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Abstract - In software development, development proceeds
using requirement specifications that describe software require-
ments in natural language. However, ambiguities in the de-
scription of natural words may cause unintended behavior in
the system. To solve such problems, software developers cre-
ate state transition diagrams from requirement specifications
and perform model checking. The purpose of this paper is
to automatically convert requirement specifications written in
natural language to state transition diagrams. Using a large-
scale language model as the conversion method, state transi-
tion diagrams are created by extracting state transitions from
requirement statements and converting them to PlantUML de-
scription format. As a prompting method, chain-of-thought
prompts are used, and the prompt describes the process of
converting requirement statements into PlantUML. The ex-
periment confirmed that the state transition diagrams gener-
ated using this method accurately reflected the information
about states, transitions, and events described in the require-
ment statements. However, model checking of the generated
timer state transition diagram revealed omissions and errors in
guard conditions and actions. On the other hand, combining
this method with model checking enabled the identification of
deficiencies in the requirement statements.

Keywords: Requirement Specification, State Transition Di-
agrams, LLM, PlantUML, Chain-f-Thought Prompting

1 INTRODUCTION

In software development, the process often proceeds by
using requirement specifications written in natural language
[1]. Those requirements are written on the assumption that
the product will behave as the developer expects it to behave.
However, when reflecting requirements, ambiguities in nat-
ural language and inconsistencies in requirements can cause
the system to behave differently from the specification and
in unintended ways [2]. Design errors due to ambiguous or
inconsistent wording are often discovered in the testing pro-
cess later in the development process, and these ambiguous
statements force the developer to go back to the design pro-
cess again [3][4]. Rework caused by the testing process er-
rors increases a great deal of extra costs. One of the methods
to prevent such rework is to create state transition diagrams
from requirement specifications and perform model checking.
Model checking based on state transition diagrams allows de-

velopers to check for unrecoverable and undesirable system
states caused by unintended behavior during the design phase.
However, creating state transition diagrams and inspecting
models requires specialized knowledge. Therefore, it is dif-
ficult for beginners to handle. In addition, if the system is
complex and consists of many components, manually extract-
ing all the states of the components can be a labor-intensive
task. Therefore, the goal of this research is the automatic con-
version of state transition diagrams from requirement spec-
ifications containing state transition descriptions written in
Japanese. This research is expected to help designers and de-
velopers share system specifications without conflicts at low
cost. Previous research has proposed a method for extracting
state transition descriptions from requirement statements us-
ing syntactic analysis based on the rules of natural language
notation, and creating state transition diagrams based on the
extracted elements [5]-[8]. A rule-based method using depen-
dency analysis can extract the name of a state variable and its
state from requirement statements [9]. However, previous re-
search had several issues. The first issue was the inability
to fully extract the necessary elements. This was particularly
challenging when dealing with complex transition conditions,
as it was difficult to extract all elements while clarifying their
logical relationships. The second issue was the need to add
new syntax rules or refine existing rules when extracting in-
formation from long and complex sentences. To address the
first issue, it was necessary to improve extraction rules. How-
ever, creating rules that could handle all types of sentences,
such as those with numerous modifiers or redundant phras-
ing, proved to be difficult. The final issue was that simply
fitting the extracted elements into a state transition diagram
template did not result in a correct diagram. This was due to
problems with multiple names or definitions referring to the
same state. In summary, while previous research automated
the partial extraction of elements for state transition descrip-
tions to some extent, it did not achieve complete automation
of the diagram creation process.

On the other hand, natural language processing technology
using Large Language Models (LLMs) is rapidly develop-
ing and its usefulness is being confirmed. Many studies in
the field of software modeling have also explored the use of
LLMs such as ChatGPT. In some studies, LLM was used to
convert requirement statements into UML descriptions such
as plantUM and to create UML diagrams [10]. Prior research
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confirmed that chatGPT understands most UML diagrams, in-
cluding class diagrams, use cases, state transition diagrams,
sequence diagrams, and activity diagrams [10]. This research
uses ChaTGPT to create state transition diagrams by extract-
ing state transitions from requirement statements described in
natural language and converting them to PlantUML descrip-
tion format. This enables automation up to the creation of
state transition diagrams, which was previously impossible.
Furthermore, this study will evaluate the extent to which the
state transition diagrams created by this method. The pro-
posed method uses a prompting technique called Chain of
Thought Prompting, which gave ChatGPT an example of de-
scribing a state transition diagram in PlantUML format and a
procedure for creating it. The results confirmed that ChatGPT
can create state transition diagrams that satisfy the elements
of state, transition, and event.This paper is organized as fol-
lows. Section 2 presents the technology used in this study and
related research. Section 3 presents the proposed methodol-
ogy. Sections 4 and 5 present the experiments and results,
respectively. Section 6 discusses the method based on the re-
sults. Finally, Section 7 concludes the paper.

2 PREPARE

2.1 State Transition Diagrams
A state transition diagram represents the behavior of a model

consisting of a combination of states, transitions, and events.
In model-driven development, state transition diagrams are
widely used for purposes such as checking implementation
specifications and analyzing scenarios [11]. In UML 2.0, state
transition diagrams are called state machine diagrams. State
transition diagrams have a notation that specifies the method
of operation, called semantics. The semantics include condi-
tions and transition actions related to transitions, actions and
activities inside states, and structures such as composite and
parallel states [11].

2.2 Modeling with ChatGPT
Large Language Models (LLMs) are models of natural lan-

guage processing that have been trained on large amounts of
text data. Typical examples of large-scale language models
include BERT, announced by Google in 2018, and GPT-3,
announced by OpenAI in 2020. In May 2024, OpenAI in-
troduced the new GPT-4o, a model with better performance
in languages other than English. This study used the GPT3.5
and GPT-4o models for its experiments. Since ChatGPT is a
language model, it cannot generate graphical models, but it
can generate models using text-based UML notation. Chat-
GPT understands several UML notations such as PlantUML,
Mermaid, Markdown UML. Prior studies have shown several
characteristics of software modeling using ChatGPT [10].

