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Abstract - Wireless sensor network (WSN) is utilized in
various fields including agriculture. However, communica-
tion quality is often difficult to maintain owing to their com-
plicated topologies. This study presents an approach for mon-
itoring WSN based on analyzing of the traffic sent and re-
ceived by the sensors. The proposed monitoring system is
protocol-independent because only traffic amount data is used.

In this method, similarity that can be seen in traffic trends
is exploited for communication route estimation. However,
burst traffic often occurs during wireless communication which
may result in errors. Thus, the proposed technique utilizes
a new similarity measure called Similar Trend Time Ratio
(STTR), which focuses on overall similarity rather than tem-
poral differences. A random forest machine learning algo-
rithm was utilized for the optimal threshold selection. This
method improves accuracy in bursting conditions as the ex-
periment using network simulation resulted route estimation
accuracy around 42%.

Keywords: Network Monitoring, Traffic Analysis, Time
Series Data, Similarity Measure

1 INTRODUCTION

Wireless sensor networks (WSN5s) are expected to be intro-
duced to the field of agriculture for acquiring temperature and
humidity data. A survey on WSN applications [1] shows ex-
amples of diverse network varieties for smart farming. How-
ever, these networks often have complicated topologies and
hinders the maintenance of network communication and qual-
ity. In particular, WSN systems for application to agriculture
have various protocols or specifications depending on the re-
quired transmission capacity or frequency of data monitoring.

In order to keep the WSN maintained, the farmer needs to
know the area or devices that are unstable and require mainte-
nance. Especially, the information about the communication
route used for data collection is useful for situation awareness.
Network monitoring softwares typically analyze the headers
of each transmitted packet to provide information on the net-
work condition. However, developing softwares for specific
networks is laborious, expensive, and inefficient.

Therefore, the proposed method utilizes traffic amount data
to estimate the communication route, which makes it protocol-
independent and suitable for any network environment. Sim-
ilar researches on network monitoring which are based on
physical layer characteristics or collected data similarity can

Table 1: Packet log and time-series traffic amount data
to be input and analyzed

(a) Packet log (b) Traffic amount data

Timestamp Packet size Time Traffic
(sec) (kbyte) period amount
0.04 43 (sec-sec)) (kbyte)
0.40 36 0-1 84
2.06 68 1-2 0
3.40 36 2-3 68
409 7 3-4 36

4-5 72

5.42 56 s_6 116
5.55 60 -

be found and they indicate possibilities of black-box-like ap-
proaches [2] [3]. The proposed algorithm uses traffic trend
similarity that can be found in time-series traffic amount data
of communicating devices. However, in some cases, burst
traffic or packet drop may cause temporal significant changes
in traffic amount data, which introduces inaccuracies in our
similarity based method.

Therefore, a new similarity measurement method that is al-
most unaffected by burst traffic is required.

2 SIMILARITY-BASED APPROACH

The traffic data to be analyzed is the time-series data col-
lected from each sensor, which represents the data sent and
received by each device during each time interval. For exam-
ple, if a sensor device has a recorded packet log as Table 1a,
the time-series data are generated as shown in Table 1b. Ac-
cording to a survey on WSN utilizations, major protocols used
for WSN are ZigBee, Wi-Fi or LoRaWAN. Each protocol has
different packet format and different packet sending and re-
ceiving sequence, which hinders versatility of general net-
work monitoring software. On the other hand, the data of
traffic amount and timestamp of the packets the sensor device
sent and received can be logged in the OS by adding some
source codes hooked to packet events. The traffic amount data
logged in each sensor device is expected to be collected every
several hours via the network or by the farmers manually.

To estimate a communication route, the similarities between
the traffic data of all possible pairs of devices are examined,
which represent the possibilities of direct communications be-
tween the pair of the devices. Figure 1 shows an example of
a pair of traffic data where the sender device sends packets to
the receiver device. The similar shapes of the two graphs indi-
cate similar traffic trends. In contrast, randomly selected pairs
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Figure 1: Traffic amount data of communicating devices in ideal condition
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Figure 2: Traffic amount data of communicating devices in bursting condition

of traffic data are not similar. Figure 3b shows the correlations
between the traffic data of all the devices that communicate
based on a linear topology as Fig. 3a. For example, the value
in the cell in row ”N2”, column "N1”, indicates similarity
between the traffic data transmitted and received by the sen-
sor nodes "N1” and ”N2”, respectively. Devices in the same
communication route exhibit similar traffic trends, as shown
by the boxes in Fig. 3b.

In this way, pair of devices which traffic amount data sim-
ilar each other can be expected to be directly communicating
devices. This idea can be the hints for communication route
estimation.

