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Abstract - Efficient analysis of requirement specifications is 

crucial for improving their quality, which is important in 

software development. We focus on non-functional 

requirements (NFRs), which are often overlooked in 

requirement definitions of system developments and 

propose a method that allows individuals without extensive 
expertise to efficiently extract and classify NFRs from 

requirement specifications. The proposed method aims to 

efficiently enhance the quality of software requirement 

specifications by enabling the extraction and classification 

of NFRs with minimal expertise. 

Previously, the authors experimented with creating 

dedicated deep learning models for classification tasks and 

then used pre-trained Transformer models like BERT and 
GPT-2, trained on human-annotated datasets. However, 

recent advancements, such as tools like ChatGPT, enable 

classification via prompt interactions alone. In this paper, 

we explore the capabilities of ChatGPT's Function Calling 

feature, utilizing an approach that optimizes its behavior, 

aiming to demonstrate its superior classification 

performance compared to prompt-only responses and 

conventional classification methods, which require large 
training datasets. 

Function Calling significantly reduced ambiguities and 

improved classification accuracy by ensuring adherence to 

predefined classification boundaries. For example, GPT-4 

Turbo demonstrated an F1 score improvement from 0.681 to 

0.753, and GPT-3.5 Turbo achieved an increase from 0.587 

to 0.651. Additionally, GPT-4o showed a gain from 0.754 to 

0.780. These improvements highlight the practical utility of 
Function Calling as a primary classification tool. 

As supplementary verification, we conducted two 

additional analyses. Fine-tuning GPT-3.5 Turbo on small 

datasets significantly enhanced its performance, achieving 

an F1 score of 0.796. Similarly, incorporating sentence 

concatenation by linking preceding and following sentences 

improved contextual understanding, increasing accuracy 

from 0.792 to 0.831. These approaches, while 
complementary, further validated the robustness of Function 

Calling for NFR classification tasks. 

Future research should address remaining challenges, 

such as improving the model’s contextual understanding and 

developing targeted training datasets that emphasize the 

most challenging classification categories. These findings 

highlight the potential of advanced natural language models 

like ChatGPT in making NFR classification more efficient 

and precise. 

Keywords: Function Calling, ChatGPT, GPT-4o, Non-

Functional Requirements, Documents Classification 

1 INTRODUCTION 

In information system development, requirements are 

broadly divided into functional and non-functional 

requirements [1]. Functional requirements define specific 

functions that the system must perform, whereas non-

functional requirements describe the overall qualities of the 

system, such as availability, performance, reliability, and 

efficiency. These non-functional requirements define 

expectations for the system's actual operating environment 
and are crucial for ensuring the overall quality of the 

software [2]. 

1.1 Importance and Challenges of Non-

Functional Requirements 

Non-functional requirements are critically important for 

the success of a system, but their abstract nature makes their 

identification and classification challenging. If non-

functional requirements are not adequately defined, they can 

severely impact system performance, usability, and security. 

Therefore, clearly defining non-functional requirements and 

managing them throughout the development process is one 

of the major challenges in system development. Insufficient 
non-functional requirements can result in the system failing 

to meet expected performance, ultimately leading to 

decreased user satisfaction. 

Non-functional requirements are essential for ensuring the 

overall quality of the system. Characteristics such as system 

response time, throughput, availability, security, usability, 

and scalability directly affect user experience and reliability. 

For example, if a system has a slow response time, users 
may find it difficult to use and avoid using it altogether. 

Additionally, if security requirements are not adequately 

met, the system may be vulnerable to external attacks, 

increasing the risk of important data being leaked. Thus, 

non-functional requirements are vital for maintaining the 

health of the system and the trust of users. 

To properly define and agree on non-functional 

requirements, it is necessary to clearly identify and classify 
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them. However, since non-functional requirements are 

abstract and diverse, manual classification is time-

consuming, labor-intensive, and requires specialized 

knowledge. Disparities in understanding non-functional 

requirements between users and vendors often arise, 

becoming an obstacle to the success of system development. 

1.2 Emergence and Advancement of 

Automated Classification Techniques 

As a means of addressing the challenges of identifying and 

classifying non-functional requirements, automated 

classification techniques are gaining attention. In particular, 
research on document classification techniques using deep 

learning and large language models (LLMs) has been 

actively conducted. Since the advent of Transformer by 

Vaswani et al. [3], models such as BERT (Bidirectional 

Encoder Representations from Transformers) by Devlin et al. 

[4] and GPT (Generative Pre-trained Transformer) by

Radford et al. [5], which emerged in 2018, have been pre-

trained on large amounts of text and fine-tuned for specific
tasks to improve classification accuracy. The authors have

also experimented with automatic classification using a

model incorporating BERT and GPT-2 [6] in the previous

paper [7].

Given the abstract nature and diversity of non-functional 

requirements, the introduction of automated classification 

techniques is highly beneficial. First, defining and 

classifying non-functional requirements require the expertise 
and time of experienced professionals, making manual 

classification costly and time-consuming. Automated 

classification techniques significantly reduce these manual 

efforts, allowing for efficient classification. Moreover, 

automated classification provides consistent results and 

reduces human errors and biases. Additionally, accurate and 

swift classification of non-functional requirements enables 

appropriate requirements management from the early stages 
of a development project, thereby improving the project's 

success rate. For instance, properly classifying and 

recognizing system performance requirements early on can 

help prevent performance issues in later development stages. 

Recently, with the widespread use of conversational 

models like ChatGPT, inference through prompt interactions 

is becoming possible. Conversational LLM models generate 

appropriate responses in response to questions and 
instructions during interaction with users in natural language. 

This conversational capability allows users to perform 

advanced inferences and information searches without 

requiring specific knowledge or skills. 

Models generate responses based on prompts. Thus, by 

designing prompts appropriately, the output of the model 

can be controlled to obtain responses suitable for the 

intended purpose. For example, the format and content of 
prompts can be adjusted to handle various tasks, such as 

question answering, text generation, summarization, and 

translation. 

However, there are limitations to performance in 

classification tasks. Classification tasks involve categorizing 

text or data into specific categories or labels, which is one of 

the fundamental applications of deep learning models. For 

instance, detecting spam emails or categorizing product 

reviews as positive or negative are common classification 

tasks. While the classification performance of 

conversational models has improved, they may still lag 

behind dedicated traditional models for certain complex 

tasks or large datasets. Particularly, when handling multi-

class classification beyond binary classification, 
hallucinations may occur, resulting in the unintended 

creation of classification categories, which negatively 

impacts accuracy. 

In this paper, we attempt to classify non-functional 

requirements using the Function Calling feature of ChatGPT. 

Function Calling is a means of obtaining additional 

information by calling other APIs or functions during 

prompt interactions, allowing integration with external 
services and databases. Generally, by using this feature, 

more advanced processing and data retrieval become 

possible. 

This paper focuses on utilizing arguments required for 

calls during the Function Calling process as classification 

data. By employing enum to restrict and enumerate variable 

types, unintended category creation due to hallucinations 

can be eliminated, ensuring that the classification remains 
within the intended boundaries. The model automatically 

suggests appropriate arguments based on contextual 

information, and proper argument content is directly linked 

to accurate calls and responses. Utilizing these argument 

suggestions as classification data is expected to improve the 

classification accuracy of non-functional requirements. 

In addition to the core focus on the outcomes of Function 

Calling, the following two experiments were supplementary 
investigations aimed at further enhancing the effectiveness 

of the Function Calling feature. While these experiments 

provide valuable insights into potential improvements, the 

primary objective of this paper remains centered on the 

results derived from Function Calling. 

First, we verify the impact of small-scale fine-tuning using 

non-functional Requirements Grades [8] on classification by 

Function Calling. By optimizing the Function Calling 
feature of ChatGPT based on clearly defined standards using 

non-functional Requirements Grades, we aim to improve the 

classification accuracy of non-functional requirements. The 

outcomes of this study are expected to contribute to the 

development of automated classification technologies for 

non-functional requirements and enhance the efficiency of 

the quality assurance process in system development. 

Second, we propose a classification method that uses 
sentence concatenation to provide additional contextual 

information. In conventional classification methods, only 

the target sentence is classified, but incorporating contextual 

information can improve classification accuracy. In 

requirement specifications, similar non-functional 

requirements may span multiple sentences, and the 

preceding and following sentences are often useful as 

additional contextual information for the target sentence. In 
this method, we embed the test data, determine similarity 

based on cosine similarity between the target sentence and 

its surrounding sentences, and concatenate related sentences 

before classification. This allows for classification that 
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2.1 Classification of Non-Functional 

Requirements 

Kinoshita et al. [9] proposed a method for extracting non-

functional requirements (NFRs) from Japanese requirement 

documents. Specifically, they established keywords related 

to NFRs and applied them to the documents to effectively 

identify relevant requirements. Additionally, they introduced 

an approach for detecting errors in NFRs by defining case 
frames for the actions described in requirement sentences. 

Their method involves validating these sentences using 

criteria such as omission, ambiguity, redundancy, and 

inconsistency, thereby enhancing the overall quality of the 

requirements. 

2.2 Classification Using Deep Learning 

Gnanasekaran et al. [10] researched and developed 
recurrent neural network (RNN) models, known for their 

effectiveness in processing sequential natural language text. 

They conducted experiments using these models to classify 

NFRs described in natural language into five categories: 

maintainability, operability, performance, security, and 

usability. The experimental validation was based on two 

datasets encompassing approximately 1,000 NFRs, 

demonstrating the potential of RNNs in accurately 
classifying NFRs. 

Kitagawa and Nagaoka [11] proposed an automatic 

classification method using Word2Vec and convolutional 

neural networks (CNN). Their approach extended the 

classification targets beyond NFRs and project 

management-related sentences to include functional 

requirements and other types of sentences. They aimed to 

automatically classify all sentences in Japanese Request for 
Proposal (RFP) documents, improving the efficiency and 

accuracy of requirement specification analysis. 

2.3 Classification Using Large Language 

Models 

Since the introduction of the Transformer architecture, 

significant advancements have been made in natural 

language processing tasks using LLMs based on 

Transformers. These models have largely replaced 

traditional recurrent neural networks such as RNNs, LSTMs, 

and GRUs. By fine-tuning large pre-trained models like 

BERT [4] for specific tasks, researchers have achieved 

models optimized for those tasks, often attaining higher 

accuracy. 

