to
perform dynamic analysis according to the situation.

Regarding the selection of the mother wavelet to be used in
DWT, Ref. [6] shows the usefulness of Daubechies Wavelet
(DB). Also, Ref. [7] shows the usefulness of Symmlet
Wavelet (SYM). In this study, we confirmed the usefulness
of actually recorded audio data, which may contain
environmental sounds not mentioned in the previous studies,
and showed the dependency of the compression rate on the
parameters.

Waveforms indicating machine abnormalities often show
signals with a sudden increase in waveform amplitude. This
is similar to the waveform of an electrocardiogram. The
SYM4 and DB4 wavelets are particularly suitable for
analyzing biological signals, such as detecting the QRS
complex in an electrocardiogram (ECG). The QRS complex
is the most prominent feature of an electrocardiogram and
reflects the deceleration of the left and right ventricles [8].
We therefore believe that SYM4 and DB4, which have been
reported to be mother wavelets suitable for ECGs, will also
be useful in this research.

In addition, we also verified the effectiveness of other
mother wavelets that have been proposed and implemented in
Matlab.

3 EXPERIMENT RESULTS:
COMPRESSION OF AUDIO SIGNALS
USING DISCRETE WAVELET
TRANSFORM

3.1 Method of Compression Experiments

An experiment was conducted to confirm the effect of
compression using DWT. The following items were
confirmed:

1. Amount of file size reduction due to compression

Learning normal state
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Figure 2: Proposed remote monitoring type system
configuration for anomalous sound detection in the
future.
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2. Dependence of compression rate on mother wavelet

3. Dependence of compression rate on threshold used for
analysis

4. Difference in compression rate due to difference in type
of sound source

The audio data used in the experiment was collected from
various sources [9-11], [12].

The original data was a 10-second uncompressed file with
a sampling frequency of 16,000[Hz] . The sound sources
include Fan, Pump, Slider, Toy Car, Toy Conveyor, Valve,
and Toy Train, and each has a dataset of normal sounds and
a dataset that includes abnormal sounds. For audio
compression, we used the Wavelet Toolbox in MATLAB
R2024.

3.2 File Size Reduction due to Compression

First, we analyzed the normal sound of a fan. We performed
a DWT using SYM4 as the mother wavelet. Next, we applied
a cut using the same threshold at each of the four frequency
decomposition levels, and samples with values below the
threshold were set to zero. Fig. 3 shows the chronological
waveform diagram of the signal reconstructed based on the
coefficient distribution of each decomposition level after
cutting. The horizontal axis is the sampling number along the
time series, and the vertical axis is the signal amplitude.

The reconstructed data was output as an audio file (wav file),
and the audio file was converted to a flac file and compressed.

Figure 3 shows a comparison of the signal waveforms of a
normal fan sound before (original) and after (compressed)
DWT conversion. The horizontal axis is the number of
samplings, which corresponds to time. The vertical axis is the
signal amplitude. The first 1000 samples of the sound data are
displayed, which corresponds to the first 62.5 milliseconds
when converted to time.

The compression effect was evaluated by the compression
ratio R. R is calculated as the ratio of the file size when the
original audio data was converted to a flac file to the file size
when it was converted to a flac file after DWT.

As we continued our analysis, we found that there was
audio that had no effect at all from compression. Such audio
has a waveform like that shown in Fig. 4. This waveform
resembles a giant white noise.

In this case, the compression rate R was 1, meaning no
compression was possible. Sounds like this are thought to be
found frequently in sound sources such as fans, where the
signal is expected to fluctuate at a high frequency. Since this
type of waveform is thought to exist in both normal sound
data and data containing abnormal sounds, we decided not to
consider it noise this time, and to use the data as is for analysis.

The compression ratio R was calculated for 50 normal
sound data and 50 abnormal sound data, and the average
value was calculated. The error is the standard deviation
calculated using the 50 values. For normal fan sounds, the
compression rate was R = 0.820 £ 0.057. When abnormal
sounds were included, the compression rate was R = 0.872 +
0.042. SYM4 was used as the mother wavelet, and T=0.0017
was used as the threshold for DWT compression.

This shows that audio data including noise and
environmental sounds can be compressed using DWT.

95

3.3 Dependence on Different Types of Mother
Wavelet

In the previous section, SYM4 was used as the mother
wavelet for DWT, but we investigated the difference in
compression ratio when using DB4, whose usefulness was
shown in Ref. [6], [8], and other mother wavelets (bl7, beyl,
coifl, fk4, haar, han5.5, mb4.2, vaid). In this case, we used
the same threshold value T as in the previous analysis,
T=0.0017. The results are shown in Fig. 5.

From this, we found that even with the same sound source,
the compression rate varies greatly depending on the type of
mother wavelet applied. For han5.5 and vaid, we found that
although there was a large error, a low compression rate could
be expected. Furthermore, for the Fan data set, SYM4 and
DB4 were confirmed to be useful, as shown in Ref. [6] and
[7]. It was also found that other mother wavelets can be
expected to be useful.
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Figure 3: Comparison of Waveform diagram of Normal
data using SYM4-Wavelet.
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data using SYM4-Wavelet.
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3.4 Dependence of Compression Rate on
Threshold used for Analysis

The threshold value (T=0.0017) for compression with DWT
was determined by performing compression using Matlab's
Wavelet Signal Analyzer. We investigated the dependency of
this value on the compression ratio R.

Using the Fan dataset as the sound source, Fig. 6 shows the
change in compression ratio R when the threshold is changed.
50 pieces of data were analyzed for each and the average
value was calculated.

Looking at this, we can see that the default value
(T=0.0017) is exactly at the midpoint where the data size
changes rapidly. Increasing the threshold decreases the
compression rate R, but when we checked the played back
waveform, we could see that it became increasingly distorted.

When compressing with DWT, the determination of the
threshold is important. In the analysis that follows, we plotted
the compression ratio R vs. the threshold, as shown in the
figure, and derived a polynomial fit curve for the graph. Using
this equation, we determined the threshold when R was 0.8,
and used this value for the analysis. If we were actually
archiving audio from a particular factory system, we would
need to accurately measure this dependency on the threshold
and optimize the value using the methodology used here.

3.5 Difference in Compression Rate due to
Difference in Type of Sound Source

To confirm the contents of the previous section, we
investigated how the compression rate differs depending on
the type of sound source(Fan, Pump, Slider, Toy Car, Toy
Conveyor, Valve, and toytrain) when the same threshold is
set.

Figure 7 shows the compression rate of each sound source
when the threshold is set to T=0.0025. 50 pieces of data for
each were analyzed and the average value was calculated.

From this, we found that toytrain and other sound data have
an extremely high compression effect.

4 EXPERIMENTAL RESULTS:
CONTINUOUS WAVELET TRANSFORM
OF COMPRESSED AUDIO DATA

4.1 Comparison of Raw Data and Compressed
Data

Next, a CWT was performed on both the normal and
abnormal sounds in the compressed voice data to create a
scalogram that represents the signal strength on the time and
frequency plane.

Figure 8 shows the scalogram of Normal raw data where
Morse was used as Mother Wavelet. Fig. 9 shows the
scalogram on Compressed data using the DWT of SYM4
Wavelet.

From this, it was found that by first compressing using the
discrete wavelet transform, the components corresponding to

the white noise that are common to both were suppressed,
resulting in a distribution that makes it easier to determine the
characteristics.

The abnormal data were analyzed in a similar manner. The
results were shows in Fig. 10 and 11. Abnormal data has a
high retention rate, but it is observed as a more characteristic
figure.

4.2 Dependence on Motherwavelet

To investigate the dependence on Motherwavelet, a similar
analysis was performed for two types of Motherwavelet,
amor(Morlet) and Bump, in addition to the basic Morse.
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Figure 5: Comparison of Compression Rate R for
different mother wavelets.
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Figure 9 shows the case where the basic Morse-Wavelet
were used as Motherwavelets for Normal data analysis, Fig.
12 shows amor(Morlet) and Fig. 13 shows Bump-Wavelet.

From Fig. 12, this scalogram was more widely distributed
than in the case of Morse and Bump. So, Morlet was not
suitable to handle this data.

From this, it was found that for continuous wavelets,
differences in the scalogram appear depending on the mother
wavelet.

The abnormal data were analyzed in a similar manner. The
results were shows in Fig. 11,14 and 15. For Abnormal data,
the distribution characteristics were completely different. By
comparing Fig. 11 and Fig. 14, as expected, Morlet(amor)
was found to be inappropriate for extracting features from this
data.

On the other hand, in Fig. 15, the scalogram using Bump-
Mother Wavelet, it was found only in a few places, and was
very distinctive. Fig. 16 shows the scalogram of
uncompressed data transformed by CWT using Bump. We
can see that Bump is a wavelet that is quite suitable for
extracting features from this Abnormal data.

This can also be derived by comparing Fig. 14(Morlet-
Wavelet) and Fig. 15(Bump-Wavelet).

