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Abstract - In software development, extracting relevant in-
formation from the functional requirements of specifications
is crucial for ensuring consistency and reliability. Traditional
methods of information extraction are often burdened with
extensive annotation requirements, which can be both time-
consuming and error-prone. To address this issue, we ap-
plied NLP techniques to streamline the extraction of infor-
mation from functional requirements, aiming to enhance soft-
ware development efficiency. We developed an information
extraction system and an automatic rule generation process
to extract preconditions, actions, and resulting states from
Japanese functional requirements without requiring special-
ized knowledge and with minimal annotation. Experimen-
tal results using benchmark requirement documents demon-
strated that our proposed method achieved an F1-score of
80%. This approach lays the foundation for automating the
extraction of functional requirements, improving the consis-
tency and reliability of requirement documents, and enabling
more efficient software development.

Keywords: software engineering, natural language pro-
cessing, requirements specification, information extraction

1 INTRODUCTION

The application of Natural Language Processing (NLP) tech-
nology to functional requirements in a specification document
represents a significant advancement in streamlining software
development processes. Functional requirements in a specifi-
cation document detail the specific functionalities and behav-
iors that the system should provide to meet user needs. These
requirements define:

• Preconditions required before the system can perform
a specific action.

• Actions that the system carries out when certain condi-
tions are met.

• Resulting State of the system after the actions have
been completed.

They serve as guidelines for developers in designing and
implementing the system. However, functional requirements
may contain contradictions, potentially causing confusion in
the development process. For instance, if the specification
document provides inconsistent information about how a cer-
tain functionality should operate, developers may struggle to
determine which information to trust. Contradictory informa-
tion may also arise across different sections or parts of the

document, leaving developers uncertain about what is correct
and potentially impacting the progress of the project. Ac-
cording to [1], these types of contradictions pose serious chal-
lenges for developers and require time and effort to resolve.
While requirements specifications written in natural language
offer flexibility and expressiveness, they are also prone to
contradictions, which can lead to inconsistencies and misun-
derstandings in requirements. Furthermore, once the require-
ments specification is created, the development process pro-
gresses based on it. However, if defects arise in this upstream
process, they can have a significant impact on downstream
stages. To prevent such issues, it is desirable to identify and
resolve contradictions in functional requirements.

To identify inconsistencies in functional requirements, model
checking is often regarded as a useful tool. Furthermore, it
is anticipated that using NLP technology to efficiently create
formal specifications for a system will reduce the cost of per-
forming model checking. Formal specifications need to be
prepared in advance for model checking, and methods have
been proposed to efficiently create these specifications from
requirements documents written in natural language [2–4].

Among the requirements documents, functional require-
ments are particularly useful for creating formal specifica-
tions related to behavior. Therefore, if NLP technology can
be employed to automatically extract information from func-
tional requirements, it could reduce the cost of creating behavior-
related formal specifications. Amidst the growing attention to
the application of NLP in software development, there is a
shortage of appropriate training corpora for deep learning in
requirements engineering [5]. It is crucial for information ex-
traction to be applicable to general language patterns without
incurring the cost of domain adaptation, considering the di-
verse range of requirement specification documents created
across various fields [6].

However, research into extracting information from func-
tional requirements for creating formal specifications is still
underdeveloped, and information extraction from Japanese
lags behind that from English. One reason is that it is chal-
lenging to precisely define whether the events and states in-
cluded in functional requirements correspond to Precondi-
tions, Actions, or Resulting State. Even if a precise defini-
tion were established, it would require specialized knowledge
from the information extraction operators, increasing their
workload.

In this study, we developed information extraction rules
that consider both syntactic structure and semantics to ex-
tract Preconditions and either Actions or Resulting State from
Japanese functional requirements. Additionally, we imple-
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mented an automatic rule generation process to enable in-
formation extraction without requiring specialized knowledge
from users. Although this paper focuses on Japanese, it em-
ploys NLP techniques that are also applicable to English, al-
lowing for the possibility of extending the approach to En-
glish as well.