• ChatGPT can represent models in multiple UML nota-
tions. In general, PlantUML tends to have fewer syntax
errors.

• Previous conversation history will cause fluctuations in
the generated results.

• Variation in ChatGPT responses to the same prompt

• The problem domain affects the structure, content, and
level of abstraction of the generated model. Also, Chat-
GPT performs poorly when modeling meaningless en-
tity names such as symbols.

Considering the above, this method selected PLantUML as
the UML notation. PlantUML is a tool that allows code-based
description of UML and has been used in previous studies for
automated creation of UML diagrams [12]. Also, prior re-
search using chatGPT recommends starting a new chat each
time a new model is generated. This is because previous con-
versation history influences the results generated. Therefore,
this experiment also switched to a new chat in each experi-
ment. Since April 2024, a feature called memory has been
added to the paid version of ChatGPT plus, which allows in-
formation to be stored in ChatGPT beyond each chat section,
but in this experiment, the memory feature was turned off.

2.3 Related Research
This section presents related research that applies natural

language processing (NLP) techniques to support the creation
and validation of UML diagrams. We categorize them into
three groups: software modeling methods using LLM, rule-
based methods, and other traditional NLP methods.

Studies that have utilized LLMs as UML generation tools
and evaluated their accuracy include Cámara et al. [10] and
Ferrari et al. [13]. In Ferrari et al., LLMs were used to
generate sequence diagrams from requirements. Addition-
ally, Wang et al. [14] used LLMs as a modeling support tool
and evaluated the generated UML diagrams such as class di-
agrams and sequence diagrams. The rule-based element ex-
traction of traditional methods is often used not only in soft-
ware modeling but also for automatic test case generation
in embedded systems and other applications. Muhammad et
al. [8] designed rules to extract actions and conditions from
English sentences, and by extracting them, they supported
the design verification of embedded systems. Nakamura et
al. [7] used natural language processing tools JUMAN and
KNP to extract clauses representing conditions and actions
through a syntactic tree analysis approach for requirements
written in Japanese. Abdelkareem [12] extracted elements
from scenario-based text and created sequence diagrams by
describing the extracted elements in PlantUML. Rule-based
methods generally perform extraction by following a sequence
of steps, including preprocessing, morphological analysis, and
syntactic analysis. As a different method from rule-based,
Shaohong et al. [15] used natural language processing tech-
niques such as inverse document frequency (IDF) calcula-
tion and open information extraction (IE) to extract impor-
tant words and phrases, thereby generating SysML diagrams.
The positioning of this research is in software modeling using
LLMs, with a particular focus on state transition diagrams.

3 PROPOSED METHOD

This section provides an overview of the methodology. An
overview of this method is shown in Fig. 1. Figure 1 rep-
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Figure 1: Overview of the proposed method

pre-state --> post-state : event
post-state: (entry or do or exit)action

It represents how the PlantUML format is structured when the requirement statements
includes the elements pre-state, post-state, event, and action.

For example, the statement "When the power is off, turning on the power switches to
standby mode and lights up the standby lamp." is converted as follows.
Power Off --> Standby : Turn on the power
Standby : entry / Light up the standby lamp

Listing 1: Part of the process of converting requirement statements into PlantUML

resents giving ChatGPT requirement statements and prompts
explaining how to create a state transition diagram, and re-
ceiving a state transition diagram described in PlantUML for-
mat as a response from ChatGPT. This is executed in Plan-
tUML and converted into a state transition diagram image.
Requirement statements are generally classified into functional
and non-functional requirements. Functional requirements in-
clude elements such as UI, database, processes, and context.
In this method, the primary input statements are those that
describe the processes in the functional requirements. State-
ments describing processes consist of elements such as activ-
ities, parameters, and rules, and they represent the processing
of transitions and actions. A transition statement is a state-
ment that describe a change of state by a pair of states and
events [16]. An active statement is a statement that, based
on a combination of state and event, instructs the execution
of operations [16]. Or it instructs the interactions with the
external environment through actuators or other means.

To enable ChatGPT to appropriately convert these require-
ments into state transition diagrams, careful crafting of prompts
is essential. This method used Chain of Thought Prompt-
ing as the prompt description method. It has been found
that ChatGPT responses are more concrete when specific ex-
amples of inputs and outputs are given. Chain of Thought
Prompting is a method that improves LLM capabilities by in-
cluding intermediate reasoning steps before solving the prob-
lem in the prompt [17]. Chain of thought prompts have been
shown to improve the performance of LLMs in tasks involv-
ing arithmetic, common sense reasoning, and symbolic rea-
soning [17]. As an intermediate inference step, this method
describes the process of extracting the state transition descrip-
tion from the requirement statement and converting it to Plan-

Figure 2: Composition of prompts

tUML format. Figure 2 shows the prompt used in this study.
As an example, ChatGPT receives requirement statements,
a PlantUML description created from the requirement state-
ments, and the procedure for converting the requirement state-
ments to PlantUML. Lstlisting 1 shows part of a prompt that
illustrates the process of converting requirement statements to
PlantUML. Usually, a requirement statement describing the
behavior of the system indicates that when an event occurs,
the system will go from state A to state B and take action.
For example, requirement statements regarding a timer is de-
scribed as follows: “タイマ起動中に、タイマボタンを 3sec
以上続けて長押ししたら、ブザーを 100msec鳴らした後、
0min0secにリセットされ、タイマが停止する。” (“When
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the timer is running, if the timer button is pressed and held
for more than 3 seconds, the buzzer will sound for 100 mil-
liseconds, then the timer will reset to 0 minutes and 0 sec-
onds, and the timer will stop.”) Therefore, this study defines
the elements that constitute state transitions as the pre-state,
post-state, event, guard condition, and action. The prompt in
Lstlisting 1 explains how to convert each of those elements
to PlantUML format when they are included in requirement
statements. This allows ChatGPT to understand conversion
patterns according to the rules.