3 INACCURACY DUE TO BURST
TRAFFIC

Burst traffic or packet drop, which often occurs during wire-
less communication, hinders accurate network estimation in
the proposed similarity-based method. Figure 2, which ex-
amines temporal changes over the entire monitored interval,
illustrates the significant effects of these events.

The calculated similarity scores based on basic similarity
measures for time-series data, such as Euclidean distance or
Dynamic Time Warping (DTW), can be adversely influenced
despite the high degree of similarity observed during most of
the monitored time. A general countermeasure to burst prob-
lems is smoothing using a moving average or rolling. How-
ever, smoothing eliminates traffic trend characteristics; there-
fore, it is not recommended for the proposed method because
trends are utilized to identify communicating devices. A flex-
ible similarity measure based on user feedback has been pro-
posed [4], in which the user determines whether the effects of
burst traffic should be retained for route estimation in certain
cases, depending on the difficulty of estimation.

3.1 Pre-Experiment in Bursting Condition

This experiment examines how burst traffic affects the route
estimation accuracy. The route estimation algorithm used in
this experiment is explained in Sec.4 and coefficient coeffi-
cient is used as similarity measure. Estimation accuracy is
the ratio of the number of devices that next hop destination
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Figure 3: Traffic Amount Data Similarity Comparison

is accurately estimated out of all devices and maximum re-
sults among Minimum Similarity Threshold set from 0.1, 0.2,

., t0 0.9 . The devices are placed as shown in Fig. 4 and
each device sends packets constantly to the edge nodes. Net-
work specification is set as shown in Table 2, which is de-
signed for simulating realistic bursting condition. For ideal
network condition, static communication route is specified
and for realistic environment simulation, no communication
route is set which makes devices decide route automatically
by themselves.

One of the network simulation result is shown in Fig. 6
and Fig. 7 with their time-series traffic amount data placed in
same order as Fig. 4. Several significant burst traffic can be
seen in dynamic routing result and they are in different time
and devices regardless of communication relations. Even not
specifying communication route in bursting condition simu-
lation, the route mainly used was same as Fig. 4 according to
the simulation log.

The route estimation result (Fig. 5) indicates that satisfac-
tory results are obtained in the ideal static routing case; how-
ever, the accuracy significantly declines in the real dynamic
routing case. As explained in this section, bursting condition
causes significant inaccuracy to this similarity-based route es-
timation method and requires proper similarity calculation
method to prevent this problem.
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Figure 4: Network topology for the network simulation
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Figure 5: Pre-experiment result

Table 2: Parameters for pre-experiment in bursting condition

Item Value

Network Simulation Parameters

Trial Times 100
Simulation Time 180 seconds
Node Placement Spacing 150m
Transmission IEEE 802.11b

OLSR INRIA
For Ideal Condition
Static routing

Routing Protocol

Routing For Bursting Condition
Dynamic routing
Application Constant Bit Rate
1024byte/1sec

Route Estimation Parameters
Similarity Measure Correlation coefficient

Minimum Similarity .
Threshold Optimum 0.1, 0.2, ..., 0.9
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I . Linear Segment Estimation

Figure 8: Communication route estimation order in
tree-shaped network topology

4 PROPOSED METHOD

4.1 Overview

Figure 8 and Fig. 9 show basic process of the proposed
method. When WSNs are utilized in agriculture, they are ex-
pected to have a tree-shaped network topology because they
are designed to gather sensed data to the gateway device [5].
Figure 8 shows an example of a tree-shaped WSN topology
with two types of segments: a simple linear segment and a
merge segment. In this method, linear segments are firstly
estimated, followed by merge segments estimation.

The proposed method analyzes traffic amount data to esti-
mate the communication route and quality of each link, gen-
erating communication route map. This method can be used
in any network environment regardless of its protocol type
because the actual content of packets is not analyzed. Af-
ter gathering time-series traffic amount data, the process of
route estimation is processed through similarity calculation
and route segment or merge relation estimation as shown in
Fig. 9. The generated map includes network stability value
for each link and is useful for farmers to understand network
conditions and take countermeasures in the area where com-
munications are not stable.

This section explains how each process contributes to the
route estimation process.

