
Regular Paper

Efficient Classification of Non-Functional Requirements

Using ChatGPT's Function Calling Feature

Kazuhiro Mukaida*, Seiji Fukui** , Takeshi Nagaoka** , Takayuki Kitagawa ** ,

Shinpei Ogata* and Kozo Okano*

*Graduate School of Science and Technology, Shinshu University, Japan
**Toshiba Corporation, Japan

24hs254c@shinshu-u.ac.jp, {Fukui.Seiji, Nagaoka.Takeshi, Kitagawa.Takayuki}@toshiba-sol.co.jp,

{ogata, okano}@cs.shinshu-u.ac.jp

Abstract - Efficient analysis of requirement specifications is

crucial for improving their quality, which is important in

software development. We focus on non-functional

requirements (NFRs), which are often overlooked in

requirement definitions of system developments and

propose a method that allows individuals without extensive
expertise to efficiently extract and classify NFRs from

requirement specifications. The proposed method aims to

efficiently enhance the quality of software requirement

specifications by enabling the extraction and classification

of NFRs with minimal expertise.

Previously, the authors experimented with creating

dedicated deep learning models for classification tasks and

then used pre-trained Transformer models like BERT and
GPT-2, trained on human-annotated datasets. However,

recent advancements, such as tools like ChatGPT, enable

classification via prompt interactions alone. In this paper,

we explore the capabilities of ChatGPT's Function Calling

feature, utilizing an approach that optimizes its behavior,

aiming to demonstrate its superior classification

performance compared to prompt-only responses and

conventional classification methods, which require large
training datasets.

Function Calling significantly reduced ambiguities and

improved classification accuracy by ensuring adherence to

predefined classification boundaries. For example, GPT-4

Turbo demonstrated an F1 score improvement from 0.681 to

0.753, and GPT-3.5 Turbo achieved an increase from 0.587

to 0.651. Additionally, GPT-4o showed a gain from 0.754 to

0.780. These improvements highlight the practical utility of
Function Calling as a primary classification tool.

As supplementary verification, we conducted two

additional analyses. Fine-tuning GPT-3.5 Turbo on small

datasets significantly enhanced its performance, achieving

an F1 score of 0.796. Similarly, incorporating sentence

concatenation by linking preceding and following sentences

improved contextual understanding, increasing accuracy

from 0.792 to 0.831. These approaches, while
complementary, further validated the robustness of Function

Calling for NFR classification tasks.

Future research should address remaining challenges,

such as improving the model’s contextual understanding and

developing targeted training datasets that emphasize the

most challenging classification categories. These findings

highlight the potential of advanced natural language models

like ChatGPT in making NFR classification more efficient

and precise.

Keywords: Function Calling, ChatGPT, GPT-4o, Non-

Functional Requirements, Documents Classification

1 INTRODUCTION

In information system development, requirements are

broadly divided into functional and non-functional

requirements [1]. Functional requirements define specific

functions that the system must perform, whereas non-

functional requirements describe the overall qualities of the

system, such as availability, performance, reliability, and

efficiency. These non-functional requirements define

expectations for the system's actual operating environment
and are crucial for ensuring the overall quality of the

software [2].

1.1 Importance and Challenges of Non-

Functional Requirements

Non-functional requirements are critically important for

the success of a system, but their abstract nature makes their

identification and classification challenging. If non-

functional requirements are not adequately defined, they can

severely impact system performance, usability, and security.

Therefore, clearly defining non-functional requirements and

managing them throughout the development process is one

of the major challenges in system development. Insufficient
non-functional requirements can result in the system failing

to meet expected performance, ultimately leading to

decreased user satisfaction.

Non-functional requirements are essential for ensuring the

overall quality of the system. Characteristics such as system

response time, throughput, availability, security, usability,

and scalability directly affect user experience and reliability.

For example, if a system has a slow response time, users
may find it difficult to use and avoid using it altogether.

Additionally, if security requirements are not adequately

met, the system may be vulnerable to external attacks,

increasing the risk of important data being leaked. Thus,

non-functional requirements are vital for maintaining the

health of the system and the trust of users.

To properly define and agree on non-functional

requirements, it is necessary to clearly identify and classify

ISSN1883-4566 © 2026 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.17, NO.2 (2026) 73-84 73

mailto:Kitagawa.Takayuki%7d@toshiba-sol.co.jp

them. However, since non-functional requirements are

abstract and diverse, manual classification is time-

consuming, labor-intensive, and requires specialized

knowledge. Disparities in understanding non-functional

requirements between users and vendors often arise,

becoming an obstacle to the success of system development.

1.2 Emergence and Advancement of

Automated Classification Techniques

As a means of addressing the challenges of identifying and

classifying non-functional requirements, automated

classification techniques are gaining attention. In particular,
research on document classification techniques using deep

learning and large language models (LLMs) has been

actively conducted. Since the advent of Transformer by

Vaswani et al. [3], models such as BERT (Bidirectional

Encoder Representations from Transformers) by Devlin et al.

[4] and GPT (Generative Pre-trained Transformer) by

Radford et al. [5], which emerged in 2018, have been pre-

trained on large amounts of text and fine-tuned for specific
tasks to improve classification accuracy. The authors have

also experimented with automatic classification using a

model incorporating BERT and GPT-2 [6] in the previous

paper [7].

Given the abstract nature and diversity of non-functional

requirements, the introduction of automated classification

techniques is highly beneficial. First, defining and

classifying non-functional requirements require the expertise
and time of experienced professionals, making manual

classification costly and time-consuming. Automated

classification techniques significantly reduce these manual

efforts, allowing for efficient classification. Moreover,

automated classification provides consistent results and

reduces human errors and biases. Additionally, accurate and

swift classification of non-functional requirements enables

appropriate requirements management from the early stages
of a development project, thereby improving the project's

success rate. For instance, properly classifying and

recognizing system performance requirements early on can

help prevent performance issues in later development stages.