There are two ways to describe actions in a state transition
diagram:

1. Actions executed upon entering or exiting a state, or
while staying within that state.

2. Conditional actions executed when conditions are sat-
isfied, and the transition is successfully completed.

The former type of action is documented within the state us-
ing entry, exit, or do, depending on the execution timing. En-
try is an action executed once upon transitioning into a state,
exit is an action executed once upon leaving a state, and do
is an activity continuously executed while remaining in the
state. An action refers to a process that is executed with-
out interruption or suspension, whereas an activity refers to
a process that is expected to allow interruptions or suspen-
sions during execution. The prompt explains that, depending
on the execution timing, one of entry, exit, or do should be
specified for the action. On the other hand, the latter type of
conditional action is documented within the transition. In a
state transition diagram, conditional actions are represented
as “event [guard condition]/conditional action”. When the re-
quirement statement contains a conditional action, the prompt
instructs ChatGPT to convert it as follows:

• pre-state –> post-state : event [guard condition]/ con-
ditional action

For example, a timer requirement statement is converted by
ChatGPT into a PlantUML description as follows.

• 「タイマ起動中に、タイマボタンを 3sec以上続けて長
押ししたら、ブザーを100msec鳴らした後、0min0sec
にリセットされ、タイマが停止する。」

• 起動中 –> 停止中 : タイマボタンを 3sec 以上長押
し/100msecブザー鳴動，t = 0min0sec

• “When the timer is running, if the timer button is pressed
and held for more than 3 seconds, the buzzer will sound
for 100 milliseconds, then the timer will reset to 0 min-
utes and 0 seconds, and the timer will stop.”

• Running –> Stopped : Press and hold the timer but-
ton for more than 3 seconds/buzzer sound for 100msec，
t = 0min0sec

The execution order of processes associated with a state
transition is as follows: checking the guard condition, exe-
cuting the transition if the condition is met, performing the
conditional action, and executing the entry action of the post-
transition state. Since conditional actions and entry actions

within a state are executed within the same cycle, it is recom-
mended to consolidate operations involving the same target or
variable into either one [11]. It is also recommended that con-
ditional actions include processes that cannot be interrupted
and can be completed in a short amount of time. Whether an
action is documented as a state action or a conditional action
is determined by the factors mentioned above, as well as the
common design rules established by the development team.
In this method, the prompt does not specify whether an ac-
tion should be documented as a state action or a conditional
action; the final decision is left to ChatGPT.

As shown in Fig. 2, the prompt for creating a state transition
diagram includes, in addition to the input statements, the in-
struction to indicate from which statements you have created
which transition, together with the rationale for its derivation.
This instruction causes the ChatGPT response to output the
process of creating a transition from requirement statements
with the result. If an error is found in the state transition di-
agram through model checking, the developer may be able
to identify the cause of the error by examining the derivation
process. Therefore, it is recommended to output the deriva-
tion process along with the generated result during the cre-
ation.

4 EXPERIMENTS

The evaluation experiments investigated the quality of state
transition diagrams generated using the proposed method. Ad-
ditionally, they compared the transformation accuracy with
that of conventional methods to assess the differences. As
a preliminary experiment, we utilized GPT-3.5 and GPT-4o
and compared the results using two prompting methods: the
proposed Chain-of-Thought approach and the Zero-Shot ap-
proach (i.e., without prompt optimization). The best results
were obtained when using GPT-4o with the Chain-of-Thought
method. Therefore, in the main experiment, we use GPT-
4o as the LLM and apply the Chain-of-Thought prompting
method for the transformation process.

4.1 Requirements Specification Used in the
Experiment

In the experiment, two requirement specifications were pre-
pared, and three state transition diagrams were created. The
first is a requirement statement for a CD player control panel
in Astah’s “UML State Machine Diagram and State Transi-
tion Table Tutorial” [18]. The requirements for the CD player
operation panel are described as transition statements in a ba-
sic syntactic format, such as “When in the previous state, if
an event occurs, it transitions to the subsequent state and per-
forms an action.” There are eight requirement sentences in
total: six sentences describing state transitions, one sentence
describing state actions, and one sentence describing the ini-
tial state. The experiment will verify whether ChatGPT can
create a simple state transition diagram with a small number
of states through this requirement statement.

The second is the requirement statement from the “Hotpot,
Version 7” created and published by SESSAME [19]. Com-
pared to the requirements for the CD player, the requirement
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Figure 3:
The state transition diagram of the CD player control panel created using chain of thought prompting in GPT4o.