So, it is useful to first identify the wavelet that most clearly
shows the characteristics of the target sound source.
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Since the range of the distribution of the scalogram is the
very characteristics of the sound source, it is possible to use
these distribution maps as data for machine learning to build
a system that detects and judges abnormalities on behalf of
humans.

These results confirmed that the proposed method makes it
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possible to visually determine whether data is normal or
abnormal even after compression, and that the file size can
be reduced to 70% of original data.

5 DISTINGUISHING BETWEEN NORMAL
AND ABNORMAL USING MACHINE
LEARNING WITH SCALOGRAM IMAGES

5.1 Discriminating Audio
Surround Environment

Signals in a

We used MATLAB R2024a to perform machine learning
using scalogram images as input data.

We used VGG16, a neural network with pre-trained weights
for image recognition, to perform transfer learning on
scalograms. As a dataset, we used 300 images each of normal
and abnormal sounds. The trained network was used to
classify audio data, and the percentage of data that was
successfully classified was used as the validation accuracy.
This calculation was performed three times with different
random numbers, and the average value was calculated. As a
condition for creating the scalogram, the mother wavelet used
in the CWT was BUMP, which was found to be useful in the
above analysis.

First, we calculated the validation accuracy for data that did
not undergo DWT. However, since we assume that machine
learning judgments will be made on audio data after it has
been compressed using DWT, we also performed machine
learning on the compressed data to calculate the validation
accuracy.

SYM4 was used as the mother wavelet for DWT.

The types of audio data used were FAN [9-11], PUMP [9-
11], and ToyTrain [12].

The results are shown in Table 1.

The validation accuracy for Fan and pump was very low.
As previously reported, FAN contains a mixture of
waveforms with a compression rate of 1, and various types of
sounds are mixed into what is considered normal sound.
Therefore, when performing DWT, it is expected that
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verification accuracy will improve by optimizing parameters,
particularly by changing the frequency resolution.

This analysis showed that it is possible to distinguish
between normal and abnormal sounds even using data
compressed with DWT.
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It was also found that compression using DWT improves
validation accuracy.

5.2 Comparison with  Existing Audio
Compression Methods

Next, we investigated whether there was a difference in the
validation accuracy of machine learning depending on the
compression method used to create the scalogram image to be
input into machine learning.

To verify subtle differences in validation accuracy, we used
the toytrain data, which had high validation accuracy in the
previous analysis, changed the random numbers, calculated
the validation accuracy 15 or 20 times, and calculated the
average value.

Scalograms were created using uncompressed audio signals,

audio signals converted to mp3 format (8 kbit/s), audio
signals converted to mp3 format (16 kbit/s), and audio signals
compressed using DWT (using SYM4-wavelet). Machine
learning was then performed using these images as input to
determine the verification accuracy for distinguishing
between normal and abnormal audio.

The results are shown in Table 2.

This shows that the validation accuracy of anomaly
detection using data compressed by DWT is higher than when
data is compressed using other methods. Furthermore, it is
possible to obtain values equivalent to those obtained when
detection is performed using uncompressed data.

Figure 17 is a scalogram of the fan's voice, while Figure 18
is a scalogram of the data compressed with MP3. Comparing
the two, it can be seen that Fig. 18 has mostly lost its high
frequency range. As a result, information corresponding to
the features in the image disappears, which is thought to
reduce verification accuracy.

These analyses show that the use of wavelet transform is a
useful compression method that can maintain the learning
accuracy of machine learning.

6 SUMMARY

In this study, data compression was performed using
discrete wavelet transform with SYM4, DB4 and some other
mother wavelets. As a result, we found that using wavelet
transform is useful as a compression method that can
maintain the learning accuracy of machine learning. In
addition, by performing continuous wavelet transform on
compressed data, we were able to obtain characteristic
scalograms in some cases.

We found that it is possible to treat the scalogram of a
compressed audio signal as a simple two-dimensional image
and use it as input data for machine learning to distinguish
between different situations.

We also found that this method can maintain validation
accuracy in machine learning.
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Table 1: Comparison of validation accuracy using
machine learning.

validation accuracy(%a)
Audio Without Compressed
Diata Compression data
FAN 6l1.8 67.4
PUMP 89.9 21.1
ToyTrain 99.6 99.7

Table 2: Comparison of validation accuracy using
different compression methods.

Compressed data

MP3 MP3 DWT
Skbit's | lokbit's

Without
Compression

validation
accuracy 99.6 95.9 9717 99.6
(%)
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