Recently, with the widespread use of conversational

models like ChatGPT, inference through prompt interactions

is becoming possible. Conversational LLM models generate

appropriate responses in response to questions and
instructions during interaction with users in natural language.

This conversational capability allows users to perform

advanced inferences and information searches without

requiring specific knowledge or skills.

Models generate responses based on prompts. Thus, by

designing prompts appropriately, the output of the model

can be controlled to obtain responses suitable for the

intended purpose. For example, the format and content of
prompts can be adjusted to handle various tasks, such as

question answering, text generation, summarization, and

translation.

However, there are limitations to performance in

classification tasks. Classification tasks involve categorizing

text or data into specific categories or labels, which is one of

the fundamental applications of deep learning models. For

instance, detecting spam emails or categorizing product

reviews as positive or negative are common classification

tasks. While the classification performance of

conversational models has improved, they may still lag

behind dedicated traditional models for certain complex

tasks or large datasets. Particularly, when handling multi-

class classification beyond binary classification,
hallucinations may occur, resulting in the unintended

creation of classification categories, which negatively

impacts accuracy.

In this paper, we attempt to classify non-functional

requirements using the Function Calling feature of ChatGPT.

Function Calling is a means of obtaining additional

information by calling other APIs or functions during

prompt interactions, allowing integration with external
services and databases. Generally, by using this feature,

more advanced processing and data retrieval become

possible.

This paper focuses on utilizing arguments required for

calls during the Function Calling process as classification

data. By employing enum to restrict and enumerate variable

types, unintended category creation due to hallucinations

can be eliminated, ensuring that the classification remains
within the intended boundaries. The model automatically

suggests appropriate arguments based on contextual

information, and proper argument content is directly linked

to accurate calls and responses. Utilizing these argument

suggestions as classification data is expected to improve the

classification accuracy of non-functional requirements.

In addition to the core focus on the outcomes of Function

Calling, the following two experiments were supplementary
investigations aimed at further enhancing the effectiveness

of the Function Calling feature. While these experiments

provide valuable insights into potential improvements, the

primary objective of this paper remains centered on the

results derived from Function Calling.

First, we verify the impact of small-scale fine-tuning using

non-functional Requirements Grades [8] on classification by

Function Calling. By optimizing the Function Calling
feature of ChatGPT based on clearly defined standards using

non-functional Requirements Grades, we aim to improve the

classification accuracy of non-functional requirements. The

outcomes of this study are expected to contribute to the

development of automated classification technologies for

non-functional requirements and enhance the efficiency of

the quality assurance process in system development.

Second, we propose a classification method that uses
sentence concatenation to provide additional contextual

information. In conventional classification methods, only

the target sentence is classified, but incorporating contextual

information can improve classification accuracy. In

requirement specifications, similar non-functional

requirements may span multiple sentences, and the

preceding and following sentences are often useful as

additional contextual information for the target sentence. In
this method, we embed the test data, determine similarity

based on cosine similarity between the target sentence and

its surrounding sentences, and concatenate related sentences

before classification. This allows for classification that

K. Mukaida et al. / Efficient Classification of Non-Functional Requirements Using ChatGPT's Function Calling Feature74

2.1 Classification of Non-Functional

Requirements

Kinoshita et al. [9] proposed a method for extracting non-

functional requirements (NFRs) from Japanese requirement

documents. Specifically, they established keywords related

to NFRs and applied them to the documents to effectively

identify relevant requirements. Additionally, they introduced

an approach for detecting errors in NFRs by defining case
frames for the actions described in requirement sentences.

Their method involves validating these sentences using

criteria such as omission, ambiguity, redundancy, and

inconsistency, thereby enhancing the overall quality of the

requirements.

2.2 Classification Using Deep Learning

Gnanasekaran et al. [10] researched and developed
recurrent neural network (RNN) models, known for their

effectiveness in processing sequential natural language text.

They conducted experiments using these models to classify

NFRs described in natural language into five categories:

maintainability, operability, performance, security, and

usability. The experimental validation was based on two

datasets encompassing approximately 1,000 NFRs,

demonstrating the potential of RNNs in accurately
classifying NFRs.

Kitagawa and Nagaoka [11] proposed an automatic

classification method using Word2Vec and convolutional

neural networks (CNN). Their approach extended the

classification targets beyond NFRs and project

management-related sentences to include functional

requirements and other types of sentences. They aimed to

automatically classify all sentences in Japanese Request for
Proposal (RFP) documents, improving the efficiency and

accuracy of requirement specification analysis.

2.3 Classification Using Large Language

Models

Since the introduction of the Transformer architecture,

significant advancements have been made in natural

language processing tasks using LLMs based on

Transformers. These models have largely replaced

traditional recurrent neural networks such as RNNs, LSTMs,

and GRUs. By fine-tuning large pre-trained models like

BERT [4] for specific tasks, researchers have achieved

models optimized for those tasks, often attaining higher

accuracy.

Zhu et al. [12], starting from BERT, introduced a novel

method to enhance classification performance by

formalizing input sentences as natural language templates

and leveraging knowledge expansion [13]. This approach

improved short text classification by integrating additional
contextual information into the prompts.

Gutierrez et al. [14] reported that fine-tuned BERT models

outperformed interactive GPT-3 models in tasks such as

named entity recognition and relation extraction within the

medical domain. Similarly, Sun et al. [15] found that while

interactive models like GPT-3 can perform text

classification tasks, fine-tuned task-specific models still

achieve higher accuracy due to their specialized training.
Ibe et al. [16] conducted experiments using large

generative language models to automatically classify

requirement specifications with few examples by adjusting

prompts. Their results indicated that BERT-based

classifications outperformed interactive models like

ChatGPT in terms of accuracy, highlighting the

effectiveness of task-specific fine-tuning.

On the other hand, the performance of ChatGPT as a
question-answering system (QAS) has been reported to

match or even exceed that of traditional task-specific QAS

models. Tan et al. [17] demonstrated that ChatGPT provides

superior robustness and explainability in conversations

compared to traditional QAS, offering enhanced user

interaction and adaptability.

Brown et al. [18] evaluated GPT-3's performance in few-

shot learning settings, reporting high effectiveness in natural
language processing tasks under zero-shot and one-shot

conditions. Their work highlighted the capability of large

language models to perform various tasks without extensive

task-specific fine-tuning, showcasing the potential of models

like GPT-3 in few-shot learning scenarios.

In studies focusing on prompt engineering, the importance

of In-Context Learning (ICL) has been emphasized. Dong et

al. [19] provided a comprehensive overview of ICL,
demonstrating its applicability across diverse tasks and its

ability to improve model performance by incorporating

contextual information during inference. Liu and Yang [13]

further explored knowledge-enhanced prompt learning for

few-shot text classification, showing that integrating

external knowledge can significantly boost performance.

Min et al. [20] analyzed how the selection of

demonstrations in ICL affects model performance, clarifying
the optimal conditions for demonstration selection to

maximize effectiveness. Wan et al. [21] showcased the

effectiveness of ICL in relation to extraction tasks,

proposing methods with higher flexibility and accuracy

compared to conventional approaches by utilizing

contextual cues within the prompts. These studies highlight

the flexibility and performance of interactive models and

ICL across various tasks, opening new possibilities in the
field of natural language processing.

considers contextual information, thereby improving

classification accuracy.

In the future, automated classification technologies for

non-functional requirements are expected to evolve further,

enabling more accurate and efficient classification. In

particular, with the advancement of large language models,

it will become possible to understand the abstract nature of

non-functional requirements more deeply and perform

classification accordingly.

2 RELATED RESEARCH

International Journal of Informatics Society, VOL.17, NO.2 (2026) 73-84 75

3 PROPOSED METHOD

This paper proposes an automatic classification method for

NFRs in system development specification documents. This

method leverages the Function Calling feature of GPT

models, a type of large language model, and is based on IPA

standards.

3.1 Function Calling

Function Calling is a feature provided by the API of large
language models, enabling the model to indirectly interact

with external APIs or systems and generate specific actions.

This technology involves parsing natural language queries,

selecting appropriate functions, and generating JSON

responses. For example, in response to the query “Tell me

about the weather in Tokyo,” the model suggests calling a

function that uses a weather API with the region name as an

argument. The argument "Tokyo" is prepared for the
weather API call. The program then retrieves Tokyo's

weather through the function and weather API, then passes

this information back to the model as an additional prompt.

The model then provides the final answer, significantly

expanding the potential for interactive applications and

services using the model. This feature bridges the gap

between natural language understanding and the execution

of specific actions, enhancing the model's practicality and
allowing it to flexibly respond to user requests. Function

Calling not only streamlines the interaction between the

model and external systems but also improves the overall

efficiency of handling user queries by automating the

process of converting natural language into actionable

commands.

3.2 Classification using Function Call

A derivative use of Function Calling involves extracting

structured data from text. For example, a function like

extract_data(name: string, birthday: string) can be defined

and invoked as needed, extracting a person's name and

birthday from the text as arguments. This functionality

allows for the rapid and accurate extraction of necessary

information from large volumes of text data, facilitating

efficient data analysis and information management. This
method provides a more structured and organized approach

to handling text data, ensuring that the extracted information

is consistent and accurate.

Function Calling can also help in selecting the most

appropriate argument based on the overall context of a query,

even if the specific term is not explicitly mentioned. By

leveraging the model's natural language understanding, it

can infer the intended meaning and relevant information
from the user's input.

In this study, rather than using Function Calling for

extracting structured data from documents, we applied it to

document classification. Normally, Function Calling in

LLMs is triggered only when the model determines it is

necessary. However, we configured parameters to ensure

that Function Calling is always invoked whenever a

classification target sentence is input. This guarantees that

Function Calling is consistently performed during

classification tasks.

The function invoked in this process exists only as a

description of its name and outline and does not exist as an

actual implemented program. The primary purpose of

Function Calling in our method is to return arguments that

indicate classification categories. These arguments are
subsequently used within the program for further processing.

Since the goal of this experiment is to acquire the necessary

arguments for classification, the Function Calling process

terminates once the arguments are obtained, without

invoking any external modules or APIs. This ensures that

the classification process benefits from the structure and

consistency of Function Calling without relying on external

integrations.
To achieve classification, we enforced the invocation of a

dummy function through prompts containing evaluation

sentences. The model suggests classification categories as

arguments during this process. By specifying the argument

type as enum, we enumerated the classification categories,

limiting suggestions to predefined options and preventing

hallucinations. This approach automates and streamlines the

classification process, reducing the potential for human error
and enhancing overall efficiency.

3.3 Supplemental Analysis 1 Fine Tuning

for GPT-3.5

Section 3.3 and 3.4 aim to enhance the results achieved by
utilizing Function Calling through two additional techniques.

The purpose of these experiments is to improve the

classification accuracy of NFRs by fine-tuning and

enhancing contextual understanding.

Firstly, this paper attempts to improve models with

classification accuracy by additional training of GPT-3.5

Turbo with a small amount of training data. Fine-tuning

enables the model to learn language expressions specific to
NFRs tasks or domains. This helps the model understand

specialized terminology and contexts that are challenging

for general language models, achieving higher classification

accuracy. Moreover, fine-tuning with a small amount of

training data significantly reduces the time and cost

associated with preparing annotated large datasets,

compared to traditional methods. For complex tasks like

NFRs classification, it is crucial to learn efficiently from
limited examples.

Fine-tuning not only tailors the model to specific tasks but

also enhances its ability to handle nuanced and domain-

specific language, resulting in more precise and reliable

classifications. This approach is feasible even in scenarios

where annotated data is scarce, enabling effective learning

and adaptation with minimal resources.

3.4 Supplemental Analysis 2 Enhancing

Contextual Understanding

Lastly, this paper proposes the use of sentence

concatenation to provide additional contextual information

that improves classification accuracy. The classification
model has traditionally focused only on the target sentence,

K. Mukaida et al. / Efficient Classification of Non-Functional Requirements Using ChatGPT's Function Calling Feature76

Organization Project Description Date

Ministry of
Economy, Trade

and Industry

Industrial Safety System

Update

Jan-

22

Digital Agency

Development and
Operation/Maintenance Work

for Account Information

Registration Linkage System

Jul-

22

Ministry of

Health, Labor

and Welfare

National Unified System for

Medical Function Information

Provision System and

Pharmacy Function

Information Provision
System,

Jan-

23

By concatenating relevant sentences, the model gains

supplementary cues that contribute to more accurate

classification. This method helps reduce the risk of

misclassification by avoiding the inclusion of unrelated
information and maintaining a focus on contextually aligned

data.

The test data described in Section 4.1, derived from actual
requirement specifications, was used for this experiment.

Since the target sentences were extracted directly from these

documents, the preceding and following sentences were

naturally part of the same text, ensuring contextual

relevance.

Experiments conducted with and without sentence

concatenation demonstrated that improvements in

classification accuracy were due to the inclusion of relevant
contextual information, rather than merely increasing the

amount of text. This structured approach highlights the

value of selectively expanding context to enhance

classification performance while minimizing the risk of

unnecessary complexity.

4 EVALUATION EXPERIMENT

4.1 Models and Test Data Set

In this paper, we utilized the ChatGPT API with the

following models:

GPT-4 Variants

• gpt-4o-2024-05-13

• gpt-4-turbo-2024-04-09

GPT-3.5 Turbo

• gpt-3.5-turbo-0125

The gpt-4o-2024-05-13 model represents the advanced

current iteration of the GPT-4 series, incorporating the

recent advancements in language understanding and

generation capabilities.

The gpt-4-turbo-2024-04-09 model is offering optimized
performance and a popular choice for a wide range of

practical applications.

The gpt-3.5-turbo-0125 model, although from a previous

generation, provides a valuable comparison point. It offers

cost-effective performance and promptly supports fine-

tuning, allowing for customization to specific tasks or

domains. This makes the gpt-3.5-turbo-0125 model

advantageous for scenarios where budget constraints and the
need for tailored solutions are paramount.

Table 2 Number of Test Data Instances

for Each Classification

Availability 81

Performance/Scalability 70

Operability/Maintainability 90

Migratability 60

Security 90

System Environment/Ecology 23

Total 414

but incorporating contextual information can enhance

performance by capturing the broader context in which the

target sentence appears. In requirement specifications,

sequential sentences often describe similar non-functional

requirements, and the preceding and following sentences

frequently contain valuable information that helps clarify the

classification of the target sentence.

In this method, embeddings are generated for each

sentence in the test data using the text-embedding-3-large

model. This model, provided by OpenAI, is an advanced

natural language processing model capable of converting

sentence semantics into numerical vectors. The embeddings

are 3072-dimensional vectors that capture the nuances of

sentence content and context, enabling accurate similarity

assessments. These representations are essential for various

tasks, including classification, search, and semantic

comparison.

To identify relevant context, cosine similarity is calculated

between the target sentence and its preceding and following

sentences. Cosine similarity measures the angle between

two vectors, with values closer to 1 indicating higher

similarity. When the cosine similarity exceeds 0.5, the

adjacent sentence is considered contextually relevant and is

concatenated with the target sentence. This process

generates a new, enriched input that reflects not only the

target sentence but also the surrounding context. For

example, if there are consecutive sentences A, B, and C, and

B is the classification target, and if A and B are similar

while B and C are not, the classification is performed using

a concatenated sentence consisting of A and B.

It is possible that increasing the amount of text through

concatenation may enhance classification performance to

some extent, even if the added text is not directly relevant.

However, adding unrelated text can sometimes introduce

noise and ambiguity, which may complicate classification

rather than improve it. To address this, sentences are

concatenated selectively based on their contextual relevance,

as determined by cosine similarity. This approach helps

ensure that the additional information enhances the

classification process by reinforcing the semantic continuity

of the text.

Table 1 Sources of Training Data by Organization

International Journal of Informatics Society, VOL.17, NO.2 (2026) 73-84 77

In our analysis, we specified that the argument type for

function calling properties is enum. For enum types, we

defined "availability, performance/scalability,

operability/maintainability, migratability, security, and

system environment" based on the classification of non-

functional requirements grades. By doing so, we were able

to prevent hallucinations of unspecified categories.
Models provided responses for each evaluation sentence

by sentence. The temperature was set to 0 to ensure

deterministic outputs.

The primary focus of the experiment is to verify the

superiority of using Function Calling capabilities over the

baseline case, which relies solely on prompt interactions for

classification. At the same time, we are able to observe the

differences between models. This comparison provides
valuable insights into their practical applications and

efficiency, highlighting the strengths and possible

improvements.

The test dataset used in this paper was constructed based

on the existing requirement specifications of public tenders

announced by government agencies shown in Table1. The

requirement specifications were randomly selected. The test

data was randomly extracted from these documents, and
labeling was performed by us based on the IPA’s non-

functional requirements grades. The detailed distribution of

sentences for each label is shown in Table 2.

4.2 Baseline Classification Method without

Function Calling

 To establish a baseline for classification accuracy, we

evaluated a method that relies solely on prompt interactions,

without utilizing the Function Calling feature. This baseline

approach involved presenting the model with a prompt that

defined the classification task and the sentence to be

classified. The experiment was conducted in a zero-shot

setting, with no examples provided to the model. This
approach was chosen to evaluate the model’s performance

without prior contextual learning or fine tuning, thereby

establishing a fair baseline for comparison.

The prompt used for this baseline is as follows:

“In the IPA’s non-functional requirement grades, non-

functional requirements are classified into six categories:

availability, performance/scalability,

operability/maintainability, migratability, security, and

system environment. Answer with the name of only one of

these six categories.”

This prompt was consistently applied across both the

prompt-only method and the Function Calling method to

ensure a fair comparison. The purpose of the experiment

was not to argue that the Function Calling method inherently

surpasses the performance of the prompt-only method under
varying conditions. Instead, the objective was to

demonstrate that the addition of Function Calling to the

same prompt leads to improved classification accuracy. By

applying the same prompt in both cases, the comparison

highlights the effect of integrating Function Calling, rather

than differences in prompt design.

It is acknowledged that the application of advanced

prompt engineering techniques or in-context learning could
potentially enhance the performance of the prompt-only

method. However, such approaches fall outside the scope of

this study. The primary focus is to illustrate how the

incorporation of Function Calling enhances performance,

even when used alongside a standard, unoptimized prompt.

By establishing this baseline, the experiment aims to

provide a clear and reproducible comparison between the

two approaches, ensuring that the observed improvements in
classification accuracy can be attributed directly to the

inclusion of Function Calling, rather than variations in

prompt formulation or tuning strategies.

4.3 Effect of Function Calling

Table 3 compares the classification results using Function

Calling and prompt-only methods for each model. The

evaluation metrics include accuracy, precision, recall, and
F1-score, with the averages calculated using macro-

averaging.

In most models, the method using Function Calling

achieved higher accuracy compared to the prompt-only

method. For instance, GPT-3.5 Turbo shows an accuracy of

0.705 with Function Calling versus 0.696 with prompt

only. GPT-4 Turbo demonstrates even more significant

gains with Function Calling, achieving 0.775 compared to
0.740 with prompt-only. The GPT-4o model also exhibits

superior performance with Function Calling, reaching an

accuracy of 0.792 compared to 0.783 with prompt only. For

GPT-4o, the performance improvement with prompt-only

methods is remarkable, reducing the advantage of Function

Calling.

Table 3 Classification Performance Metrics for GPT-3.5 Turbo, GPT-4 Turbo,
and GPT-4o using Function Calling and Prompt-Only Methods

GPT-3.5 Turbo GPT-4 Turbo GPT-4o

Function

Calling

Prompt

only

Function

Calling

Prompt

only

Function

Calling

Prompt

only

Accuracy 0.705 0.696 0.775 0.740 0.792 0.783

Precision 0.719 0.608 0.811 0.766 0.785 0.787

Recall 0.648 0.618 0.734 0.674 0.779 0.741

F1-score 0.651 0.587 0.753 0.681 0.780 0.754

K. Mukaida et al. / Efficient Classification of Non-Functional Requirements Using ChatGPT's Function Calling Feature78

Figure 1 Recall Matrix for GPT-4 Turbo Function Calling

and Prompting Performance Across 6 Categories

Figure 2 Recall Matrix for GPT-4 Turbo Prompting only

Performance Across 6 Categories

Overall, these results suggest that the use of Function

Calling significantly enhances the performance of language

models across various evaluation metrics. While there are

some nuances, particularly with GPT-4o, the general trend

highlights the practical advantages of this approach in

classification tasks.

4.4 Misclassification Analysis

In this section, we examine the misclassification issues

observed across various categories, focusing on the "System

Environment/Ecology" category. Figure 1 and Fig. 2

illustrate the recall values for Function Calling and

prompting methods across categories, highlighting areas

with pronounced misclassification.

Both Function Calling and prompting methods

demonstrate low recall values for the "System
Environment/Ecology" category, with prompting

performing particularly poorly, likely due to the inherent

complexity of this category. To illustrate the challenges and

successes in classifying non-functional requirements, we

present specific examples of correctly classified and

misclassified cases within the "System

Environment/Ecology" category.

The first example pertains to the System Environment
category, "The construction environment for the next-

generation security network assumes the use of the cloud,

making physical servers and devices unnecessary." It was

correctly classified as belonging to the System Environment

category due to its explicit focus on operational premises

and infrastructure design.

Conversely, the second example highlights a

misclassification case. The requirement "Access to the
facility and rooms housing managed devices is restricted,

particularly for rooms containing devices, where only

authorized personnel with management privileges are

permitted entry" was incorrectly categorized as Security

instead of System Environment. While this requirement

involves access control measures, its primary focus is on the

physical environment and the placement of managed devices,

which aligns more closely with the System Environment

category.

According to the IPA’s non-functional requirements grade,

the System Environment/Ecology category encompasses

system constraints/premises established at installation,
system characteristics, compliance standards, and

environmental ． associated with users and the region

surrounding the system. Collectively, these elements

represent the broader environmental and contextual factors

influencing system operation and integration.

The low recall in this category likely stems from its broad

and multifaceted nature, covering diverse aspects such as

technical constraints and user characteristics. This

complexity introduces ambiguity, making it difficult for

models to distinguish relevant terms from other categories.
Additionally, overlap exists between the "System

Environment/Ecology" category and others; for instance,

environmental conditions may also pertain to security

concerns. Such overlaps complicate classification, as models

often struggle to differentiate between closely related

concepts. Moreover, interpreting terms related to the system

environment is highly context-dependent, which hinders the

models' ability to generalize accurately.
Overall, misclassification remains a critical challenge,

particularly within the "System Environment/Ecology"

category, due to its inherent complexity and the overlap with

other classifications.

International Journal of Informatics Society, VOL.17, NO.2 (2026) 73-84 79

Table 4 Number of Training Data Instances for NFRs Grade

Availability 168

Performance/Scalability 175

Operability/Maintainability 158

Migratability 101

Security 163

System Environment/Ecology 168

Total 933

5 SUPPLEMENTAL EXPERIMENTS

5.1 Training Data for Fine Tuning and

Embedding Analysis Fine Tuning Models

GPT-3.5 Turbo is capable of fine-tuning with even small

amounts of data. Fine-tuning is greatly influenced by the

quality of training dataset used, making its selection

extremely important. In this paper, we utilized descriptions

of non-functional requirement grades as the training dataset

instead of using sentences from actual specifications. The
primary reason for this choice is that it allows for more

efficient annotation, as the classification of sentences is

more straightforward. Additionally, one reason is the

hypothesis that it may be difficult to learn the diversity of

NFRs with a small amount of data with small numbers of

training data. The non-functional requirement grades

classify NFRs into six categories: availability,

performance/scalability, operability/maintainability,
migratability, security, and system environment/ecology.

Descriptions related to each category were labeled with the

respective classification and used as training data. As shown

in Table 4, the training dataset comprises a total of 933

instances, distributed across the six NFR categories.

For each experiment, a necessary number of instances was

randomly extracted from this dataset. This approach ensured

that the model could be fine-tuned effectively while utilizing
a representative sample of the data for each specific

experiment. Figure 3 shows the t-SNE plot of descriptions

for each non-functional requirement grade after embedding

them using the text-embedding-3-large model provided by

OpenAI, which converts the text into 3072-dimensional

vectors. Each color represents one of the six NFR categories.

The clear clustering of some categories, like security,

suggests that the classification task for these categories
might be relatively straightforward for the model, likely

resulting in higher accuracy, precision, and recall.

Conversely, the dispersion observed in some categories, like

the system environment/ecology categories, indicates

potential challenges by enhancing context understanding. in

achieving high classification performance. These categories

might require more sophisticated models or additional

context to improve classification accuracy. The t-SNE
visualization serves as a validation tool, demonstrating that

the embedding model can capture and represent the

similarities and differences among the NFR descriptions to a

Figure 3 t-SNE Visualization of Embedded Training Data

significant extent. This visual validation supports the choice

of using for fine-tuning and classification tasks.
In conclusion, the t-SNE plot effectively illustrates the

clustering behavior of the NFR descriptions based on their

embeddings. The distinct clusters for some categories and

the overlapping regions for others provide valuable insights

into the complexity of the classification task. These insights

highlight the strengths and potential context understanding

in using the current model for classifying non-functional

requirements, guiding future improvements, and fine-tuning
efforts.

5.2 Fine Tuning Effect

In order to comprehensively evaluate the progression of

loss and its impact on accuracy, three different fine-tuning

models were tested, each designed to address varying

conditions in terms of dataset size and number of epochs,

thus providing a robust analysis.

In finetuning 1, illustrated in Fig. 4-1, training was
conducted over three epochs using 50 randomly selected

training data samples. The loss progression in this scenario

exhibits significant fluctuations in the initial stages but

stabilizes in the later stages. Considering the small size of

the training dataset, this early stabilization is presumed to

lead to insufficient accuracy over broad data.

In finetuning 2, depicted in Fig. 4-2, the training dataset

was increased to 250 randomly selected samples, and
training was conducted over three epochs. Compared to the

first scenario, the adaptation to a more diverse training

dataset results in greater and more prolonged fluctuations.

However, it is inferred that this leads to more advanced

learning.

In finetuning 3, shown in Fig. 4-3, 250 training data

samples were used, but the model was trained over nine

epochs. In this case, the loss stabilizes within one epoch,
suggesting that increasing the number of epochs does not

necessarily aid in learning more from the data.

From these observations, it is evident that the size of the

training data and the number of epochs have a significant

impact on the learning process.

Figure 5 compares the classification accuracy of these

three fine-tuned GPT-3 Turbo models and GPT-4 variants.

K. Mukaida et al. / Efficient Classification of Non-Functional Requirements Using ChatGPT's Function Calling Feature80

Figure 4 - 1 Training Loss and Accuracy over Epochs: N=50,

Epoch=3 (red: train loss, blue: train Accuracy)

Figure 4 - 2 Training Loss and Accuracy over Epochs:

N=250, Epoch=3 (red: train loss, blue: train Accuracy)

Figure 4 - 3 Training Loss and Accuracy over Epochs:

N=250, Epoch=9 (red: train loss, blue: train Accuracy)

Among the metrics of Accuracy, Precision, Recall, and F1-

score, we specifically chose the F1-score due to its balanced

representation of both Precision and Recall. In both

scenarios, where the training data consists of either 50 or

250 randomly selected samples, fine-tuning significantly
improves the F1 score, reaching levels comparable to the

accuracy achieved using Function Calling in GPT-4 variants.

Increasing the training data from 50 to 250 samples results

in a slight improvement in the F1 score. However, no

additional improvements were observed with an increase in

the number of epochs.

While using Function Calling without fine-tuning is
effective, combining it with fine-tuning achieves higher

classification accuracy. Furthermore, fine-tuning reduces the

performance gap between using Function Calling and using

only prompts. These findings provide valuable insights for

selecting the optimal model design and training strategy for

complex tasks such as non-functional requirements

classification.

5.3 Improve Context Understanding

This experiment evaluated the effectiveness of the

proposed sentence combination method by comparing it to

analyses conducted without sentence concatenation. The

classification accuracy results for each metric are shown in

Table 5.

As illustrated in the table, the classification method using

sentence combination (Combined Analysis) outperforms the
no concatenation analysis across all evaluation metrics.

Specifically, the accuracy improved.

Out of 414 experimental data points, 22 data points that

were previously incorrect were corrected by using sentence

combination, whereas 6 data points that were previously

correct were misclassified. These results indicate that

incorporating contextual information enhances classification

accuracy, although it also introduces new misclassifications.
Basic no concatenation analysis methods tend to overlook

contextual information as they consider only the target

sentences for classification. In contrast, the method using

sentence combination adds contextual information by

combining preceding and/or succeeding sentences, allowing

for more accurate classification. This approach is

particularly effective for documents like requirement

specifications, where non-functional requirements often
span multiple sentences.

Figure 5 Comparison of F1-Scores for Function Calling and

Prompt-Only Approaches Across Different Models and

Fine-Tuning Stages

International Journal of Informatics Society, VOL.17, NO.2 (2026) 73-84 81

Table 5 Classification Accuracy Results Comparing

the Proposed Sentence Combination Method

and no Concatenation Analysis

without Sentence

Concatenation

Combined

Analysis

Accuracy 0.792 0.831

Precision 0.785 0.839

Recall 0.779 0.808

F1-score 0.780 0.818

From these results, it can be confirmed that the

classification method using sentence combination is

effective, especially in the classification of non-functional

requirements, by leveraging contextual information to

improve classification accuracy. However, the increase in

misclassifications suggests that further improvements and

optimizations are necessary.

6 DISCUSSION

The primary aim of this study was to demonstrate that

incorporating the Function Calling feature into ChatGPT's

classification process can enhance the accuracy of NFR

classification compared to relying solely on prompts. By

adding Function Calling to the same prompt, the method

achieves improved accuracy by reducing ambiguities and

ensuring adherence to predefined classification criteria, even

in a zero-shot setting.

This improvement, as indicated by accuracy increases

across all models tested, is primarily attributed to the

structured data retrieval and contextually appropriate

categorization enabled by Function Calling. For example,

GPT-4 Turbo demonstrated an improvement in F1 score,

increasing from 0.681 to 0.753. Similarly, GPT-3.5 Turbo

improved from 0.587 to 0.651, while GPT-4o achieved a

gain from 0.754 to 0.780.

These results highlight that the integration of Function

Calling consistently enhances classification accuracy across

models by ensuring adherence to predefined classification

boundaries. By defining enumerated categories, the model

effectively avoids hallucinations, ensuring that the

classifications adhere strictly to the intended boundaries.

This capability highlights the model’s alignment with

human reasoning in complex classification tasks.

Furthermore, the proposed method is practical as a

primary classification tool, particularly when secondary

human review is integrated into the process. This approach

offers high efficiency and reliability. Additionally,

considering that even human reviewers may have differing

opinions on certain classification targets or that some items

inherently span two categories, the practicality of this

method becomes even more evident. However, in critical

projects, robust secondary reviews are indispensable, and

further research and development are necessary to enhance

classification accuracy.

The supplementary experiments aimed to enhance
classification accuracy by fine-tuning the model and
incorporating contextual information, resulting in
measurable improvements in precision and recall metrics.

Fine-tuning demonstrated that even minimal adjustments

on small datasets could yield notable improvements in

classification accuracy. For instance, the F1 score of GPT-

3.5 Turbo improved significantly from 0.651 to 0.796,

highlighting the effectiveness of fine-tuning in enhancing

the model's performance.

Similarly, the use of sentence concatenation to incorporate
contextual information from adjacent sentences enhanced

the model's understanding, leading to more precise

classifications. Specifically, this approach improved

accuracy from 0.792 to 0.831, demonstrating the value of

leveraging contextual information in classification tasks.

However, these techniques were positioned as

complementary to the primary use of Function Calling.

In conclusion, Function Calling proved to be an essential
feature, enabling consistent improvements in NFR

classification accuracy over prompt-only methods. The

supplementary methods, while beneficial, serve primarily to

augment the foundational improvements achieved through

Function Calling. Future research will focus on refining

these methods and exploring their broader applications.

7 SUMMARY OF CONTRIBUTION AND

CONCLUTIONS

This paper proposed and demonstrated the effectiveness of

an automatic classification method for NFRs using Function

Calling with large language models.

The Function Calling capabilities of GPT-4 Turbo and
GPT-4o achieved excellent F1 scores of 0.753 and 0.780,

respectively, matching or exceeding the performance of

traditional task-specific models such as CNN or BERT on

datasets similar to those used in this study for NFR

classification tasks, even in a zero-shot learning state,

demonstrating their high capability.

However, instances of misclassification were observed,

particularly in scenarios involving ambiguous or
overlapping categories, indicating the need for

improvements in the model's contextual understanding

abilities.

Two additional approaches, namely fine-tuning and

sentence concatenation, were employed to enhance

classification accuracy and address contextual ambiguities.

First, GPT-3.5 Turbo, with minimal fine-tuning, achieved

results comparable to GPT-4 variants, emphasizing the
importance and efficiency of fine-tuning. The significance

of fine-tuning is evident, as it enhances the model's

contextual understanding and classification accuracy.

Notably, the performance of the prompt-only approach

also improves significantly with fine-tuning, as evidenced

by an F1 score increase from 0.587 to 0.800 at maximum,

ultimately narrowing the performance gap between the two

methods.
Furthermore, experiments involving the concatenation of

related sentences, by linking the sentences preceding and

following the target for classification, confirmed the

effectiveness of this approach in improving contextual

understanding.

Future research should address these challenges by

focusing on enhancing the model's contextual understanding

K. Mukaida et al. / Efficient Classification of Non-Functional Requirements Using ChatGPT's Function Calling Feature82

[1] Japan Information Service Industry Association

REBOK Planning WG, Requirements Engineering

Body of Knowledge, Kindaikagaku-sha, pp. 1-200

(2011).

[2] Ministry of Economy, Trade, and Industry, Guideline

for Improving the Reliability of Information Systems,

2nd Edition, pp. 1-50 (2009).
[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.

Jones, A. N. Gomez, and I. Polosukhin, "Attention is

all you need," Advances in Neural Information

Processing Systems, Vol. 30, pp. 6000-6010 (2017).

[4] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova,

"BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding," NAACL,

Vol. 1, No. 1, pp. 4171-4186 (2019).
[5] A. Radford, K. Narasimhan, T. Salimans, and I.

Sutskever, "Improving language understanding by

generative pre-training," OpenAI, pp. 1-10 (2018).

[6] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and

I. Sutskever, "Language models are unsupervised

multitask learners," OpenAI, pp. 1-15 (2019).

[7] K. Mukaida, S. Fukui, T. Nagaoka, T. Kitagawa, S.

Ogata, and K. Okano, "Efficient automatic
classification of non-functional requirements in

information systems using deep learning," IEICE

Technical Report, Vol. 123, pp. 13-18 (2023).

[8] Information-Technology Promotion Agency, Japan,

System Infrastructure Non-Functional Requirements

Related Grade Table, Apr. 2013.

[9] T. Kinoshita, T. Omori, and J. Onishi, "Extraction and

validation of non-functional requirements from
Japanese requirements documents," IPSJ Technical

Report (SE), Vol. 2021.15, pp. 1-6 (2021).

[10] R. K. Gnanasekaran, S. Chakraborty, J. Dehlinger,

and L. Deng, "Using Recurrent Neural Networks for

Classification of Natural Language-based Non-

functional Requirements," Proc. of the 4th Workshop

on Natural Language Processing for Requirements

Engineering, CEUR Workshop, Vol. 2857, pp. 1-10
(2021).

[11] T. Kitagawa, T. Nagaoka, "Proposal and evaluation of

an automatic classification method for requirement

specifications using deep learning," IPSJ Transactions,

Vol. 61, No. 4, pp. 842-852 (2020).

[12] Y. Zhu, Y. Wang, J. Qiang, and X. Wu, "Prompt-

Learning for Short Text Classification," IEEE Trans.

Knowledge and Data Engineering, Vol. 36, No. 10, pp.
5328–5339 (2024).

[13] J. Liu and L. Yang, "Knowledge-Enhanced Prompt

Learning for Few-Shot Text Classification," Big Data

and Cognitive Computing, Vol. 8, No. 4, Article 43, pp.

1-10 (2024).

[14] B. J. Gutierrez, N. McNeal, C. Washington, Y. Chen,

L. Li, H. Sun, and Y. Su, "Thinking about GPT-3 In-

Context Learning for Biomedical IE? Think Again,"

Findings of the Association for Computational

Linguistics: EMNLP, pp. 4497-4512 (2022).
[15] X. Sun, X. Li, J. Li, F. Wu, S. Guo, T. Zhang, and G.

Wang, "Text classification via large language models,"

Findings of the Association for Computational

Linguistics: EMNLP, pp. 8990-9005 (2023).

[16] S. Ibe, S. Kurata, T. Nagaoka, A. Furuhata, K. Goto,

S. Fukui, and T. Kitagawa, "Automatic classification

of requirement specifications using large language

models," Proc. of the Software Engineering
Symposium 2023, pp. 86-92 (2023).

[17] Y. Tan, D. Min, Y. Li, W. Li, N. Hu, Y. Chen, and G.

Qi, "Can ChatGPT Replace Traditional KBQA

Models? An In-Depth Analysis of the Question

Answering Performance of the GPT LLM Family,"

Proc. of the International Semantic Web Conf., pp.

348-367 (2023).

[18] T. Brown, et al., "Language Models are Few-Shot
Learners," Advances in Neural Information Processing

Systems, Vol. 33, pp. 1877-1901 (2020).

[19] Q. Dong, S. Jiang, and W. Liu, "A survey for in-

context learning," arXiv preprint arXiv:2301.00234, pp.

1-20 (2022).

[20] S. Min, M. Lewis, H. Hajishirzi, and L. Zettlemoyer,

"Rethinking the Role of Demonstrations: What Makes

In-Context Learning Work?," Proc. of the Conf. on
EMNLP, pp. 11048-11064 (2022).

[21] Z. Wan, J. Xu, and M. Huang, "GPT-RE: In-context

learning for relation extraction using large language

models," arXiv preprint:2305.02105, pp. 1-10 (2023).

(Received: November 14, 2024)

(Accepted: August 12, 2025)

Kazuhiro Mukaida received his ME degree from

Shinshu University in 2024 and is currently

pursuing his doctoral studies at the same institution.

His research focuses on natural language processing

using large language models (LLMs) with the goal

of enhancing the efficiency of requirements

engineering processes.

Seiji Fukui received his M.S. in Natural Science

from Okayama University in 2019. He is currently

working for Toshiba Corporation. His research

interests include software development

environments and the application of AI technologies

to software engineering.

and creating targeted training datasets that emphasize the

model's most challenging classification categories of NFRs.

ACKNOWLEDGEMENT

This research is being partially conducted as Grant-in-Aid

for Scientific Research C (21K11826).

REFERENCES

International Journal of Informatics Society, VOL.17, NO.2 (2026) 73-84 83

Takeshi Nagaoka received his M.I. and

Ph.D. degrees in Information Science and

Technology from Osaka University in

2008 and 2011, respectively. He is

currently working for Toshiba

Corporation. His research interests

include formal methods, software

development environments, and the

application of AI technologies to software

engineering.

Takayuki Kitagawa received his M.E.

degree in Management and Information

Science from the Prefectural University

of Hiroshima in 2008. He is currently

working for Toshiba Corporation. His

research interests include requirements

engineering, software lifecycle process,

and the application of AI technologies to

software engineering.

Shinpei Ogata is an Associate Professor

at Shinshu University, Japan. He received

his B.E., M.E., and Ph.D. from Shibaura

Institute of Technology in 2007, 2009,

and 2012, respectively. He served as an

Assistant Professor at Shinshu University

from 2012 to 2020 and has been an

Associate Professor there since 2020. He

is a member of IEEE, ACM, IEICE,

IPSJ, and JSSST. His current research
interests include model-driven engineering for information system

development.

Kozo Okano received his BE, ME, and

PhD degrees in Information and

Computer Sciences from Osaka

University in 1990, 1992, and 1995,

respectively. He was an Assistant

Professor and an Associate Professor of

Osaka University. In 2002 and 2003, he

was a visiting researcher at the

Department of Computer Science of the

University of Kent in Canterbury, and a

visiting lecturer at the School of Computer Science of the

University of Birmingham, respectively. Since 2020, he has been a

Professor at the Department of Electrical and Computer

Engineering, Shinshu University. Since 2023, he has been the

Director of Center for Data Science and Artificial Intelligence. His

current research interests include formal methods for software and

information system design and applying deep learning to Software

Engineering.He is a member of IEEE, IEICE, and IPSJ.

K. Mukaida et al. / Efficient Classification of Non-Functional Requirements Using ChatGPT's Function Calling Feature84