4.2 STTR Similarity Measure

To address the inaccuracy problem caused by burst traf-
fic, a new similarity measure called Similar Trend Time Ratio
(STTR) is utilized, which examines the ratio of the time as-
sociated with a similar trend to the total time as a similarity
criterion. Calculation process is shown in Fig. 11. STTR is
the ratio of the similar time (highlighted area in the graph) to
the total monitored time. The determination of whether trends
are simultaneously similar is based on STTR Similarity De-
termination Threshold applied to the difference data. Large
differences caused by burst traffic are represented as high or
low values in the graph in Fig. 11. The periods in which the
two data exhibit similar trends, as highlighted in the graph,
are determined as similar time based on the threshold.
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Figure 9: Network monitoring algorithm process

4.2.1 STTR Usage as Communication Stability Index

The STTR value can also be used as a metric of communica-
tion stability because higher STTR values are calculated when
the burst occurrence time is shorter, and lower STTR values
are calculated when it is longer. Once the communication
route is estimated using the proposed method, the stability of
each link can be determined using the STTR values.

Providing this value with the output communication route
map enables farmers to understand the network status and eas-
ily implement measures to address any network failure.

4.2.2 Automatic STTR Similarity Determination Thresh-
old Selection

STTR Similarity Determination Threshold is used to deter-
mine whether the traffic amount data compared at the same
timestamp are similar. Figure 10 shows how different values
are calculated depending on this threshold.

A lower threshold, as shown in Fig. 10a, is better in cases
where most sensor devices have similar traffic because it is
necessary to identify the communication relations among all
the devices. However, if this threshold is too low, all calcu-
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Figure 11: STTR calculation process

lated values becomes too low that cannot be compared and
makes it impossible to determine the communication rela-
tions. A higher threshold should be selected in cases where
the general communication quality is low and burst traffic of-
ten occurs. However, when the threshold is set too high, the
calculated values become too high to compare and the identi-
fication of the communicating links becomes challenging.
The effective value for this threshold differs depending on
the quality and the similarity of the communication. Figure
12 shows relation between the threshold value and the route
estimation accuracy, and the accuracy differs depending on
the value selected for the threshold. This reveals that the opti-
mum threshold differs according to the communication stabil-
ity simulated by the node placement spacing as longer com-
munication distance makes communication more unstable.
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Figure 12: STTR Similarity Determination Threshold and
estimation accuracy
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Figure 13: Correlation coefficient distribution comparison

In order to set this threshold automatically, this method uti-
lizes Random Forest Machine Learning. Figure 13 is a his-
togram of similarity values calculated by correlation coeffi-
cient and distribution differences can be seen depending on
its communication distance. In order to focus on effects by
STTR Similarity Determination Threshold, a fixed value is
set for Minimum Similarity Threshold in this experiment.

The calculation of the correlation coefficient does not re-
quire the setting of any parameters, and it is easy to analyze
the general similarity distribution. Although similarity evalu-
ation using the correlation coefficient is not useful for route
estimation using the proposed method, it is useful for de-
termining the average communication quality and how sim-
ilarly the sensors communicate. Figure 3b is an example of
similarity distribution calculated using the correlation coeffi-
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cient. For example, if the communication quality is low and
a high similarity value is not found in Fig. 3b, this indicates
that STTR Similarity Determination Threshold should be set
lower. If most sensors send similar traffic, the average simi-
larity in Fig. 3b will be high, which indicates that STTR Sim-
ilarity Determination Threshold should be sufficiently high to
identify the communicating links. To analyze these similarity
distribution, making histogram is useful method and Fig. 13
clearly shows how differences in distribution can be revealed
using histogram.

This is how this method uses Random Forest Machine Learn-
ing to estimate the optimum value for STTR Similarity Deter-
mination Threshold based on the similarity distribution calcu-
lated using the correlation coefficient.

4.3 Linear Route Segment Estimation

The process of estimating actual route segment from calcu-
lated similarity is performed as shown in Fig. 14. The figures
in each step shows example sensor nodes, candidate commu-
nication links with STTR similarity values and the estimated
communication routes. The sensor nodes are represented as
circles with their node numbers inside and the STTR similar-
ity values are represented as arrow thickness.

After similarity calculation step is done, there are too many
candidate links that can be a part of actual communication
route. Therefore, before starting route estimation, links are
filtered by applying Minimum Similarity Threshold to the sim-
ilarity value of each link. In Stepl of Fig. 14 as an example,
the Minimum Similarity Threshold is set 50%, so the links
with the similarity values below 50% were deleted from the
candidate links. By applying this filter, candidate links are
greatly reduced and calculation time is shortened.

After the filtering process, the candidate link with the high-
est STTR value is selected as the estimated route (Step2).
Then, the estimated route is expanded from the both edge
nodes, choosing the link with the highest similarity among all
other possible links (Step3). Repeating this process until no
possible link remains, the all linear communication segments
are estimated (Step4 and Step5).

4.4 Route Merge Relations Estimation

After linear part estimation is done, merge parts are esti-
mated. Merge part estimation is processed in mostly same
way as linear part estimation. Looking at the estimated lin-
ear route segments, the edge devices are sending or receiv-
ing packets to other route segment. In a tree-shaped topology
where merge parts gather packets from 2 routes into 1 route
as shown in Fig. 8, the total sent traffic amounts of the proper
pair of linear route segments should be similar to the traffic
amount that have been received at the another linear route seg-
ment. Using this logic, similarity between all possible pairs
of route edge devices are calculated and merge relations are
estimated. Combining the results of linear route segment esti-
mation and merge relation estimation, the whole communica-
tion routes of tree-shaped topology network are estimated and
provided to the farmers for the network situation awareness.
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Table 3: Parameters for overall performance experiment

Item Value

Network Simulation Parameters

Trial Times 100
Simulation Time 180 seconds
Node Placement Spacing 150m
Transmission IEEE 802.11b
. OLSR INRIA
Routing Protocol . .
Dynamic routing
Application Constant Bit Rate
1024byte/1sec

Route Estimation Parameters

Similarity Measure Correlation coefficient, STTR

For Correlation Coefficient

Minimum Similarity Optimum 0.1, 0.2, ..., 0.9

Threshold

For STTR 30%
8
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Figure 15: Relations between actual optimum threshold and
estimated threshold

S EVALUATION

This section evaluates the availability of the proposed
method using the traffic amount data generated by network
simulation using QualNet [6]. Following two experiments in-
dicated the proposed algorithm worked properly and had con-
tribution on accuracy improvement in bursting condition.

5.1 Automatic STTR Similarity
Determination Threshold Selection
Experiment

This experiment evaluates the accuracy of the optimum
threshold estimation using machine learning.

The accuracy exhibited an average error of 0.68 for the re-
lationship between the actual optimum and estimated thresh-
olds. Figure 15 shows this relationship and indicates that this
method typically yields thresholds close to the actual opti-
mum value. Owing to this threshold error, the route esti-
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Figure 16: Automatic STTR Similarity Determination
Threshold selection experiment result
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Figure 17: Overall performance experiment result

mation accuracy declines by approximately 10%. Figure 16
shows actual route estimation accuracy using the estimated
STTR Similarity Determination Threshold. The result reveals
its stable performance regardless of its communication stabil-
ity simulated using different device spacing distances.

5.2 Overall Performance Experiment in
Bursting Condition

This experiment examines route estimation accuracy im-
provements contributed by proposed similarity measure. Ta-
ble 3 is the parameters set for this experiment. The result of
network simulation is same as the pre-experiment in Sec.3.1
and shown in Fig. 7.

As for the route estimation result, average accuracy was im-
proved from 36% to 42% and clearly reveals the contribution
to the accuracy in unstable communication condition. The
required accuracy level of the proposed method is expected
to be around 70%-80% since the proposed method focuses
on versatility just to notify farmers the area or sensors that
have to be maintained. For this purpose, the result of 42%
accuracy is still useful because the communication routes that
were failed to be estimated were where the similarity in traf-
fic data was low because of low communication stability and
need some maintenance. Therefore, the proposed method
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has enough feasibility to provide useful information about the
WSN conditions to the farmers.

One factor hindered the accuracy is that train data used for
machine learning in this experiment is from the experiment
of Sec.5.1 and does not include data of bursting condition.
Therefore, the most optimal threshold was not necessarily se-
lected for STTR Similarity Determination Threshold. Adding
train data in various bursting condition will bring further im-
proved accuracy. Another factor is that static threshold for
Minimum Similarity Threshold was used for the STTR case
unlike the correlation coefficient case took maximum result
among several values. The accuracy is expected to be im-
proved by implementing adjustment process of this threshold.

6 CONCLUSION

In this study, we propose a method for network route and
quality estimation by analyzing the traffic of constituent sen-
sors, which enables versatility in any network environment.
This approach utilizes similarities that can be observed in the
traffic amount trends of communicating devices. The similar-
ity is calculated using the STTR for accurate route estimation
even in the presence of burst traffic. For optimum threshold
selection, we utilized a random forest machine learning al-
gorithm using correlation distribution. The experiments have
shown the proposed method using STTR increases accuracy
in bursting condition compared to using similarity value cal-
culated by correlation coefficient. This method is useful for
providing network conditions with its versatility for assess-
ing network quality in any environment, enabled by automatic
threshold selection. In future work, further accuracy improve-
ment through training by data in various network topologies
and implementation of another threshold adjustment function
will be investigated.
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