We created 186 binary relations for the events and states
extracted from 46 functional requirements of the Wadai-Futto
pot Ver. 7 [7], which is used as a benchmark for Japanese re-
quirements documents. We annotated these relations to spec-
ify which of the pairs correspond to Preconditions, Actions,
or Resulting State, such as Preconditions—Actions or Pre-
conditions—Resulting State. As reported in [6], the major-
ity of functional requirements are contained within a single
sentence. Therefore, in the initial stages of our methodol-
ogy, we excluded functional requirements that span multiple
sentences. We reported descriptive statistics on the generated
extraction rules and then compared the experimental results
between extraction solely based on the rules and application
of a filter using similarity of binary relationships after apply-
ing the rules.

The structure of the following sections is as follows. Sec-
tion 2 provides a concrete example of how model checking
can be used to efficiently correct erroneous functional require-
ments. The formal specifications used in model checking are
created by leveraging the events, states, Preconditions, Ac-
tions, and Resulting State defined by the functional require-
ments. This demonstrates how these elements can be utilized
as components of the functional requirements. Section 3 will
summarize the main research on efficient ideas for creating
formal specifications, elements extracted from functional re-
quirements, and deep learning-based and rule-based extrac-
tion methods. Next, Section 4 outlines the procedure for ex-
tracting events and states through syntactic and semantic anal-
ysis. The method for identifying the relationship between the
two extracted events/states is explained in Section 5.1. Ad-
ditionally, Section 5.2 describes how the extraction rules can
be automatically generated with minimal annotation by the
workers. In Section 6, we will report statistics on the extrac-
tion rules created based on this method. We will then describe
the experimental results comparing extraction solely based on
the rules with those after applying a filter. Finally, in Section
7, we will summarize this study and discuss future prospects.

2 DETECTING INCONSISTENCIES USING
MODEL CHECKING

In software and system development, it is not uncommon
for functional requirements written in documents to contain
errors. Especially when requirements are written in natural
language, there is a possibility that they may include writ-
ing mistakes. If such errors go undetected during the de-
sign phase and the system implementation proceeds, they can
later become serious issues. This research presents a method
for identifying errors in functional requirements using Model
Checking. Model Checking is a technique that formally de-
scribes the behavior of a system and automatically detects de-
sign errors through verification using logical formulas. In this

study, we use PAT (Process Analysis Toolkit) [8]1 for Model 
Checking. By using PAT, it is possible to describe the system 
behavior as a formal model and perform verification based on 
formulas. This section demonstrates how errors in functional 
requirements can be identified by applying Model Checking 
with PAT, using specific erroneous requirements as examples.

2.1 CSP Model
To illustrate an example of applying Model Checking, let 

us consider the following functional requirements documented 
for a simple button-operated door model:

• The door remains closed while the button is pressed.

• The door remains open when the button is not pressed.

These descriptions contain an error. Normally, when the
button is pressed, the door is expected to open, and when not
pressed, the door is expected to close. However, the specifica-
tions above describe a contradictory behavior, where the door
remains closed when the button is pressed.

The correct specification should be as follows:

• The door remains open while the button is pressed.

• The door remains closed when the button is not pressed.

To model this erroneous functional requirement, we use
CSP (Communicating Sequential Processes)[9, 10]. CSP is a
formal method for modeling system behavior, which is adopted
in PAT.

In CSP, an “event” refers to a basic action that constitutes
the behavior of the system. For example the following four
events can be defined:

• press: The event of pressing the button.

• release: The event of releasing the button.

• close: The event of the door closing.

• open: The event of the door opening.

These events are treated as instantaneous or atomic. It is
possible to treat pressing and releasing the button as a single
event, but since we should focus on each action separately,
we will not do so. On the other hand, while it is possible to
divide the moment the door starts to open and the moment it
finishes opening, these moments are not the focus, so we treat
them as a single event.

In CSP, we focus on the order in which events occur, with-
out directly considering causal relationships. For instance,
whether the press action is done by a person or by a machine
is not considered; it is simply treated as an event.

Additionally, there are three important concepts in CSP no-
tation concerning processes:

• Prefix: x → P means that event x occurs first, fol-
lowed by the execution of process P . This is a right-
associative operation.

1A system that integrates model editing, simulation, and model checking
functionality.
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• Recursion: P = x → y → P means that after event
x occurs, event y will occur, and then the process will
return to P . In other words, when x occurs, y occurs.

• General Choice: P □ Q means that the environment
will choose whether to execute P or Q as the first event.
If both P and Q can occur, it becomes nondeterminis-
tic, which is why we start with events like press and
release, which cannot occur simultaneously.

To define the two states of the button, we have:

• PRESSED: The button is in the pressed state.

• RELEASED: The button is in the released state.

These are defined as CSP patterns as follows:

PRESSED = release → open → RELEASED

RELEASED = press → close → PRESSED

Based on these definitions, the entire behavior of the button
can be modeled as:

BUTTON = (press → close → PRESSED)

□ (release → open → RELEASED)

The CSP model using PAT is shown in Fig. 1. Furthermore,
Fig. 2 shows the constraint graph generated from Fig. 1.
Visualizing the model is an important technique for efficiently
identifying and correcting errors.

In this way, by using CSP, we can formally describe the
system’s behavior. To assist in the creation of this CSP model,
it is useful to extract the Preconditions, Actions, and Resulting
State related to the behavior of the button from the sentences.
Using states and events, “The door remains closed while the
button is pressed” can be broken down as follows:

• Preconditions: press

• Actions: close

• Resulting State: PRESSED

“The door remains open when the button is not pressed” can
be broken down as follows:

• Preconditions: release

• Actions: open

• Resulting State: RELEASED

It can be seen that these correspond to the CSP model of the
button. In general, not all elements are present in the sen-
tences, so some completion is required. However, this study
does not address the completion process. As will be discussed
in Section 6, the distinction between Actions and Resulting
State is not made, and the focus is on extracting Precondi-
tions and either Actions or Resulting State.

2.2 Property Expression and Model Checking

When performing model checking, not only the model but
also a verification formula is required. A verification formula
defines the conditions to check whether the system behaves
as expected. Based on the correct behavior of the button, we
can create a verification formula.

The verification formula describes the expected behavior
where the door opens while the button is pressed. This prop-
erty is expressed using Linear Temporal Logic (LTL) as fol-
lows:

#assert BUTTON |= G(press → X open);

This is a sample code for model checking in PAT, where G
(globally) indicates that the specified condition must always
hold, and X (next) means that the condition must be true in
the next state. This formula states that whenever the button is
pressed, the door should be open in the next state. However, in
the incorrect model shown in Fig. 1, this verification formula
does not hold.

As a result of model checking, PAT determines that this
verification formula is invalid and visually presents a coun-
terexample, as shown in Fig. 3. In the counterexample, press-
ing the button leads to the door closing, which contradicts the
expected behavior described by the verification formula.

To resolve this contradiction, the functional requirements
related to the “closed” and “open” actions need to be swapped.
Through this process, incorrect descriptions become clearly
evident, making their correction straightforward. Model check-
ing allows us to identify and correct inconsistencies present in
the text.

3 RELATED WORK

While functional requirements are commonly described in
natural language, the inherent noise and ambiguity of natural
language can make analysis challenging. To circumvent this
issue and facilitate the transformation of functional require-
ments into formal specifications, a method involves describ-
ing the requirements in Controlled Natural Language (CNL),
a language with restricted sentence structures [11–13]. The
aim of these studies is to provide a formal foundation for
model-based testing through natural language parsing and au-
tomatic generation of test cases. Since models containing am-
biguity can lead to the creation of incorrect test cases, CNL,
which specifies a single interpretation, plays a crucial role.
Those applying extraction rules, as seen in [12], typically
work with syntax trees. The extracted elements are orga-
nized into frame-based semantic representations, which are
then mapped to internal formal models. The effectiveness of
a small set of rule-based extraction rules is attributed to the
restricted sentence structures in CNL.

On the other hand, describing functional requirements in
natural language offers the advantage of high expressiveness.
While CNL may require extensions to handle new expres-
sions, natural language inherently does not. However, a draw-
back arises in the increased complexity of extraction rules

International Journal of Informatics Society, VOL.17, NO.1 (2025) 25-35 27



BUTTON = (press → close → PRESSED) □ (release → open → RELEASED);

PRESSED = (release → open → RELEASED);

RELEASED = (press → close → PRESSED);

Figure 1: A sample code for modeling a button function to open and close a door on a PAT using CSP.
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Figure 2: The constraint graph automatically generated from
the CSP in Fig. 1.
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Figure 3: The counterexample output from conducting model
checking.

compared to CNL when extracting elements from sentences.
In [3], examples of extraction rules targeting Japanese sen-
tences are provided. Extraction rules are applied when spe-
cific syntactic structures within the sentence are identified.
The information to be extracted consists of condition clauses
and action clauses necessary for creating intermediate mod-
els. In [4], a wider range of sentence structures is addressed
by increasing the patterns of syntactic structures, allowing for
the extraction of both condition and action clauses. Both [4]
and [14] adopt a bottom-up syntax parsing using the algo-
rithm based on Context-Free Grammar (CFG), similar to pre-
vious studies. They utilize syntactic parsing rules and de-
pendency parsing results to determine syntactic structure pat-
terns. A noted challenge is the increased complexity of syn-
tactic parsing rules.

Research focusing on the detection and extraction of causal
relations in the field of requirements engineering [5, 6, 15]
considers functional requirements as a type of causal rela-
tion. They have analyzed a large dataset of 14,983 sentences
from requirements specifications to investigate the frequency,

forms, and complexity of causal relations, revealing that ap-
proximately 28% of the sentences contain causal information.
Additionally, they conducted a case study exploring the cor-
relation between the occurrence of causal relations and the
requirements lifecycle, demonstrating the positive impact of
detecting causal relations on the requirements process. Ad-
ditionally, [15] indicates that it is insufficient to identify key
phrases that signify causal relations solely based on the vo-
cabulary within a sentence.

4 EXTRACTION OF EVENTS AND STATES

Here is the process for extracting events and states described
in the functional requirements document, using a uniform method
without distinguishing between events and states. First, as
illustrated in Fig. 4, the procedure involves converting sen-
tences into a tree structure that considers both syntactic and
semantic structures through syntactic parsing, semantic pars-
ing, and tree generation. Following this, we identify nodes
within the tree structure that represent events or states, and ex-
tract information from the subtrees with these nodes as their
roots.

For grammatical analysis, we adopt Combinatory Catego-
rial Grammar (CCG). One advantage of using CCG is its abil-
ity to perform syntactic and semantic parsing simultaneously.
In CCG parsing, each word or phrase is assigned a category,
and these categories combine according to grammatical rules
to determine the overall structure of the sentence. In semantic
analysis, each category corresponds to a semantic representa-
tion, which is combined according to the syntactic rules. This
approach allows for the semantic linking of multiple lexical
items that constitute events or states.

For syntactic parsing with CCG, we utilize depccg2 [16]
and select janome3 as the Japanese morphological analyzer
within the tool. This parser outputs CCG derivation trees
based on the Japanese CCGBank [17].

In semantic parsing, the process of outputting a logical for-
mula from CCG derivation trees based on semantic templates
and lexical items follows the ccg2lambda4 [18, 19] frame-
work. First, meanings are assigned to all leaf nodes of the
CCG derivation tree. This assignment is processed based on
the following semantic templates and lexical items:

• Semantic templates that have matching conditions for
syntactic features and syntactic categories.

• Lexical items that have matching conditions not only
for syntactic features and syntactic categories but also

1https://github.com/masashi-y/depccg
2https://github.com/mocobeta/janome
3https://github.com/mynlp/ccg2lambda
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Figure 4: The procedure involves converting sentences into a tree structure that considers both syntactic and semantic structures

for outputs of morphological analysis such as surface
forms, base forms, and part-of-speech tags.

The method for constructing these is followed as described
in [19, 20]. Next, semantic composition rules are applied top-
down from the leaf nodes, calculating the meanings assigned
to the remaining nodes. When no further rules can be applied,
the final calculated meaning is outputted.

The logical formulas output by the proposed system in-
clude functions called constructors, which are used to create
instances of data types. These constructors define how data
types are structured and assign specific values to them. The
proposed data types are Treenp, which represents the structure
of noun phrases, and Trees, which represents the structure of
sentences. Mutually inductive type declarations and construc-
tor definitions are implemented in Coq [21] as follows:

Parameter Entity : Type.

Parameter Event : Type.

Parameter Gluenp : Type.

Parameter Glues : Type.

Parameter Tense : Type.

Parameter Aspect : Type.

Inductive Treenp : Type :=

|Nilnp : Treenp
|En : Entity → Treenp

|Np : Treenp → list Gluenp → Treenp → Treenp

|Adn : Trees → Treenp → Treenp

with Trees : Type :=

|Ev : Treenp → Treenp → Treenp → Treenp

→ list Event → list Aspect → list Tense → