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Abstract - Efficient analysis of requirement specifications is
crucial for improving their quality, which is important in
software development. We focus on non-functional
requirements (NFRs), which are often overlooked in
requirement definitions of system developments and
propose a method that allows individuals without extensive
expertise to efficiently extract and classify NFRs from
requirement specifications. The proposed method aims to
efficiently enhance the quality of software requirement
specifications by enabling the extraction and classification
of NFRs with minimal expertise.

Previously, the authors experimented with -creating
dedicated deep learning models for classification tasks and
then used pre-trained Transformer models like BERT and
GPT-2, trained on human-annotated datasets. However,
recent advancements, such as tools like ChatGPT, enable
classification via prompt interactions alone. In this paper,
we explore the capabilities of ChatGPT's Function Calling
feature, utilizing an approach that optimizes its behavior,
aiming to demonstrate its superior classification
performance compared to prompt-only responses and
conventional classification methods, which require large
training datasets.

Function Calling significantly reduced ambiguities and
improved classification accuracy by ensuring adherence to
predefined classification boundaries. For example, GPT-4
Turbo demonstrated an F1 score improvement from 0.681 to
0.753, and GPT-3.5 Turbo achieved an increase from 0.587
to 0.651. Additionally, GPT-40 showed a gain from 0.754 to
0.780. These improvements highlight the practical utility of
Function Calling as a primary classification tool.

As supplementary verification, we conducted two
additional analyses. Fine-tuning GPT-3.5 Turbo on small
datasets significantly enhanced its performance, achieving
an F1 score of 0.796. Similarly, incorporating sentence
concatenation by linking preceding and following sentences
improved contextual understanding, increasing accuracy
from 0.792 to 0.831. These approaches, while
complementary, further validated the robustness of Function
Calling for NFR classification tasks.

Future research should address remaining challenges,
such as improving the model’s contextual understanding and
developing targeted training datasets that emphasize the
most challenging classification categories. These findings
highlight the potential of advanced natural language models

like ChatGPT in making NFR classification more efficient
and precise.

Keywords. Function Calling, ChatGPT, GPT-40, Non-
Functional Requirements, Documents Classification

1 INTRODUCTION

In information system development, requirements are
broadly divided into functional and non-functional
requirements [1]. Functional requirements define specific
functions that the system must perform, whereas non-
functional requirements describe the overall qualities of the
system, such as availability, performance, reliability, and
efficiency. These non-functional requirements define
expectations for the system's actual operating environment
and are crucial for ensuring the overall quality of the
software [2].

1.1 Importance and Challenges of Non-

Functional Requirements

Non-functional requirements are critically important for
the success of a system, but their abstract nature makes their
identification and classification challenging. If non-
functional requirements are not adequately defined, they can
severely impact system performance, usability, and security.
Therefore, clearly defining non-functional requirements and
managing them throughout the development process is one
of the major challenges in system development. Insufficient
non-functional requirements can result in the system failing
to meet expected performance, ultimately leading to
decreased user satisfaction.

Non-functional requirements are essential for ensuring the
overall quality of the system. Characteristics such as system
response time, throughput, availability, security, usability,
and scalability directly affect user experience and reliability.
For example, if a system has a slow response time, users
may find it difficult to use and avoid using it altogether.
Additionally, if security requirements are not adequately
met, the system may be vulnerable to external attacks,
increasing the risk of important data being leaked. Thus,
non-functional requirements are vital for maintaining the
health of the system and the trust of users.

To properly define and agree on non-functional
requirements, it is necessary to clearly identify and classify
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them. However, since non-functional requirements are
abstract and diverse, manual classification is time-
consuming, labor-intensive, and requires specialized
knowledge. Disparities in understanding non-functional
requirements between users and vendors often arise,
becoming an obstacle to the success of system development.

1.2 Emergence and Advancement of
Automated Classification Techniques

As a means of addressing the challenges of identifying and
classifying  non-functional requirements, automated
classification techniques are gaining attention. In particular,
research on document classification techniques using deep
learning and large language models (LLMs) has been
actively conducted. Since the advent of Transformer by
Vaswani et al. [3], models such as BERT (Bidirectional
Encoder Representations from Transformers) by Devlin et al.
[4] and GPT (Generative Pre-trained Transformer) by
Radford et al. [5], which emerged in 2018, have been pre-
trained on large amounts of text and fine-tuned for specific
tasks to improve classification accuracy. The authors have
also experimented with automatic classification using a
model incorporating BERT and GPT-2 [6] in the previous
paper [7].

Given the abstract nature and diversity of non-functional
requirements, the introduction of automated classification
techniques is highly beneficial. First, defining and
classifying non-functional requirements require the expertise
and time of experienced professionals, making manual
classification costly and time-consuming. Automated
classification techniques significantly reduce these manual
efforts, allowing for efficient classification. Moreover,
automated classification provides consistent results and
reduces human errors and biases. Additionally, accurate and
swift classification of non-functional requirements enables
appropriate requirements management from the early stages
of a development project, thereby improving the project's
success rate. For instance, properly classifying and
recognizing system performance requirements early on can
help prevent performance issues in later development stages.

Recently, with the widespread use of conversational
models like ChatGPT, inference through prompt interactions
is becoming possible. Conversational LLM models generate
appropriate responses in response to questions and

instructions during interaction with users in natural language.

This conversational capability allows users to perform
advanced inferences and information searches without
requiring specific knowledge or skills.

Models generate responses based on prompts. Thus, by
designing prompts appropriately, the output of the model
can be controlled to obtain responses suitable for the
intended purpose. For example, the format and content of
prompts can be adjusted to handle various tasks, such as
question answering, text generation, summarization, and
translation.

However, there are limitations to performance in
classification tasks. Classification tasks involve categorizing
text or data into specific categories or labels, which is one of
the fundamental applications of deep learning models. For

instance, detecting spam emails or categorizing product
reviews as positive or negative are common classification
tasks. While the classification performance of
conversational models has improved, they may still lag
behind dedicated traditional models for certain complex
tasks or large datasets. Particularly, when handling multi-
class classification beyond binary classification,
hallucinations may occur, resulting in the unintended
creation of classification categories, which negatively
impacts accuracy.

In this paper, we attempt to classify non-functional
requirements using the Function Calling feature of ChatGPT.
Function Calling is a means of obtaining additional
information by calling other APIs or functions during
prompt interactions, allowing integration with external
services and databases. Generally, by using this feature,
more advanced processing and data retrieval become
possible.

This paper focuses on utilizing arguments required for
calls during the Function Calling process as classification
data. By employing enum to restrict and enumerate variable
types, unintended category creation due to hallucinations
can be eliminated, ensuring that the classification remains
within the intended boundaries. The model automatically
suggests appropriate arguments based on contextual
information, and proper argument content is directly linked
to accurate calls and responses. Utilizing these argument
suggestions as classification data is expected to improve the
classification accuracy of non-functional requirements.

In addition to the core focus on the outcomes of Function
Calling, the following two experiments were supplementary
investigations aimed at further enhancing the effectiveness
of the Function Calling feature. While these experiments
provide valuable insights into potential improvements, the
primary objective of this paper remains centered on the
results derived from Function Calling.

First, we verify the impact of small-scale fine-tuning using
non-functional Requirements Grades [8] on classification by
Function Calling. By optimizing the Function Calling
feature of ChatGPT based on clearly defined standards using
non-functional Requirements Grades, we aim to improve the
classification accuracy of non-functional requirements. The
outcomes of this study are expected to contribute to the
development of automated classification technologies for
non-functional requirements and enhance the efficiency of
the quality assurance process in system development.

Second, we propose a classification method that uses
sentence concatenation to provide additional contextual
information. In conventional classification methods, only
the target sentence is classified, but incorporating contextual
information can improve classification accuracy. In
requirement  specifications,  similar  non-functional
requirements may span multiple sentences, and the
preceding and following sentences are often useful as
additional contextual information for the target sentence. In
this method, we embed the test data, determine similarity
based on cosine similarity between the target sentence and
its surrounding sentences, and concatenate related sentences
before classification. This allows for classification that
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considers contextual information,
classification accuracy.

In the future, automated classification technologies for
non-functional requirements are expected to evolve further,
enabling more accurate and efficient classification. In
particular, with the advancement of large language models,
it will become possible to understand the abstract nature of
non-functional requirements more deeply and perform
classification accordingly.

thereby improving

2 RELATED RESEARCH

2.1 Classification of Non-Functional

Requirements

Kinoshita et al. [9] proposed a method for extracting non-
functional requirements (NFRs) from Japanese requirement
documents. Specifically, they established keywords related
to NFRs and applied them to the documents to effectively
identify relevant requirements. Additionally, they introduced
an approach for detecting errors in NFRs by defining case
frames for the actions described in requirement sentences.
Their method involves validating these sentences using
criteria such as omission, ambiguity, redundancy, and
inconsistency, thereby enhancing the overall quality of the
requirements.

2.2 Classification Using Deep Learning

Gnanasekaran et al. [10] researched and developed
recurrent neural network (RNN) models, known for their
effectiveness in processing sequential natural language text.
They conducted experiments using these models to classify
NFRs described in natural language into five categories:
maintainability, operability, performance, security, and
usability. The experimental validation was based on two
datasets encompassing approximately 1,000 NFRs,
demonstrating the potential of RNNs in accurately
classifying NFRs.

Kitagawa and Nagaoka [11] proposed an automatic
classification method using Word2Vec and convolutional
neural networks (CNN). Their approach extended the
classification targets beyond NFRs and project
management-related sentences to include functional
requirements and other types of sentences. They aimed to
automatically classify all sentences in Japanese Request for
Proposal (RFP) documents, improving the efficiency and
accuracy of requirement specification analysis.

2.3 Classification Using Large Language
Models

Since the introduction of the Transformer architecture,
significant advancements have been made in natural
language processing tasks using LLMs based on
Transformers. These models have largely replaced
traditional recurrent neural networks such as RNNs, LSTMs,
and GRUs. By fine-tuning large pre-trained models like
BERT [4] for specific tasks, researchers have achieved
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models optimized for those tasks, often attaining higher
accuracy.

Zhu et al. [12], starting from BERT, introduced a novel
method to enhance classification performance by
formalizing input sentences as natural language templates
and leveraging knowledge expansion [13]. This approach
improved short text classification by integrating additional
contextual information into the prompts.

Gutierrez et al. [14] reported that fine-tuned BERT models
outperformed interactive GPT-3 models in tasks such as
named entity recognition and relation extraction within the
medical domain. Similarly, Sun et al. [15] found that while
interactive models like GPT-3 can perform text
classification tasks, fine-tuned task-specific models still
achieve higher accuracy due to their specialized training.

Ibe et al. [16] conducted experiments using large
generative language models to automatically classify
requirement specifications with few examples by adjusting
prompts. Their results indicated that BERT-based
classifications outperformed interactive models like
ChatGPT in terms of accuracy, highlighting the
effectiveness of task-specific fine-tuning.

On the other hand, the performance of ChatGPT as a
question-answering system (QAS) has been reported to
match or even exceed that of traditional task-specific QAS
models. Tan et al. [17] demonstrated that ChatGPT provides
superior robustness and explainability in conversations
compared to traditional QAS, offering enhanced user
interaction and adaptability.

Brown et al. [18] evaluated GPT-3's performance in few-
shot learning settings, reporting high effectiveness in natural
language processing tasks under zero-shot and one-shot
conditions. Their work highlighted the capability of large
language models to perform various tasks without extensive
task-specific fine-tuning, showcasing the potential of models
like GPT-3 in few-shot learning scenarios.

In studies focusing on prompt engineering, the importance
of In-Context Learning (ICL) has been emphasized. Dong et
al. [19] provided a comprehensive overview of ICL,
demonstrating its applicability across diverse tasks and its
ability to improve model performance by incorporating
contextual information during inference. Liu and Yang [13]
further explored knowledge-enhanced prompt learning for
few-shot text classification, showing that integrating
external knowledge can significantly boost performance.

Min et al. [20] analyzed how the selection of
demonstrations in ICL affects model performance, clarifying
the optimal conditions for demonstration selection to
maximize effectiveness. Wan et al. [21] showcased the
effectiveness of ICL in relation to extraction tasks,
proposing methods with higher flexibility and accuracy
compared to conventional approaches by utilizing
contextual cues within the prompts. These studies highlight
the flexibility and performance of interactive models and
ICL across various tasks, opening new possibilities in the
field of natural language processing.
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3 PROPOSED METHOD

This paper proposes an automatic classification method for
NFRs in system development specification documents. This
method leverages the Function Calling feature of GPT
models, a type of large language model, and is based on IPA
standards.

3.1 Function Calling

Function Calling is a feature provided by the API of large
language models, enabling the model to indirectly interact
with external APIs or systems and generate specific actions.
This technology involves parsing natural language queries,
selecting appropriate functions, and generating JSON
responses. For example, in response to the query “Tell me
about the weather in Tokyo,” the model suggests calling a
function that uses a weather API with the region name as an
argument. The argument "Tokyo" is prepared for the
weather API call. The program then retrieves Tokyo's
weather through the function and weather API, then passes
this information back to the model as an additional prompt.
The model then provides the final answer, significantly
expanding the potential for interactive applications and
services using the model. This feature bridges the gap
between natural language understanding and the execution
of specific actions, enhancing the model's practicality and
allowing it to flexibly respond to user requests. Function
Calling not only streamlines the interaction between the
model and external systems but also improves the overall
efficiency of handling user queries by automating the
process of converting natural language into actionable
commands.

3.2 Classification using Function Call

A derivative use of Function Calling involves extracting
structured data from text. For example, a function like
extract data(name: string, birthday: string) can be defined
and invoked as needed, extracting a person's name and
birthday from the text as arguments. This functionality
allows for the rapid and accurate extraction of necessary
information from large volumes of text data, facilitating
efficient data analysis and information management. This
method provides a more structured and organized approach
to handling text data, ensuring that the extracted information
is consistent and accurate.

Function Calling can also help in selecting the most
appropriate argument based on the overall context of a query,
even if the specific term is not explicitly mentioned. By
leveraging the model's natural language understanding, it
can infer the intended meaning and relevant information
from the user's input.

In this study, rather than using Function Calling for
extracting structured data from documents, we applied it to
document classification. Normally, Function Calling in
LLMs is triggered only when the model determines it is
necessary. However, we configured parameters to ensure
that Function Calling is always invoked whenever a
classification target sentence is input. This guarantees that

Function Calling is
classification tasks.

The function invoked in this process exists only as a
description of its name and outline and does not exist as an
actual implemented program. The primary purpose of
Function Calling in our method is to return arguments that
indicate classification categories. These arguments are
subsequently used within the program for further processing.
Since the goal of this experiment is to acquire the necessary
arguments for classification, the Function Calling process
terminates once the arguments are obtained, without
invoking any external modules or APIs. This ensures that
the classification process benefits from the structure and
consistency of Function Calling without relying on external
integrations.

To achieve classification, we enforced the invocation of a
dummy function through prompts containing evaluation
sentences. The model suggests classification categories as
arguments during this process. By specifying the argument
type as enum, we enumerated the classification categories,
limiting suggestions to predefined options and preventing
hallucinations. This approach automates and streamlines the
classification process, reducing the potential for human error
and enhancing overall efficiency.

consistently performed during

3.3 Supplemental Analysis 1 Fine Tuning
for GPT-3.5

Section 3.3 and 3.4 aim to enhance the results achieved by
utilizing Function Calling through two additional techniques.
The purpose of these experiments is to improve the
classification accuracy of NFRs by fine-tuning and
enhancing contextual understanding.

Firstly, this paper attempts to improve models with
classification accuracy by additional training of GPT-3.5
Turbo with a small amount of training data. Fine-tuning
enables the model to learn language expressions specific to
NFRs tasks or domains. This helps the model understand
specialized terminology and contexts that are challenging
for general language models, achieving higher classification
accuracy. Moreover, fine-tuning with a small amount of
training data significantly reduces the time and cost
associated with preparing annotated large datasets,
compared to traditional methods. For complex tasks like
NFRs classification, it is crucial to learn efficiently from
limited examples.

Fine-tuning not only tailors the model to specific tasks but
also enhances its ability to handle nuanced and domain-
specific language, resulting in more precise and reliable
classifications. This approach is feasible even in scenarios
where annotated data is scarce, enabling effective learning
and adaptation with minimal resources.

3.4 Supplemental Analysis 2 Enhancing
Contextual Understanding

Lastly, this paper proposes the use of sentence
concatenation to provide additional contextual information
that improves classification accuracy. The classification
model has traditionally focused only on the target sentence,
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but incorporating contextual information can enhance
performance by capturing the broader context in which the
target sentence appears. In requirement specifications,
sequential sentences often describe similar non-functional
requirements, and the preceding and following sentences
frequently contain valuable information that helps clarify the
classification of the target sentence.

In this method, embeddings are generated for each
sentence in the test data using the text-embedding-3-large
model. This model, provided by OpenAl, is an advanced
natural language processing model capable of converting
sentence semantics into numerical vectors. The embeddings
are 3072-dimensional vectors that capture the nuances of
sentence content and context, enabling accurate similarity
assessments. These representations are essential for various
tasks, including classification, search, and semantic
comparison.

To identify relevant context, cosine similarity is calculated
between the target sentence and its preceding and following
sentences. Cosine similarity measures the angle between
two vectors, with values closer to 1 indicating higher
similarity. When the cosine similarity exceeds 0.5, the
adjacent sentence is considered contextually relevant and is
concatenated with the target sentence. This process
generates a new, enriched input that reflects not only the
target sentence but also the surrounding context. For
example, if there are consecutive sentences A, B, and C, and
B is the classification target, and if A and B are similar
while B and C are not, the classification is performed using
a concatenated sentence consisting of A and B.

It is possible that increasing the amount of text through
concatenation may enhance classification performance to
some extent, even if the added text is not directly relevant.
However, adding unrelated text can sometimes introduce
noise and ambiguity, which may complicate classification
rather than improve it. To address this, sentences are
concatenated selectively based on their contextual relevance,
as determined by cosine similarity. This approach helps
ensure that the additional information enhances the
classification process by reinforcing the semantic continuity
of the text.

Table 1 Sources of Training Data by Organization

Organization Project Description Date
Ministry of Industrial Safety System Jan-
Economy, Trade Update 2
and Industry P
Development and
Disital Agenc Operation/Maintenance Work  Jul-
& ENCY for Account Information 22
Registration Linkage System
National Unified System for
. Medical Function Information
Ministry of ..
Provision System and Jan-
Health, Labor .
Pharmacy Function 23
and Welfare X -
Information Provision
System,
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By concatenating relevant sentences, the model gains
supplementary cues that contribute to more accurate
classification. This method helps reduce the risk of
misclassification by avoiding the inclusion of unrelated
information and maintaining a focus on contextually aligned
data.

The test data described in Section 4.1, derived from actual
requirement specifications, was used for this experiment.
Since the target sentences were extracted directly from these
documents, the preceding and following sentences were
naturally part of the same text, ensuring contextual
relevance.

Experiments conducted with and without sentence
concatenation demonstrated that improvements in
classification accuracy were due to the inclusion of relevant
contextual information, rather than merely increasing the
amount of text. This structured approach highlights the
value of selectively expanding context to enhance
classification performance while minimizing the risk of
unnecessary complexity.

4 EVALUATION EXPERIMENT

4.1 Models and Test Data Set

In this paper, we utilized the ChatGPT API with the
following models:

GPT-4 Variants

- gpt-40-2024-05-13

- gpt-4-turbo-2024-04-09
GPT-3.5 Turbo

- gpt-3.5-turbo-0125

The gpt-40-2024-05-13 model represents the advanced
current iteration of the GPT-4 series, incorporating the
recent advancements in language understanding and
generation capabilities.

The gpt-4-turbo-2024-04-09 model is offering optimized
performance and a popular choice for a wide range of
practical applications.

The gpt-3.5-turbo-0125 model, although from a previous
generation, provides a valuable comparison point. It offers
cost-effective performance and promptly supports fine-
tuning, allowing for customization to specific tasks or
domains. This makes the gpt-3.5-turbo-0125 model
advantageous for scenarios where budget constraints and the
need for tailored solutions are paramount.

Table 2 Number of Test Data Instances
for Each Classification

Availability 81
Performance/Scalability 70
Operability/Maintainability 90
Migratability 60

Security 90

System Environment/Ecology 23

Total 414
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In our analysis, we specified that the argument type for
function calling properties is enum. For enum types, we
defined "availability, performance/scalability,
operability/maintainability, migratability, security, and
system environment" based on the classification of non-
functional requirements grades. By doing so, we were able
to prevent hallucinations of unspecified categories.

Models provided responses for each evaluation sentence
by sentence. The temperature was set to 0 to ensure
deterministic outputs.

The primary focus of the experiment is to verify the
superiority of using Function Calling capabilities over the
baseline case, which relies solely on prompt interactions for
classification. At the same time, we are able to observe the
differences between models. This comparison provides
valuable insights into their practical applications and
efficiency, highlighting the strengths and possible
improvements.

The test dataset used in this paper was constructed based
on the existing requirement specifications of public tenders
announced by government agencies shown in Tablel. The
requirement specifications were randomly selected. The test
data was randomly extracted from these documents, and
labeling was performed by us based on the IPA’s non-
functional requirements grades. The detailed distribution of
sentences for each label is shown in Table 2.

4.2 Baseline Classification Method without
Function Calling

To establish a baseline for classification accuracy, we
evaluated a method that relies solely on prompt interactions,
without utilizing the Function Calling feature. This baseline
approach involved presenting the model with a prompt that
defined the classification task and the sentence to be
classified. The experiment was conducted in a zero-shot
setting, with no examples provided to the model. This
approach was chosen to evaluate the model’s performance
without prior contextual learning or fine tuning, thereby
establishing a fair baseline for comparison.

The prompt used for this baseline is as follows:

“In the IPA’s non-functional requirement grades, non-
functional requirements are classified into six categories:
availability, performance/scalability,
operability/maintainability, migratability, security, and

system environment. Answer with the name of only one of
these six categories.”

This prompt was consistently applied across both the
prompt-only method and the Function Calling method to
ensure a fair comparison. The purpose of the experiment
was not to argue that the Function Calling method inherently
surpasses the performance of the prompt-only method under
varying conditions. Instead, the objective was to
demonstrate that the addition of Function Calling to the
same prompt leads to improved classification accuracy. By
applying the same prompt in both cases, the comparison
highlights the effect of integrating Function Calling, rather
than differences in prompt design.

It is acknowledged that the application of advanced
prompt engineering techniques or in-context learning could
potentially enhance the performance of the prompt-only
method. However, such approaches fall outside the scope of
this study. The primary focus is to illustrate how the
incorporation of Function Calling enhances performance,
even when used alongside a standard, unoptimized prompt.

By establishing this baseline, the experiment aims to
provide a clear and reproducible comparison between the
two approaches, ensuring that the observed improvements in
classification accuracy can be attributed directly to the
inclusion of Function Calling, rather than variations in
prompt formulation or tuning strategies.

4.3 Effect of Function Calling

Table 3 compares the classification results using Function
Calling and prompt-only methods for each model. The
evaluation metrics include accuracy, precision, recall, and
Fl-score, with the averages calculated using macro-
averaging.

In most models, the method using Function Calling
achieved higher accuracy compared to the prompt-only
method. For instance, GPT-3.5 Turbo shows an accuracy of

0.705 with Function Calling versus 0.696 with prompt
only. GPT-4 Turbo demonstrates even more significant
gains with Function Calling, achieving 0.775 compared to
0.740 with prompt-only. The GPT-40 model also exhibits
superior performance with Function Calling, reaching an
accuracy of 0.792 compared to 0.783 with prompt only. For
GPT-40, the performance improvement with prompt-only
methods is remarkable, reducing the advantage of Function
Calling.

Table 3 Classification Performance Metrics for GPT-3.5 Turbo, GPT-4 Turbo,
and GPT-40 using Function Calling and Prompt-Only Methods

GPT-3.5 Turbo GPT-4 Turbo GPT-40
Function Prompt Function Prompt Function Prompt
Calling only Calling only Calling only
Accuracy 0.705 0.696 0.775 0.740 0.792 0.783
Precision 0.719 0.608 0.811 0.766 0.785 0.787
Recall 0.648 0.618 0.734 0.674 0.779 0.741
F1-score 0.651 0.587 0.753 0.681 0.780 0.754
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GPT-4_Function Calling Recall

Availability 0.012 0.28 0.037
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Operability/ .
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Security 0.078 0.011 0.89
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Environment/
Ecology

Availability
Performance/
Scalability
Operability/
Maintainability
Migratability
Security
System
Environment/
Ecology

Predicted Label

Figure 1 Recall Matrix for GPT-4 Turbo Function Calling
and Prompting Performance Across 6 Categories

Overall, these results suggest that the use of Function
Calling significantly enhances the performance of language
models across various evaluation metrics. While there are
some nuances, particularly with GPT-4o0, the general trend
highlights the practical advantages of this approach in
classification tasks.

4.4 Misclassification Analysis

In this section, we examine the misclassification issues
observed across various categories, focusing on the "System
Environment/Ecology" category. Figure 1 and Fig. 2
illustrate the recall values for Function Calling and
prompting methods across categories, highlighting areas
with pronounced misclassification.

Both Function Calling and prompting methods
demonstrate low recall values for the "System
Environment/Ecology" category, with  prompting

performing particularly poorly, likely due to the inherent
complexity of this category. To illustrate the challenges and
successes in classifying non-functional requirements, we
present specific examples of correctly classified and
misclassified cases within the "System
Environment/Ecology" category.

The first example pertains to the System Environment
category, "The construction environment for the next-
generation security network assumes the use of the cloud,
making physical servers and devices unnecessary." It was
correctly classified as belonging to the System Environment
category due to its explicit focus on operational premises
and infrastructure design.

Conversely, the second example highlights a
misclassification case. The requirement "Access to the
facility and rooms housing managed devices is restricted,
particularly for rooms containing devices, where only
authorized personnel with management privileges are
permitted entry" was incorrectly categorized as Security

True Label
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Figure 2 Recall Matrix for GPT-4 Turbo Prompting only
Performance Across 6 Categories

instead of System Environment. While this requirement
involves access control measures, its primary focus is on the
physical environment and the placement of managed devices,
which aligns more closely with the System Environment
category.

According to the IPA’s non-functional requirements grade,
the System Environment/Ecology category encompasses
system constraints/premises established at installation,
system  characteristics, compliance standards, and
environmental associated with users and the region
surrounding the system. Collectively, these elements
represent the broader environmental and contextual factors
influencing system operation and integration.

The low recall in this category likely stems from its broad
and multifaceted nature, covering diverse aspects such as
technical constraints and user characteristics. This
complexity introduces ambiguity, making it difficult for
models to distinguish relevant terms from other categories.
Additionally, overlap exists between the "System
Environment/Ecology" category and others; for instance,
environmental conditions may also pertain to security
concerns. Such overlaps complicate classification, as models
often struggle to differentiate between closely related
concepts. Moreover, interpreting terms related to the system
environment is highly context-dependent, which hinders the
models' ability to generalize accurately.

Overall, misclassification remains a critical challenge,
particularly within the "System Environment/Ecology"
category, due to its inherent complexity and the overlap with
other classifications.
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Table 4 Number of Training Data Instances for NFRs Grade

Availability 168
Performance/Scalability 175
Operability/Maintainability 158
Migratability 101

Security 163

System Environment/Ecology 168
Total 933

5 SUPPLEMENTAL EXPERIMENTS

5.1 Training Data for Fine Tuning and
Embedding Analysis Fine Tuning Models

GPT-3.5 Turbo is capable of fine-tuning with even small
amounts of data. Fine-tuning is greatly influenced by the
quality of training dataset used, making its selection
extremely important. In this paper, we utilized descriptions
of non-functional requirement grades as the training dataset
instead of using sentences from actual specifications. The
primary reason for this choice is that it allows for more
efficient annotation, as the classification of sentences is
more straightforward. Additionally, one reason is the
hypothesis that it may be difficult to learn the diversity of
NFRs with a small amount of data with small numbers of
training data. The non-functional requirement grades
classify NFRs into six categories: availability,
performance/scalability, operability/maintainability,
migratability, security, and system environment/ecology.
Descriptions related to each category were labeled with the
respective classification and used as training data. As shown
in Table 4, the training dataset comprises a total of 933
instances, distributed across the six NFR categories.

For each experiment, a necessary number of instances was
randomly extracted from this dataset. This approach ensured
that the model could be fine-tuned effectively while utilizing
a representative sample of the data for each specific
experiment. Figure 3 shows the t-SNE plot of descriptions
for each non-functional requirement grade after embedding
them using the text-embedding-3-large model provided by
OpenAl, which converts the text into 3072-dimensional

vectors. Each color represents one of the six NFR categories.

The clear clustering of some categories, like security,
suggests that the classification task for these categories
might be relatively straightforward for the model, likely
resulting in higher accuracy, precision, and recall.
Conversely, the dispersion observed in some categories, like
the system environment/ecology categories, indicates
potential challenges by enhancing context understanding. in
achieving high classification performance. These categories
might require more sophisticated models or additional
context to improve classification accuracy. The t-SNE
visualization serves as a validation tool, demonstrating that
the embedding model can capture and represent the
similarities and differences among the NFR descriptions to a
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Figure 3 t-SNE Visualization of Embedded Training Data

significant extent. This visual validation supports the choice
of using for fine-tuning and classification tasks.

In conclusion, the t-SNE plot effectively illustrates the
clustering behavior of the NFR descriptions based on their
embeddings. The distinct clusters for some categories and
the overlapping regions for others provide valuable insights
into the complexity of the classification task. These insights
highlight the strengths and potential context understanding
in using the current model for classifying non-functional
requirements, guiding future improvements, and fine-tuning
efforts.

5.2 Fine Tuning Effect

In order to comprehensively evaluate the progression of
loss and its impact on accuracy, three different fine-tuning
models were tested, each designed to address varying
conditions in terms of dataset size and number of epochs,
thus providing a robust analysis.

In finetuning 1, illustrated in Fig. 4-1, training was
conducted over three epochs using 50 randomly selected
training data samples. The loss progression in this scenario
exhibits significant fluctuations in the initial stages but
stabilizes in the later stages. Considering the small size of
the training dataset, this early stabilization is presumed to
lead to insufficient accuracy over broad data.

In finetuning 2, depicted in Fig. 4-2, the training dataset
was increased to 250 randomly selected samples, and
training was conducted over three epochs. Compared to the
first scenario, the adaptation to a more diverse training
dataset results in greater and more prolonged fluctuations.
However, it is inferred that this leads to more advanced
learning.

In finetuning 3, shown in Fig. 4-3, 250 training data
samples were used, but the model was trained over nine
epochs. In this case, the loss stabilizes within one epoch,
suggesting that increasing the number of epochs does not
necessarily aid in learning more from the data.

From these observations, it is evident that the size of the
training data and the number of epochs have a significant
impact on the learning process.

Figure 5 compares the classification accuracy of these
three fine-tuned GPT-3 Turbo models and GPT-4 variants.
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Figure 4 - 1 Training Loss and Accuracy over Epochs: N=50,
Epoch=3 (red: train loss, blue: train Accuracy)
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Figure 4 - 2 Training Loss and Accuracy over Epochs:
N=250, Epoch=3 (red: train loss, blue: train Accuracy)
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Figure 4 - 3 Training Loss and Accuracy over Epochs:
N=250, Epoch=9 (red: train loss, blue: train Accuracy)

Among the metrics of Accuracy, Precision, Recall, and F1-
score, we specifically chose the F1-score due to its balanced
representation of both Precision and Recall. In both
scenarios, where the training data consists of either 50 or
250 randomly selected samples, fine-tuning significantly
improves the F1 score, reaching levels comparable to the
accuracy achieved using Function Calling in GPT-4 variants.
Increasing the training data from 50 to 250 samples results
in a slight improvement in the F1 score. However, no
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Figure 5 Comparison of F1-Scores for Function Calling and
Prompt-Only Approaches Across Different Models and
Fine-Tuning Stages

additional improvements were observed with an increase in
the number of epochs.

While using Function Calling without fine-tuning is
effective, combining it with fine-tuning achieves higher
classification accuracy. Furthermore, fine-tuning reduces the
performance gap between using Function Calling and using
only prompts. These findings provide valuable insights for
selecting the optimal model design and training strategy for
complex tasks such as non-functional requirements
classification.

5.3 Improve Context Understanding

This experiment evaluated the -effectiveness of the
proposed sentence combination method by comparing it to
analyses conducted without sentence concatenation. The
classification accuracy results for each metric are shown in
Table 5.

As illustrated in the table, the classification method using
sentence combination (Combined Analysis) outperforms the
no concatenation analysis across all evaluation metrics.
Specifically, the accuracy improved.

Out of 414 experimental data points, 22 data points that
were previously incorrect were corrected by using sentence
combination, whereas 6 data points that were previously
correct were misclassified. These results indicate that
incorporating contextual information enhances classification
accuracy, although it also introduces new misclassifications.

Basic no concatenation analysis methods tend to overlook
contextual information as they consider only the target
sentences for classification. In contrast, the method using
sentence combination adds contextual information by
combining preceding and/or succeeding sentences, allowing
for more accurate classification. This approach is
particularly effective for documents like requirement
specifications, where non-functional requirements often
span multiple sentences.
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Table 5 Classification Accuracy Results Comparing
the Proposed Sentence Combination Method
and no Concatenation Analysis

without Sentence Combined
Concatenation Analysis
Accuracy 0.792 0.831
Precision 0.785 0.839
Recall 0.779 0.808
F1-score 0.780 0.818

From these results, it can be confirmed that the
classification method using sentence combination is
effective, especially in the classification of non-functional
requirements, by leveraging contextual information to
improve classification accuracy. However, the increase in
misclassifications suggests that further improvements and
optimizations are necessary.

6 DISCUSSION

The primary aim of this study was to demonstrate that
incorporating the Function Calling feature into ChatGPT's
classification process can enhance the accuracy of NFR
classification compared to relying solely on prompts. By
adding Function Calling to the same prompt, the method
achieves improved accuracy by reducing ambiguities and
ensuring adherence to predefined classification criteria, even
in a zero-shot setting.

This improvement, as indicated by accuracy increases
across all models tested, is primarily attributed to the
structured data retrieval and contextually appropriate
categorization enabled by Function Calling. For example,
GPT-4 Turbo demonstrated an improvement in F1 score,
increasing from 0.681 to 0.753. Similarly, GPT-3.5 Turbo
improved from 0.587 to 0.651, while GPT-40 achieved a
gain from 0.754 to 0.780.

These results highlight that the integration of Function
Calling consistently enhances classification accuracy across
models by ensuring adherence to predefined classification
boundaries. By defining enumerated categories, the model
effectively avoids hallucinations, ensuring that the
classifications adhere strictly to the intended boundaries.
This capability highlights the model’s alignment with
human reasoning in complex classification tasks.

Furthermore, the proposed method is practical as a
primary classification tool, particularly when secondary
human review is integrated into the process. This approach
offers high efficiency and reliability. Additionally,
considering that even human reviewers may have differing
opinions on certain classification targets or that some items
inherently span two categories, the practicality of this
method becomes even more evident. However, in critical
projects, robust secondary reviews are indispensable, and
further research and development are necessary to enhance
classification accuracy.

The supplementary experiments aimed to enhance
classification accuracy by fine-tuning the model and
incorporating  contextual information, resulting in
measurable improvements in precision and recall metrics.

Fine-tuning demonstrated that even minimal adjustments
on small datasets could yield notable improvements in
classification accuracy. For instance, the F1 score of GPT-
3.5 Turbo improved significantly from 0.651 to 0.796,
highlighting the effectiveness of fine-tuning in enhancing
the model's performance.

Similarly, the use of sentence concatenation to incorporate
contextual information from adjacent sentences enhanced
the model's understanding, leading to more precise
classifications. Specifically, this approach improved
accuracy from 0.792 to 0.831, demonstrating the value of
leveraging contextual information in classification tasks.

However, these techniques were positioned as
complementary to the primary use of Function Calling.

In conclusion, Function Calling proved to be an essential
feature, enabling consistent improvements in NFR
classification accuracy over prompt-only methods. The
supplementary methods, while beneficial, serve primarily to
augment the foundational improvements achieved through
Function Calling. Future research will focus on refining
these methods and exploring their broader applications.

7 SUMMARY OF CONTRIBUTION AND
CONCLUTIONS

This paper proposed and demonstrated the effectiveness of
an automatic classification method for NFRs using Function
Calling with large language models.

The Function Calling capabilities of GPT-4 Turbo and
GPT-40 achieved excellent F1 scores of 0.753 and 0.780,
respectively, matching or exceeding the performance of
traditional task-specific models such as CNN or BERT on
datasets similar to those used in this study for NFR
classification tasks, even in a zero-shot learning state,
demonstrating their high capability.

However, instances of misclassification were observed,
particularly in scenarios involving ambiguous or
overlapping  categories, indicating the need for
improvements in the model's contextual understanding
abilities.

Two additional approaches, namely fine-tuning and
sentence concatenation, were employed to enhance
classification accuracy and address contextual ambiguities.

First, GPT-3.5 Turbo, with minimal fine-tuning, achieved
results comparable to GPT-4 variants, emphasizing the
importance and efficiency of fine-tuning. The significance
of fine-tuning is evident, as it enhances the model's
contextual understanding and classification accuracy.

Notably, the performance of the prompt-only approach
also improves significantly with fine-tuning, as evidenced
by an F1 score increase from 0.587 to 0.800 at maximum,
ultimately narrowing the performance gap between the two
methods.

Furthermore, experiments involving the concatenation of
related sentences, by linking the sentences preceding and
following the target for classification, confirmed the
effectiveness of this approach in improving contextual
understanding.

Future research should address these challenges by
focusing on enhancing the model's contextual understanding
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and creating targeted training datasets that emphasize the
model's most challenging classification categories of NFRs.
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