Zhu et al. [12], starting from BERT, introduced a novel 

method to enhance classification performance by 

formalizing input sentences as natural language templates 

and leveraging knowledge expansion [13]. This approach 

improved short text classification by integrating additional 
contextual information into the prompts. 

Gutierrez et al. [14] reported that fine-tuned BERT models 

outperformed interactive GPT-3 models in tasks such as 

named entity recognition and relation extraction within the 

medical domain. Similarly, Sun et al. [15] found that while 

interactive models like GPT-3 can perform text 

classification tasks, fine-tuned task-specific models still 

achieve higher accuracy due to their specialized training. 
Ibe et al. [16] conducted experiments using large 

generative language models to automatically classify 

requirement specifications with few examples by adjusting 

prompts. Their results indicated that BERT-based 

classifications outperformed interactive models like 

ChatGPT in terms of accuracy, highlighting the 

effectiveness of task-specific fine-tuning. 

On the other hand, the performance of ChatGPT as a 
question-answering system (QAS) has been reported to 

match or even exceed that of traditional task-specific QAS 

models. Tan et al. [17] demonstrated that ChatGPT provides 

superior robustness and explainability in conversations 

compared to traditional QAS, offering enhanced user 

interaction and adaptability. 

Brown et al. [18] evaluated GPT-3's performance in few-

shot learning settings, reporting high effectiveness in natural 
language processing tasks under zero-shot and one-shot 

conditions. Their work highlighted the capability of large 

language models to perform various tasks without extensive 

task-specific fine-tuning, showcasing the potential of models 

like GPT-3 in few-shot learning scenarios. 

In studies focusing on prompt engineering, the importance 

of In-Context Learning (ICL) has been emphasized. Dong et 

al. [19] provided a comprehensive overview of ICL, 
demonstrating its applicability across diverse tasks and its 

ability to improve model performance by incorporating 

contextual information during inference. Liu and Yang [13] 

further explored knowledge-enhanced prompt learning for 

few-shot text classification, showing that integrating 

external knowledge can significantly boost performance. 

Min et al. [20] analyzed how the selection of 

demonstrations in ICL affects model performance, clarifying 
the optimal conditions for demonstration selection to 

maximize effectiveness. Wan et al. [21] showcased the 

effectiveness of ICL in relation to extraction tasks, 

proposing methods with higher flexibility and accuracy 

compared to conventional approaches by utilizing 

contextual cues within the prompts. These studies highlight 

the flexibility and performance of interactive models and 

ICL across various tasks, opening new possibilities in the 
field of natural language processing. 

considers contextual information, thereby improving 

classification accuracy. 

In the future, automated classification technologies for 

non-functional requirements are expected to evolve further, 

enabling more accurate and efficient classification. In 

particular, with the advancement of large language models, 

it will become possible to understand the abstract nature of 

non-functional requirements more deeply and perform 

classification accordingly. 

2 RELATED RESEARCH 
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3 PROPOSED METHOD 

This paper proposes an automatic classification method for 

NFRs in system development specification documents. This 

method leverages the Function Calling feature of GPT 

models, a type of large language model, and is based on IPA 

standards. 

3.1 Function Calling 

Function Calling is a feature provided by the API of large 
language models, enabling the model to indirectly interact 

with external APIs or systems and generate specific actions. 

This technology involves parsing natural language queries, 

selecting appropriate functions, and generating JSON 

responses. For example, in response to the query “Tell me 

about the weather in Tokyo,” the model suggests calling a 

function that uses a weather API with the region name as an 

argument. The argument "Tokyo" is prepared for the 
weather API call. The program then retrieves Tokyo's 

weather through the function and weather API, then passes 

this information back to the model as an additional prompt. 

The model then provides the final answer, significantly 

expanding the potential for interactive applications and 

services using the model. This feature bridges the gap 

between natural language understanding and the execution 

of specific actions, enhancing the model's practicality and 
allowing it to flexibly respond to user requests. Function 

Calling not only streamlines the interaction between the 

model and external systems but also improves the overall 

efficiency of handling user queries by automating the 

process of converting natural language into actionable 

commands. 

3.2 Classification using Function Call 

A derivative use of Function Calling involves extracting 

structured data from text. For example, a function like 

extract_data(name: string, birthday: string) can be defined 

and invoked as needed, extracting a person's name and 

birthday from the text as arguments. This functionality 

allows for the rapid and accurate extraction of necessary 

information from large volumes of text data, facilitating 

efficient data analysis and information management. This 
method provides a more structured and organized approach 

to handling text data, ensuring that the extracted information 

is consistent and accurate. 

Function Calling can also help in selecting the most 

appropriate argument based on the overall context of a query, 

even if the specific term is not explicitly mentioned. By 

leveraging the model's natural language understanding, it 

can infer the intended meaning and relevant information 
from the user's input. 

In this study, rather than using Function Calling for 

extracting structured data from documents, we applied it to 

document classification. Normally, Function Calling in 

LLMs is triggered only when the model determines it is 

necessary. However, we configured parameters to ensure 

that Function Calling is always invoked whenever a 

classification target sentence is input. This guarantees that 

Function Calling is consistently performed during 

classification tasks. 

The function invoked in this process exists only as a 

description of its name and outline and does not exist as an 

actual implemented program. The primary purpose of 

Function Calling in our method is to return arguments that 

indicate classification categories. These arguments are 
subsequently used within the program for further processing. 

Since the goal of this experiment is to acquire the necessary 

arguments for classification, the Function Calling process 

terminates once the arguments are obtained, without 

invoking any external modules or APIs. This ensures that 

the classification process benefits from the structure and 

consistency of Function Calling without relying on external 

integrations. 
To achieve classification, we enforced the invocation of a 

dummy function through prompts containing evaluation 

sentences. The model suggests classification categories as 

arguments during this process. By specifying the argument 

type as enum, we enumerated the classification categories, 

limiting suggestions to predefined options and preventing 

hallucinations. This approach automates and streamlines the 

classification process, reducing the potential for human error 
and enhancing overall efficiency. 

3.3 Supplemental Analysis 1 Fine Tuning 

for GPT-3.5 

Section 3.3 and 3.4 aim to enhance the results achieved by 
utilizing Function Calling through two additional techniques. 

The purpose of these experiments is to improve the 

classification accuracy of NFRs by fine-tuning and 

enhancing contextual understanding. 

Firstly, this paper attempts to improve models with 

classification accuracy by additional training of GPT-3.5 

Turbo with a small amount of training data. Fine-tuning 

enables the model to learn language expressions specific to 
NFRs tasks or domains. This helps the model understand 

specialized terminology and contexts that are challenging 

for general language models, achieving higher classification 

accuracy. Moreover, fine-tuning with a small amount of 

training data significantly reduces the time and cost 

associated with preparing annotated large datasets, 

compared to traditional methods. For complex tasks like 

NFRs classification, it is crucial to learn efficiently from 
limited examples. 

Fine-tuning not only tailors the model to specific tasks but 

also enhances its ability to handle nuanced and domain-

specific language, resulting in more precise and reliable 

classifications. This approach is feasible even in scenarios 

where annotated data is scarce, enabling effective learning 

and adaptation with minimal resources. 

3.4 Supplemental Analysis 2 Enhancing 

Contextual Understanding 

Lastly, this paper proposes the use of sentence 

concatenation to provide additional contextual information 

that improves classification accuracy. The classification 
model has traditionally focused only on the target sentence, 
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Organization Project Description Date 

Ministry of 
Economy, Trade 

and Industry 

Industrial Safety System 

Update 

Jan-

22 

Digital Agency 

Development and 
Operation/Maintenance Work 

for Account Information 

Registration Linkage System 

Jul-

22 

Ministry of 

Health, Labor 

and Welfare 

National Unified System for 

Medical Function Information 

Provision System and 

Pharmacy Function 

Information Provision 
System,  

Jan-

23 

By concatenating relevant sentences, the model gains 

supplementary cues that contribute to more accurate 

classification. This method helps reduce the risk of 

misclassification by avoiding the inclusion of unrelated 
information and maintaining a focus on contextually aligned 

data. 

The test data described in Section 4.1, derived from actual 
requirement specifications, was used for this experiment. 

Since the target sentences were extracted directly from these 

documents, the preceding and following sentences were 

naturally part of the same text, ensuring contextual 

relevance.  

Experiments conducted with and without sentence 

concatenation demonstrated that improvements in 

classification accuracy were due to the inclusion of relevant 
contextual information, rather than merely increasing the 

amount of text. This structured approach highlights the 

value of selectively expanding context to enhance 

classification performance while minimizing the risk of 

unnecessary complexity. 

4 EVALUATION EXPERIMENT 

4.1  Models and Test Data Set 

In this paper, we utilized the ChatGPT API with the 

following models: 

GPT-4 Variants 

• gpt-4o-2024-05-13

• gpt-4-turbo-2024-04-09

GPT-3.5 Turbo

• gpt-3.5-turbo-0125

The gpt-4o-2024-05-13 model represents the advanced 

current iteration of the GPT-4 series, incorporating the 

recent advancements in language understanding and 

generation capabilities.  

The gpt-4-turbo-2024-04-09 model is offering optimized 
performance and a popular choice for a wide range of 

practical applications. 

The gpt-3.5-turbo-0125 model, although from a previous 

generation, provides a valuable comparison point. It offers 

cost-effective performance and promptly supports fine-

tuning, allowing for customization to specific tasks or 

domains. This makes the gpt-3.5-turbo-0125 model 

advantageous for scenarios where budget constraints and the 
need for tailored solutions are paramount. 

Table 2 Number of Test Data Instances 

for Each Classification 

Availability 81 

Performance/Scalability 70 

Operability/Maintainability 90 

Migratability 60 

Security 90 

System Environment/Ecology 23 

Total 414 

but incorporating contextual information can enhance 

performance by capturing the broader context in which the 

target sentence appears. In requirement specifications, 

sequential sentences often describe similar non-functional 

requirements, and the preceding and following sentences 

frequently contain valuable information that helps clarify the 

classification of the target sentence. 

In this method, embeddings are generated for each 

sentence in the test data using the text-embedding-3-large 

model. This model, provided by OpenAI, is an advanced 

natural language processing model capable of converting 

sentence semantics into numerical vectors. The embeddings 

are 3072-dimensional vectors that capture the nuances of 

sentence content and context, enabling accurate similarity 

assessments. These representations are essential for various 

tasks, including classification, search, and semantic 

comparison. 

To identify relevant context, cosine similarity is calculated 

between the target sentence and its preceding and following 

sentences. Cosine similarity measures the angle between 

two vectors, with values closer to 1 indicating higher 

similarity. When the cosine similarity exceeds 0.5, the 

adjacent sentence is considered contextually relevant and is 

concatenated with the target sentence. This process 

generates a new, enriched input that reflects not only the 

target sentence but also the surrounding context. For 

example, if there are consecutive sentences A, B, and C, and 

B is the classification target, and if A and B are similar 

while B and C are not, the classification is performed using 

a concatenated sentence consisting of A and B. 

It is possible that increasing the amount of text through 

concatenation may enhance classification performance to 

some extent, even if the added text is not directly relevant. 

However, adding unrelated text can sometimes introduce 

noise and ambiguity, which may complicate classification 

rather than improve it. To address this, sentences are 

concatenated selectively based on their contextual relevance, 

as determined by cosine similarity. This approach helps 

ensure that the additional information enhances the 

classification process by reinforcing the semantic continuity 

of the text. 

Table 1 Sources of Training Data by Organization 
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In our analysis, we specified that the argument type for 

function calling properties is enum. For enum types, we 

defined "availability, performance/scalability, 

operability/maintainability, migratability, security, and 

system environment" based on the classification of non-

functional requirements grades. By doing so, we were able 

to prevent hallucinations of unspecified categories. 
Models provided responses for each evaluation sentence 

by sentence. The temperature was set to 0 to ensure 

deterministic outputs. 

The primary focus of the experiment is to verify the 

superiority of using Function Calling capabilities over the 

baseline case, which relies solely on prompt interactions for 

classification. At the same time, we are able to observe the 

differences between models. This comparison provides 
valuable insights into their practical applications and 

efficiency, highlighting the strengths and possible 

improvements. 

The test dataset used in this paper was constructed based 

on the existing requirement specifications of public tenders 

announced by government agencies shown in Table1. The 

requirement specifications were randomly selected. The test 

data was randomly extracted from these documents, and 
labeling was performed by us based on the IPA’s non- 

functional requirements grades. The detailed distribution of 

sentences for each label is shown in Table 2. 

4.2 Baseline Classification Method without 

Function Calling 

 To establish a baseline for classification accuracy, we 

evaluated a method that relies solely on prompt interactions, 

without utilizing the Function Calling feature. This baseline 

approach involved presenting the model with a prompt that 

defined the classification task and the sentence to be 

classified. The experiment was conducted in a zero-shot 

setting, with no examples provided to the model. This 
approach was chosen to evaluate the model’s performance 

without prior contextual learning or fine tuning, thereby 

establishing a fair baseline for comparison. 

The prompt used for this baseline is as follows: 

“In the IPA’s non-functional requirement grades, non-

functional requirements are classified into six categories: 

availability, performance/scalability, 

operability/maintainability, migratability, security, and 

system environment. Answer with the name of only one of 

these six categories.” 

This prompt was consistently applied across both the 

prompt-only method and the Function Calling method to 

ensure a fair comparison. The purpose of the experiment 

was not to argue that the Function Calling method inherently 

surpasses the performance of the prompt-only method under 
varying conditions. Instead, the objective was to 

demonstrate that the addition of Function Calling to the 

same prompt leads to improved classification accuracy. By 

applying the same prompt in both cases, the comparison  

highlights the effect of integrating Function Calling, rather 

than differences in prompt design. 

It is acknowledged that the application of advanced 

prompt engineering techniques or in-context learning could 
potentially enhance the performance of the prompt-only 

method. However, such approaches fall outside the scope of 

this study. The primary focus is to illustrate how the 

incorporation of Function Calling enhances performance, 

even when used alongside a standard, unoptimized prompt. 

By establishing this baseline, the experiment aims to 

provide a clear and reproducible comparison between the 

two approaches, ensuring that the observed improvements in 
classification accuracy can be attributed directly to the 

inclusion of Function Calling, rather than variations in 

prompt formulation or tuning strategies. 

4.3 Effect of Function Calling 

Table 3 compares the classification results using Function 

Calling and prompt-only methods for each model. The 

evaluation metrics include accuracy, precision, recall, and 
F1-score, with the averages calculated using macro-

averaging. 

In most models, the method using Function Calling 

achieved higher accuracy compared to the prompt-only 

method. For instance, GPT-3.5 Turbo shows an accuracy of 

0.705 with Function Calling versus 0.696 with prompt 

only. GPT-4 Turbo demonstrates even more significant 

gains with Function Calling, achieving 0.775 compared to 
0.740 with prompt-only. The GPT-4o model also exhibits 

superior performance with Function Calling, reaching an 

accuracy of 0.792 compared to 0.783 with prompt only. For 

GPT-4o, the performance improvement with prompt-only 

methods is remarkable, reducing the advantage of Function 

Calling.

Table 3 Classification Performance Metrics for GPT-3.5 Turbo, GPT-4 Turbo, 
and GPT-4o using Function Calling and Prompt-Only Methods 

GPT-3.5 Turbo GPT-4 Turbo GPT-4o 

Function 

Calling 

Prompt 

only 

Function 

Calling 

Prompt 

only 

Function 

Calling 

Prompt 

only 

Accuracy 0.705 0.696 0.775 0.740 0.792 0.783 

Precision 0.719 0.608 0.811 0.766 0.785 0.787 

Recall 0.648 0.618 0.734 0.674 0.779 0.741 

F1-score 0.651 0.587 0.753 0.681 0.780 0.754 
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Figure 1 Recall Matrix for GPT-4 Turbo Function Calling 

and Prompting Performance Across 6 Categories 

Figure 2 Recall Matrix for GPT-4 Turbo Prompting only 

Performance Across 6 Categories 

Overall, these results suggest that the use of Function 

Calling significantly enhances the performance of language 

models across various evaluation metrics. While there are 

some nuances, particularly with GPT-4o, the general trend 

highlights the practical advantages of this approach in 

classification tasks. 

4.4 Misclassification Analysis 

In this section, we examine the misclassification issues 

observed across various categories, focusing on the "System 

Environment/Ecology" category. Figure 1 and Fig. 2 

illustrate the recall values for Function Calling and 

prompting methods across categories, highlighting areas 

with pronounced misclassification. 

Both Function Calling and prompting methods 

demonstrate low recall values for the "System 
Environment/Ecology" category, with prompting 

performing particularly poorly, likely due to the inherent 

complexity of this category. To illustrate the challenges and 

successes in classifying non-functional requirements, we 

present specific examples of correctly classified and 

misclassified cases within the "System 

Environment/Ecology" category. 

The first example pertains to the System Environment 
category, "The construction environment for the next-

generation security network assumes the use of the cloud, 

making physical servers and devices unnecessary." It was 

correctly classified as belonging to the System Environment 

category due to its explicit focus on operational premises 

and infrastructure design. 

Conversely, the second example highlights a 

misclassification case. The requirement "Access to the 
facility and rooms housing managed devices is restricted, 

particularly for rooms containing devices, where only 

authorized personnel with management privileges are 

permitted entry" was incorrectly categorized as Security 

instead of System Environment. While this requirement 

involves access control measures, its primary focus is on the 

physical environment and the placement of managed devices, 

which aligns more closely with the System Environment 

category. 

According to the IPA’s non-functional requirements grade, 

the System Environment/Ecology category encompasses 

system constraints/premises established at installation, 
system characteristics, compliance standards, and 

environmental ． associated with users and the region 

surrounding the system. Collectively, these elements 

represent the broader environmental and contextual factors 

influencing system operation and integration. 

The low recall in this category likely stems from its broad 

and multifaceted nature, covering diverse aspects such as 

technical constraints and user characteristics. This 

complexity introduces ambiguity, making it difficult for 

models to distinguish relevant terms from other categories. 
Additionally, overlap exists between the "System 

Environment/Ecology" category and others; for instance, 

environmental conditions may also pertain to security 

concerns. Such overlaps complicate classification, as models 

often struggle to differentiate between closely related 

concepts. Moreover, interpreting terms related to the system 

environment is highly context-dependent, which hinders the 

models' ability to generalize accurately. 
Overall, misclassification remains a critical challenge, 

particularly within the "System Environment/Ecology" 

category, due to its inherent complexity and the overlap with 

other classifications. 
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Table 4 Number of Training Data Instances for NFRs Grade 

Availability 168 

Performance/Scalability 175 

Operability/Maintainability 158 

Migratability 101 

Security 163 

System Environment/Ecology 168 

Total 933 

 

5 SUPPLEMENTAL EXPERIMENTS  

5.1 Training Data for Fine Tuning and 

Embedding Analysis Fine Tuning Models 

GPT-3.5 Turbo is capable of fine-tuning with even small 

amounts of data. Fine-tuning is greatly influenced by the 

quality of training dataset used, making its selection 

extremely important. In this paper, we utilized descriptions 

of non-functional requirement grades as the training dataset 

instead of using sentences from actual specifications. The 
primary reason for this choice is that it allows for more 

efficient annotation, as the classification of sentences is 

more straightforward. Additionally, one reason is the 

hypothesis that it may be difficult to learn the diversity of 

NFRs with a small amount of data with small numbers of 

training data. The non-functional requirement grades 

classify NFRs into six categories: availability, 

performance/scalability, operability/maintainability, 
migratability, security, and system environment/ecology. 

Descriptions related to each category were labeled with the 

respective classification and used as training data. As shown 

in Table 4, the training dataset comprises a total of 933 

instances, distributed across the six NFR categories. 

For each experiment, a necessary number of instances was 

randomly extracted from this dataset. This approach ensured 

that the model could be fine-tuned effectively while utilizing 
a representative sample of the data for each specific 

experiment. Figure 3 shows the t-SNE plot of descriptions 

for each non-functional requirement grade after embedding 

them using the text-embedding-3-large model provided by 

OpenAI, which converts the text into 3072-dimensional 

vectors. Each color represents one of the six NFR categories. 

The clear clustering of some categories, like security, 

suggests that the classification task for these categories 
might be relatively straightforward for the model, likely 

resulting in higher accuracy, precision, and recall. 

Conversely, the dispersion observed in some categories, like 

the system environment/ecology categories, indicates 

potential challenges by enhancing context understanding. in 

achieving high classification performance. These categories 

might require more sophisticated models or additional 

context to improve classification accuracy. The t-SNE 
visualization serves as a validation tool, demonstrating that 

the embedding model can capture and represent the 

similarities and differences among the NFR descriptions to a  

 
Figure 3 t-SNE Visualization of Embedded Training Data 

 

significant extent. This visual validation supports the choice 

of using for fine-tuning and classification tasks. 
In conclusion, the t-SNE plot effectively illustrates the 

clustering behavior of the NFR descriptions based on their 

embeddings. The distinct clusters for some categories and 

the overlapping regions for others provide valuable insights 

into the complexity of the classification task. These insights 

highlight the strengths and potential context understanding 

in using the current model for classifying non-functional 

requirements, guiding future improvements, and fine-tuning 
efforts. 

5.2 Fine Tuning Effect 

In order to comprehensively evaluate the progression of 

loss and its impact on accuracy, three different fine-tuning 

models were tested, each designed to address varying 

conditions in terms of dataset size and number of epochs, 

thus providing a robust analysis. 

In finetuning 1, illustrated in Fig. 4-1, training was 
conducted over three epochs using 50 randomly selected 

training data samples. The loss progression in this scenario 

exhibits significant fluctuations in the initial stages but 

stabilizes in the later stages. Considering the small size of 

the training dataset, this early stabilization is presumed to 

lead to insufficient accuracy over broad data. 

In finetuning 2, depicted in Fig. 4-2, the training dataset 

was increased to 250 randomly selected samples, and 
training was conducted over three epochs. Compared to the 

first scenario, the adaptation to a more diverse training 

dataset results in greater and more prolonged fluctuations. 

However, it is inferred that this leads to more advanced 

learning.  

In finetuning 3, shown in Fig. 4-3, 250 training data 

samples were used, but the model was trained over nine 

epochs. In this case, the loss stabilizes within one epoch, 
suggesting that increasing the number of epochs does not 

necessarily aid in learning more from the data. 

From these observations, it is evident that the size of the 

training data and the number of epochs have a significant 

impact on the learning process. 

Figure 5 compares the classification accuracy of these 

three fine-tuned GPT-3 Turbo models and GPT-4 variants. 
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Figure 4 - 1 Training Loss and Accuracy over Epochs: N=50, 

Epoch=3 (red: train loss, blue: train Accuracy) 

Figure 4 - 2 Training Loss and Accuracy over Epochs: 

N=250, Epoch=3 (red: train loss, blue: train Accuracy) 

Figure 4 - 3 Training Loss and Accuracy over Epochs: 

N=250, Epoch=9 (red: train loss, blue: train Accuracy) 

Among the metrics of Accuracy, Precision, Recall, and F1-

score, we specifically chose the F1-score due to its balanced 

representation of both Precision and Recall. In both 

scenarios, where the training data consists of either 50 or 

250 randomly selected samples, fine-tuning significantly 
improves the F1 score, reaching levels comparable to the 

accuracy achieved using Function Calling in GPT-4 variants. 

Increasing the training data from 50 to 250 samples results 

in a slight improvement in the F1 score. However, no  

 

 

additional improvements were observed with an increase in 

the number of epochs. 

While using Function Calling without fine-tuning is 
effective, combining it with fine-tuning achieves higher 

classification accuracy. Furthermore, fine-tuning reduces the 

performance gap between using Function Calling and using 

only prompts. These findings provide valuable insights for 

selecting the optimal model design and training strategy for 

complex tasks such as non-functional requirements 

classification. 

5.3 Improve Context Understanding 

This experiment evaluated the effectiveness of the 

proposed sentence combination method by comparing it to 

analyses conducted without sentence concatenation. The 

classification accuracy results for each metric are shown in 

Table 5. 

As illustrated in the table, the classification method using 

sentence combination (Combined Analysis) outperforms the 
no concatenation analysis across all evaluation metrics. 

Specifically, the accuracy improved. 

Out of 414 experimental data points, 22 data points that 

were previously incorrect were corrected by using sentence 

combination, whereas 6 data points that were previously 

correct were misclassified. These results indicate that 

incorporating contextual information enhances classification 

accuracy, although it also introduces new misclassifications. 
Basic no concatenation analysis methods tend to overlook 

contextual information as they consider only the target 

sentences for classification. In contrast, the method using 

sentence combination adds contextual information by 

combining preceding and/or succeeding sentences, allowing 

for more accurate classification. This approach is 

particularly effective for documents like requirement 

specifications, where non-functional requirements often 
span multiple sentences. 

Figure 5 Comparison of F1-Scores for Function Calling and 

Prompt-Only Approaches Across Different Models and 

Fine-Tuning Stages 
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Table 5 Classification Accuracy Results Comparing 

the Proposed Sentence Combination Method  

and no Concatenation Analysis 

without Sentence 

Concatenation 

Combined 

Analysis 

Accuracy 0.792 0.831 

Precision 0.785 0.839 

Recall 0.779 0.808 

F1-score 0.780 0.818 

From these results, it can be confirmed that the 

classification method using sentence combination is 

effective, especially in the classification of non-functional 

requirements, by leveraging contextual information to 

improve classification accuracy. However, the increase in 

misclassifications suggests that further improvements and 

optimizations are necessary. 

6 DISCUSSION 

The primary aim of this study was to demonstrate that 

incorporating the Function Calling feature into ChatGPT's 

classification process can enhance the accuracy of NFR 

classification compared to relying solely on prompts. By 

adding Function Calling to the same prompt, the method 

achieves improved accuracy by reducing ambiguities and 

ensuring adherence to predefined classification criteria, even 

in a zero-shot setting. 

This improvement, as indicated by accuracy increases 

across all models tested, is primarily attributed to the 

structured data retrieval and contextually appropriate 

categorization enabled by Function Calling. For example, 

GPT-4 Turbo demonstrated an improvement in F1 score, 

increasing from 0.681 to 0.753. Similarly, GPT-3.5 Turbo 

improved from 0.587 to 0.651, while GPT-4o achieved a 

gain from 0.754 to 0.780. 

These results highlight that the integration of Function 

Calling consistently enhances classification accuracy across 

models by ensuring adherence to predefined classification 

boundaries. By defining enumerated categories, the model 

effectively avoids hallucinations, ensuring that the 

classifications adhere strictly to the intended boundaries. 

This capability highlights the model’s alignment with 

human reasoning in complex classification tasks. 

Furthermore, the proposed method is practical as a 

primary classification tool, particularly when secondary 

human review is integrated into the process. This approach 

offers high efficiency and reliability. Additionally, 

considering that even human reviewers may have differing 

opinions on certain classification targets or that some items 

inherently span two categories, the practicality of this 

method becomes even more evident. However, in critical 

projects, robust secondary reviews are indispensable, and 

further research and development are necessary to enhance 

classification accuracy. 

The supplementary experiments aimed to enhance 
classification accuracy by fine-tuning the model and 
incorporating contextual information, resulting in 
measurable improvements in precision and recall metrics. 

Fine-tuning demonstrated that even minimal adjustments 

on small datasets could yield notable improvements in 

classification accuracy. For instance, the F1 score of GPT-

3.5 Turbo improved significantly from 0.651 to 0.796, 

highlighting the effectiveness of fine-tuning in enhancing 

the model's performance. 

Similarly, the use of sentence concatenation to incorporate 
contextual information from adjacent sentences enhanced 

the model's understanding, leading to more precise 

classifications. Specifically, this approach improved 

accuracy from 0.792 to 0.831, demonstrating the value of 

leveraging contextual information in classification tasks. 

However, these techniques were positioned as 

complementary to the primary use of Function Calling. 

In conclusion, Function Calling proved to be an essential 
feature, enabling consistent improvements in NFR 

classification accuracy over prompt-only methods. The 

supplementary methods, while beneficial, serve primarily to 

augment the foundational improvements achieved through 

Function Calling. Future research will focus on refining 

these methods and exploring their broader applications. 

7 SUMMARY OF CONTRIBUTION AND 

CONCLUTIONS 

This paper proposed and demonstrated the effectiveness of 

an automatic classification method for NFRs using Function 

Calling with large language models.  

The Function Calling capabilities of GPT-4 Turbo and 
GPT-4o achieved excellent F1 scores of 0.753 and 0.780, 

respectively, matching or exceeding the performance of 

traditional task-specific models such as CNN or BERT on 

datasets similar to those used in this study for NFR 

classification tasks, even in a zero-shot learning state, 

demonstrating their high capability. 

However, instances of misclassification were observed, 

particularly in scenarios involving ambiguous or 
overlapping categories, indicating the need for 

improvements in the model's contextual understanding 

abilities. 

Two additional approaches, namely fine-tuning and 

sentence concatenation, were employed to enhance 

classification accuracy and address contextual ambiguities. 

First, GPT-3.5 Turbo, with minimal fine-tuning, achieved 

results comparable to GPT-4 variants, emphasizing the 
importance and efficiency of fine-tuning. The significance 

of fine-tuning is evident, as it enhances the model's 

contextual understanding and classification accuracy. 

Notably, the performance of the prompt-only approach 

also improves significantly with fine-tuning, as evidenced 

by an F1 score increase from 0.587 to 0.800 at maximum, 

ultimately narrowing the performance gap between the two 

methods. 
Furthermore, experiments involving the concatenation of 

related sentences, by linking the sentences preceding and 

following the target for classification, confirmed the 

effectiveness of this approach in improving contextual 

understanding.  

Future research should address these challenges by 

focusing on enhancing the model's contextual understanding 
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