-Stop (停止), Playback (再生), Pause (一時停止), Fast forward (早送り), Fast Rewind (早戻し)
-Press the Play button (再生ボタンを押す), Press the Stop button (停止ボタンを押す)

-Hold down the Fast Forward button (早送りボタンを押し続ける), Release the Fast Forward button (早送りボタンを離す)
-Hold down the Fast Rewind button (早戻しボタンを押し続ける), Releasethe Fast Rewind button (早戻しボタンを離す)
-Display the information of the currently playing track and the stopped state (現在再生対象の曲の情報と停止状態を表示)

-Display the playback information and playback state of the currently playing track
(現在再生対象の曲の再生時情報と再生状態を表示)

-Increase the music playback speed (音楽の再生速度を早める), Play the music in reverse (音楽を逆再生)

statements for the Hotpot are more complex, with more de-
tailed descriptions of transition conditions and actions. This
experiment will verify whether appropriate state transition di-
agrams can be created based on requirement statements writ-
ten in a style similar to those used in the field. Additionally,
the Hotpot has been used as an example in several related
studies [4][9]. Therefore, it was deemed beneficial for eval-
uating the transformation accuracy of this method and was
selected as the requirement specification for the experiment.
In this experiment, two items were targeted: the lock button
item and the timer item from the “Hot Pot.” The requirement
statements for the lock button total nine. Of these, three are
described as bullet points outlining conditions. The remaining
six consist of five sentences describing states and transitions,
and one sentence explaining the initial state. The lock but-
ton is characterized by its transition conditions being listed as
bullet points. In creating the state transition diagram, the pro-
cess involved first inputting six requirements into GPT and
then subsequently inputting the bullet-pointed conditions. On
the other hand, the timer’s requirement statements consist of
a total of nine sentences. Among them, four sentences de-
scribe state transitions, three sentences explain actions related
to states or transitions, one sentence pertains to constraints,
and one sentence describes the initial state. The timer must
process increment and decrement operations on the remaining
time. When creating the state transition diagram, instructions
were added the input sentences, stating: “Define the remain-
ing time of the timer as a variable t, consider the range of

values t can take, and incorporate this into the state transition
diagram.”

4.2 Evaluation Methods

In the experiment, we conducted evaluations using three
different methods:

(1) Comparison between the state transition diagram gener-
ated by the proposed method and the correct diagram.

(2) Comparison of accuracy between the conventional method
and the proposed method.

(3) Evaluation of the generated state transition diagram through
model checking.

In the first method, the generated state transition diagram
was compared with a predefined correct state transition dia-
gram to determine correctness. The Astah tutorial includes
a state transition diagram created from the request statement,
and this experiment treats it as the correct diagram. The state
transition diagram to be used as the correct answer for the
topic boiling pot was created by ourself in advance. The eval-
uation defined states, transitions, events, and semantics as the
evaluation criteria for the state transition diagrams created.
The evaluation checks that the state, transitions, and events
accurately reflect what should be described in the state transi-
tion diagram without deficiencies. Regarding transitions, it is
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Figure 4:
The state transition diagram of the lock button created using chain of thought prompting in GPT4o.

-Locked (ロック中), Unlock (ロック解除), Boiling (給湯中), Stop the pump (ポンプ停止)
-Press the lock button for more than 100msec (ロックボタンを 100msec以上押す)

-[Not in boiling water & Lid sensor on] ([給湯中でない &蓋センサ on])
-Lid sensor off for more than 1sec (蓋センサが 1sec以上 off), Press the boiling button (給湯ボタンを押す)

-[Unlocked state & Proper water level & Lid sensor on & Heater power on & No temperature error & Insulating]
([ロック解除状態 &水量適正 &蓋センサ on &ヒータ用電源 on &温度エラーなし &保温行為中])

-Abnormal water level (水量異常), Heater power off (ヒータ用電源 off), Temperature error (温度エラー)
-Turn off the lock lamp (ロックランプを消灯する), Turn on the lock lamp (ロックランプを点灯する)

common practice not to specify transition conditions for tran-
sitions from the initial pseudo-state to the initial state. How-
ever, since requirement statements defining the initial state
may include events or conditions, such cases were excluded
from the evaluation of transition correctness in the experi-
ment.

For the second method, which compares accuracy with the
conventional approach, we use Precision and Recall as eval-
uation metrics to measure correctness. The conventional ap-
proach refers to the rule-based method that utilizes depen-
dency parsing. The main process of the conventional method
consists of morphological analysis, dependency parsing, rule
application, and element extraction. For morphological anal-
ysis and dependency parsing, we use GiNZA, an open-source
natural language processing library [20]. By using GiNZA,
it is possible to perform dependency parsing and named en-
tity recognition based on Universal Dependencies (UD) de-
pendency labels [21]. In previous research, extraction rules
for states and transition conditions were designed using part-
of-speech tagging and UD labels. A total of 19 rules were
prepared for this purpose. The dependency parsing rule-based
method extracts transition conditions, pre-transition states, and
post-transition states from a single sentence. In contrast, the
transformation using LLM converts the entire requirement text
into PlantUML at once. To compare with conventional meth-
ods, values are calculated based on the extraction items used
in conventional methods: transition conditions, pre-transition
states, and post-transition states. In the LLM-based transfor-
mation, the pre-state corresponds to the pre-transition state,
the post-state and action correspond to the post-transition state,
and the event and guard condition correspond to the transi-
tion condition. Since the rule-based method is designed with
rules targeting transition statements, the comparison was con-
ducted only on transition statements. For the conventional

method, some requirement statements were preprocessed by
supplementing the subject and object and modifying the ex-
pressions at the end of clauses.

Finally, to determine the correctness of the behavior of the
generated state transition diagrams, model checking, a formal
method widely used in software development, was utilized. If
there are errors or redundancies in the generated state transi-
tion diagrams, the causes can be broadly classified into two
categories: “errors during the LLM transformation process”
and “ambiguities or contradictions in the requirement spec-
ifications.” LLM transformation errors are defined as cases
where the transformation deviates from the requirement de-
scriptions or when elements included in the requirements are
missing. On the other hand, if the requirements are met but
there are errors in the state transition diagram, it can be at-
tributed to issues in the requirement specification itself. How-
ever, in general, it is difficult to determine the errors and their
causes just by inspecting the generated results or the deriva-
tion process. Therefore, we first verify whether there are any
errors through model checking. Afterward, by carefully ex-
amining the results of the model checking, we identify the
causes of the errors. In the experiment, the most complex
timer state transition diagram among the three was selected
for verification.

5 RESULT

Figure 3 shows the state transition diagram of the CD player
control panel created using chain of thought prompting in
GPT4o. Figure 4 shows the state transition diagram of the
lock button created using chain of thought prompting in GPT4o.
Figure 5 shows the state transition diagram of the timer cre-
ated using chain of thought prompting in GPT4o.
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Figure 5:
The state transition diagram of the timer created using chain of thought prompting in GPT4o.

-Stopped (停止中), Running (起動中), Time’s up (タイムアップ), Buzzer sounds (ブザー鳴動)
-Press the timer button for more than 100msec (タイマーボタンを 100msec以上押す)

-Release the timer button and wait for 1 second (タイマーボタンを離して 1秒後)
-Press and hold the timer button for more than 3 seconds (タイマーボタンを 3秒以上長押し)

-Countdown the remaining time (残り時間をカウントダウン), display in minutes (分単位に切り上げて表示)
-Buzzer sounds three times for 100msec intervals (ブザーを 100msec間隔で 100msecを 3回鳴動)

5.1 CD Player Control Panel
The state transition diagram of a CD player control panel

has five states, nine transitions including the transition from
the start state to the initial state, and eight events for the tran-
sitions. In the experiments, when GPT-4 or chain-of-thought
prompting was used, these states, transitions, and events were
accurately reflected in the state transition diagram without any
omissions or excesses. Although the notation of actions dif-
fers from that in the Astah diagram, the content is consistent.
These good results can be attributed to the fact that the re-
quirements are clear and have a simple sentence structure.

5.2 Lock Button
When using GPT-4 with chain-of-thought prompting, the

states, transitions, and events of the lock button were accu-
rately reflected in the state transition diagram, except for one
transition and its associated event. The only transition that
could not be reflected was that the pump stops when the hot
water button is released during hot water heating. This tran-
sition could not be reflected because it was not described in
the requirement statements. This functionality is presumed to
have been omitted from the requirement statements because
it was considered self-evident. It was confirmed that multiple
transition conditions described in bullet points could be ap-
propriately reflected by separating and inputting each process
individually. It can be confirmed from Fig. 4 that all elements
of the transition conditions are captured without omission,
and their logical relationships are correctly represented as a
conjunction (AND relationship). However, in these require-
ments, transition conditions such as “water level is appropri-
ate” are defined as “the full water sensor is off, and not all

water level sensors are off.” Such rephrasing using alternative
expressions is sometimes defined in the requirements for the
sake of simplicity. Therefore, if a more rigorous definition is
to be reflected in the state transition diagram, it is necessary
to include the statements defining those conditions along with
the input.

5.3 Timer

When using chain of thought prompting in GPT4o, the
state, transitions, and events were accurately reflected in the
state transition diagram, except for one transition and its events.
The transition that could not be reflected was the self-transition
caused by the countdown when the timer is activated. How-
ever, since this self-transition was not explicitly described in
the requirement statement, this omission is understandable.
As a result of instructing the inclusion of the remaining time
as a variable t in the state transition diagram, actions that add
time and transitions that depend on the value of the remaining
time were effectively represented. On the other hand, when
verifying the semantic behavior represented by the state tran-
sition diagram in Fig. 5, considering the actions and guard
conditions, some errors were identified. The details are dis-
cussed in the model checking for timers presented later.

5.4 Comparison of Rule-Based Method Using
Dependency Parsing and LLM-Based
Transformation Method

Table 1 shows the Precision and Recall values for the con-
ventional and proposed methods. The numerical values were
calculated based on the conventional method, measuring the
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Table 1: Comparison of accuracy between conventional and proposed methods

Method Requirement Transition conditions Pre-states Post-states
Rule-based CD Player control panel Precision 1.00 0.75 1.00

Recall 0.80 0.75 1.00
ChatGPT Precision 1.00 1.00 1.00

Recall 1.00 1.00 1.00
Rule-based Lock button Precision 1.00 0.67 1.00

Recall 0.70 0.67 1.00
ChatGPT Precision 1.00 1.00 1.00

Recall 1.00 1.00 0.83
Rule-based Timer Precision 0.57 0.80 0.80

Recall 0.36 0.80 0.89
ChatGPT Precision 0.83 1.00 1.00

Recall 1.00 1.00 1.00

Table 2: Timer variables used in model checking

Variable name Value Range Meaning
state {STOPPED, RUNNING, TIMEUP} Timer Status
t 0..3600 Remaining timer time (sec)
button state {OFF, ON, LONG ON} Button Status
timer button boolean Whether the button is pressed or not (event)
press time 0..10000 Button press time (msec)
release time 0..1000 Elapsed time since the button was released (msec)
buzzer boolean Buzzer on/off
buzzer time {0,50,100} Buzzer sounding time (msec)
buzzer count {0,1,3} Number of times buzzer sounds (times)
prev t 0..3600 Variable for inspection (remaining time of one previous step)

extraction or conversion accuracy for one pair of states per
sentence. A comparison of the results shows that the trans-
formation accuracy using LLM exceeds the extraction accu-
racy of the rule-based method. Transition conditions showed
higher accuracy compared to the rule-based approach. Addi-
tionally, it was confirmed that the transformation using LLM
is more effective for complex and long requirement state-
ments compared to the conventional method.

The differences between the proposed LLM-based trans-
formation method and the rule-based method using depen-
dency analysis are discussed below.

5.4.1 Rule-Based Method Using Dependency Parsing

• Advantages

In extraction, as long as there is no omission of the subject or
object in the requirement statements, state variables and states
can be extracted with high accuracy. This method is particu-
larly effective for languages like English, where word order
is important. Since open-source natural language processing
libraries are often used as tools, there is almost no financial
cost required for their implementation.

• Disadvantages

When dealing with Japanese requirement sentences, the ex-
traction accuracy may decrease for long sentences with many
modifiers or sentences that describe multiple consecutive state
transitions in a single sentence. Additionally, when transition
conditions are complex, it becomes difficult to clarify and ex-
tract the logical relationships between those conditions. Fur-
thermore, the method is unable to handle sentences with im-
proper grammar or bullet-pointed requirements. In this way,
the extraction accuracy decreases for certain sentence struc-
tures, which is considered a barrier to practical usability. In
terms of cost, creating extraction rules requires significant ef-
fort. Developing general and comprehensive rules is a time-
consuming task. Additionally, in many cases, preprocessing
is required before extraction. To create a state transition di-
agram, after extracting state transition descriptions using a
rule-based approach, it is necessary to map the extracted el-
ements onto the diagram. However, in requirement specifi-
cations, the same state can sometimes be assigned different
names, making the automation of the mapping process diffi-
cult. For example, in the case of a timer, multiple expressions
such as “停止” (Stop) and “起動していない” (Not Started)
are used to describe the stop state. To determine that these
refer to the same state, it is necessary to interpret the seman-
tics using similarity measures, and thus, fully automating the
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Table 3: Timer verification items and results

Timer Verification Items Results
Whether the timer is in a stopped or active state,
pressing the timer button for more than 100 milliseconds increments the remaining time by one minute, False
with the seconds unit resetting to 0 seconds.
If the timer button is pressed for less than 100 milliseconds, the remaining time is not incremented. True
When the timer button is pressed for 100 milliseconds or more, the buzzer sounds for 50 milliseconds. True
If the timer button is pressed for less than 100 milliseconds, the buzzer does not sound. True
The timer value never falls outside the specified range. True
When the timer value is 60min 0sec and the timer button is pressed for 100 milliseconds or more,
the timer value resets to 1min 0sec. True
The countdown begins exactly 1 second after the timer button is released. True
While the timer is active and the remaining time is not zero, the remaining time decreases by 1 every second. False
If no remaining time is set on the timer, it does not transition to the active state. False
If the timer button is pressed and held for 3 seconds or more during operation, the timer value resets to 0min 0sec. True
If the timer button is pressed and held for 3 seconds or more during operation, the buzzer sounds for 100 milliseconds. True
When the timer button is held for 3 seconds or more outside of the active state, the timer value is not reset to 0min 0sec. True
When the timer button is pressed for less than 3 seconds, the timer value does not reset to 0min 0sec. True
After the set timer value elapses, the time-up buzzer sounds. True

mapping process becomes a highly challenging task.

5.4.2 Conversion Method Using LLM

• Advantages

If the model is simple, it can be created with high accuracy.
Unlike rule-based methods, it can also flexibly handle sen-
tence structures such as long sentences and bullet points. While
rule-based methods typically process one sentence at a time,
LLMs convert the entire requirement sentence in one go, which
is a key difference. Additionally, there is little to no cost re-
quired for implementation. In this way, compared to rule-
based methods, the ability to easily create state transition di-
agrams enhances its practicality. If a state transition diagram
can be created, model checking can be conducted. This al-
lows for the detection and correction of errors, even if there
are reliability issues with the LLM-based transformation.

• Disadvantages

Compared to rule-based methods, a disadvantage of LLM-
based transformation is that there is variability in the output
results. Additionally, elements of the state transition diagram,
such as guard conditions and actions, may not be accurately
transformed. Furthermore, transformations that require spe-
cial notations, which are not explained during the prompt,
are difficult to handle. For example, generating representa-
tions that use history states, When events, or pseudo-states
like Choice or Junction used in conditional branches is cur-
rently not possible. However, it should be noted that these are
also elements that are not achievable with rule-based meth-
ods.

Based on the above discussion, from the perspectives of
transformation accuracy and ease of creation, it is believed
that the use of LLM-based methods is preferable in software
development.

5.5 Model Checking for Timers

To verify whether the state transition diagrams of the gener-
ated timers semantically represent the intended behavior, the
state transition diagrams of the generated timers were model
checked. In the experiment, NuSMV was used as the model
checking tool [22]. In this experiment, the author manually
wrote the transition model code for the timer based on the
generated state transition diagram. Table 2 shows the timer
variables used in the model checking. Additionally, the au-
thor identified possible verification items from the require-
ment statements and wrote them as verification formulas. There
are 14 validation items in total. Table 3 shows these verifi-
cation items. In the model checking, 17 verification formu-
las were described using LTL (Linear Temporal Logic) and
CTL (Computational Tree Logic) formulas based on 14 cre-
ated verification items. Table 4 shows the verification formu-
las and results. The correct state transition diagram for the
timer, created in advance by ourself, satisfies all of these ver-
ification formulas. Therefore, if the state transition diagram
created by ChatGPT is correct, all of these verification for-
mulas should be satisfied. As a result, the generated state
transition diagram for the timer failed to satisfy 4 out of the
17 verification formulas. In other words, in terms of verifi-
cation items, it did not meet 3 out of the 14 requirements.
The first verification item that was not satisfied was the pro-
cess where “when the timer is in the stopped or active state,
pressing the timer button for 100 milliseconds or more adds
1 minute to the remaining time.” The verification results in-
dicated that the remaining time of the timer could not be set
to more than 60 seconds. This occurred because the entry ac-
tion for the stopped state was specified to reset the remaining
time to 0min 0sec, causing the remaining time to be reset to
0 every time a self-transition led to re-entering the state. As
a result, it was not possible to set the time, and there was no
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Table 4: Timer verification formulas and results

Verification Equation Results
LTLSPEC G((state = STOPPED | state = RUNNING) & button state = ON& t ! = 3600

⇒ F (t = ((prev t/60) + 1)× 60))
T

CTLSPEC EF (state = STOPPED & 60 < t) F
CTLSPEC EF (state = RUNNING & 60 < t) F
LTLSPEC G((state = STOPPED | state = RUNNING) & press time < 100

⇒ F (t = prev t))
T

LTLSPEC G!(t < 0 | t > 3600) T
LTLSPEC G(t = 3600 & button state = ON ⇒ F (t = 60)) T
LTLSPEC G((state = STOPPED | state = RUNNING)&button state = ON

⇒ F (buzzer & buzzer time = 50 & buzzer count = 1))
T

LTLSPEC G((state = STOPPED | state = RUNNING)&press time < 100 ⇒ F (!buzzer)) T
LTLSPEC G(state = STOPPED& t > 0 & release time = 1000 ⇒ F (state = RUNNING)) T
LTLSPEC G(state = STOPPED& t = 0 & release time = 1000 ⇒ X(state = STOPPED)) F
LTLSPEC G(state = RUNNING & button state = OFF& t > 0 ⇒ F (t = prev t− 1)) T
CTLSPEC EF (state = RUNNING & 0 < t & t < 60) F
LTLSPEC G(state = RUNNING & button state = LONG ON& t > 0 ⇒ F (t = 0)) T
LTLSPEC G(state = RUNNING & button state = LONG ON

⇒ F (buzze & buzzer time = 100 & buzzer count = 1))
T

LTLSPEC G(state ! = RUNNING & button state = LONG ON & t > 0 ⇒ F (t ! = 0)) T
LTLSPEC G(state = RUNNING & press time < 3000 & t > 0 ⇒ F (t ! = 0)) T
LTLSPEC G(state = TIMEUP ⇒ F (buzzer & buzzer time = 100 & buzzer count = 3)) T

path where the remaining time of the timer would exceed 60
seconds in the future. The second unmet verification item was
the process where “while the timer is active and the remaining
time is not 0, the remaining time decreases by 1 every second
(countdown).” This failure occurred because the requirement
statement lacked a specific description of the countdown pro-
cess. The third unmet verification item was the constraint that
“if the remaining time is not set, the timer does not transition
to the active state.” This occurred because the guard condition
t > 0 was not included in the transition from the stopped state
to the active state. Despite the requirement stating, “After
setting the timer value, the timer will start,” this requirement
could not be reflected in the state transition diagram, which is
why it is considered an LLM transformation error.

Additionally, the results of the model checking revealed de-
ficiencies in the timer’s requirement statements.

1. Lack of requirements specifying the detailed countdown
process (i.e., during operation, reducing the remaining
time by 1 every second).

2. Lack of requirements defining the behavior of the buzzer
when the timer button is pressed during the buzzer sound-
ing in the timeout state (i.e., whether interrupt handling
is allowed during the timeout buzzer sound).

For the second point, the model checking revealed that at the
moment of timeout, if the timer button is long-pressed, the
timeout buzzer and the buzzer action triggered by the long
press could overlap. In this way, model checking can help
identify errors in the created state transition diagram. Addi-
tionally, by closely examining the results, developers may be

able to determine the causes of these errors. For example, in
the timer of this experiment, the missing guard condition of
t¿0 is an LLM transformation error, while the insufficient defi-
nition of interrupt handling during buzzer sound is an ambigu-
ity in the requirement specification. Thus, by combining pro-
posed method with model checking, developers can identify
deficiencies and ambiguities in the requirement statements.

6 CONSIDERATION

One of the characteristics of modeling using ChatGPT is
that there are almost no syntax rule errors in PlantUML. The
experiment also confirmed that ChatGPT properly understands
and processes Japanese words that represent logical relation-
ships. For example, when a requirement sentence contains
the words “or” to indicate a disjunction relationship, Chat-
GPT understands the relationship and reflects it appropriately
in the state transition diagram. ChatGPT was also able to un-
derstand sentences that represent two transitions in a single
sentence, such as “from state A to state B and then to state
C,” and output two transitions from a single sentence.

On the other hand, in the preliminary experiment compar-
ing ChatGPT-3.5 and ChatGPT-4o, the quality of the gener-
ated state transition diagrams differed significantly. The dif-
ference in results was particularly apparent when no prompt
was devised. This result suggests that GPT3.5 understands
the PlantUML syntax rules for describing state transition dia-
grams, but does not understand how to create state transition
diagrams from requirement statements. On the other hand,
GPT4o can create a state transition diagram that satisfies the
description of the requirement statement better than the dia-
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gram generated by GPT3.5, even without any prompting de-
vices. In both models, the use of chain of thought prompting
to create state transition diagrams was effective. By using
chain of thought prompting and providing a process of trans-
formation patterns from requirement statements to PlantUML
descriptions, ChatGPT can determine the elements of states,
transitions, and events from requirement statements and re-
flect them in state transition diagrams. To create state transi-
tion diagrams that more accurately represent the intended se-
mantics, it would be beneficial to use GPT4o in conjunction
with chain-of-thought prompting.

The following challenges have been identified in the pro-
posed method:

• While it is possible to extract action elements, it is nec-
essary to reflect them in the state transition diagram
while considering execution order and avoiding redun-
dancy.

• For actions described within a state, it is important to
distinguish between actions and activities and appro-
priately use notations such as entry or do.

• Accurately reflecting guard conditions and constraints
involving numerical values, such as range limits.

• Representing the state transition diagram with an ap-
propriate hierarchical structure.

• Utilizing special notations such as history states and
When events.

In a state transition diagram, conditional actions and entry
actions within a state are executed within the same cycle.
Therefore, it is generally recommended to unify the process-
ing for the same target or variable within either one of them.
In the proposed method, the prompt explains the notation for
both internal state actions and conditional actions. However,
it does not provide guidance on how to distinguish between
them. As a result, errors and redundancies related to action
execution order have occurred In fact, errors caused by this
issue were detected in the timer’s model checking. If the gen-
erated state transition diagram contains such errors, it may be
difficult to identify them at a glance. However, these errors in
the generated results can be identified through model check-
ing.

In order to obtain meaningful verification results through
model checking, it is essential to reflect at least the variables
required for the verification and the states that those variables
can take in the state transition diagram. For the timer, essen-
tial variables include the timer state, the remaining time, the
state of the timer button, the duration of the button press, and
the buzzer. If there are difficulties in applying the proposed
method and model checking in actual software development,
it could be due to issues such as missing extraction of vari-
ables or their states, which may result in the inability to per-
form the necessary checks on the verification items. In the
small model targeted in this experiment, no state omissions
were observed, but caution will be needed in larger mod-
els. One possible countermeasure is to separate the extrac-
tion and conversion process to PlantUML. Variable names are

generally found in the subject or object positions of the sen-
tences [24]. By using this, first, the essential variables can be
extracted, and then explicit instructions can be given in the
prompt to incorporate them into the state transition diagram.
Additionally, if the essential variables are already known, it
would be better to explicitly instruct the prompt to incorpo-
rate them into the state transition diagram in advance.

If the cause of the error is an LLM conversion mistake,
there is a possibility to correct that mistake afterward using
prompt techniques. By re-inputting the generated result into
the LLM and using prompt methods that evaluate its validity
or select the correct logic, the LLM can check and correct the
generated result [23]. This approach is expected to reduce
errors due to conversion. Therefore, proposed method has
potential for further extension.

The practicality of this method is then discussed. State
transition diagrams are used in software development for pur-
poses such as scenario analysis and implementation specifi-
cations [11]. This method is considered to be effectively ap-
plicable in scenario analysis during requirements definition
and requirement analysis. This is because experimental re-
sults have shown that it can accurately extract states, tran-
sitions, and events from requirement statements and convert
them into state transition diagrams. During the requirements
definition phase, this method can be used to automatically
create state transition diagrams from use cases and require-
ments. This helps in verifying the system’s behavior and en-
sures that no states or events are overlooked. On the other
hand, when using this method for implementation or analysis
of specifications, additional manual adjustments to the state
transitions created by ChatGPT would be necessary. This is
because there may be errors or omissions related to action
symbols of states and guard conditions of transitions that in-
volve execution timing. In practice, during the model check-
ing of the timer, there were cases where the requirements were
not met due to issues with actions and guard conditions. On
the other hand, combining this method with model checking
enables the identification of errors in the generated state tran-
sition diagrams, as well as the detection of ambiguities and
deficiencies in the requirements. Therefore, when using this
method for specification implementation or analysis, it would
be beneficial to integrate it with model checking. In this ex-
periment, the creation of verification items and verification
formulas was performed manually. However, accurately and
comprehensively covering verification items for each require-
ment is a challenging and time-consuming task. Therefore, in
the future, we aim to incorporate the use of LLMs to automate
the generation of verification formulas from requirements. By
leveraging LLMs to automate the creation of state transition
diagrams, the output of verification formulas, their conversion
into verification code, and the subsequent model checking, a
cycle can be established. Repeating this cycle is expected to
optimize both the state transition diagrams and the require-
ment statements.

The purpose of this study is to automatically create state
transition diagrams from requirement statements and to check
for missing or ambiguous requirements. Therefore, it is re-
quired that the state transition diagram be created only ac-
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cording to what is described in the requirement statement.
In this method, ChatGPT extracts the state transition descrip-
tion from the requirement statement and converts it to Plan-
tUML format according to the conversion rules described in
the prompt. In the process, there were few self-indulgent ad-
ditions by ChatGPT to states, transitions, or events. Most
of the time when a change or additional element is included
by ChatGPT, it is considered to be a case where the status
is omitted or not stated in the requirement statement. prior
research on creating class diagrams using ChatGPT has indi-
cated that having knowledge of the target problem domain
is crucial for LLMs [10]. In contrast, the key to creating
state transition diagrams lies in whether the requirement state-
ments explicitly specify the elements of pre-state, post-state,
and event. The requirement statements for the CD player op-
eration panel, which were created with high quality, clearly
included all these elements. Some related papers also recom-
mend explicitly stating pre-state, post-state, and event in the
requirement statements [25]. Conversely, if the requirement
statements omit many details about the states, it becomes dif-
ficult to create high-quality state transition diagrams. This can
lead to significant variations in the state transition diagrams
generated by LLMs. Therefore, to create more accurate state
transition diagrams in the future, it will be necessary to devise
requirement templates that explicitly include elements such as
pre-state, post-state, and events.

This experiment focused on models with a small number
of states. In the future, experiments will be conducted on
systems with a larger number of states and more complex
structures. This will expand the applicability of the proposed
method and verify its effectiveness in more practical software
development processes.

7 CONCLUSION

This study used a large language model to generate state
transition diagrams by converting requirement statements into
PlantUML format. The Chain-of-thought prompting tech-
nique was employed as the prompting method, explaining
the process of converting requirement statements into Plan-
tUML. As a result of the experiment, it was confirmed that the
state transition diagrams created using the proposed method
correctly reflected the information related to states, transi-
tions, and events. In addition, when comparing the proposed
method with the traditional rule-based method using depen-
dency parsing, it was concluded that the proposed method is
superior in terms of conversion accuracy and ease of creation,
making it more effective for generating state transition dia-
grams. On the other hand, when the generated state transition
diagram was subjected to model checking, some omissions
and misrepresentations were found in the detailed transition
conditions and actions. However, by combining the proposed
method with model checking, it was possible to identify er-
rors in the generated state transition diagram and also confirm
ambiguities or deficiencies in the requirements.
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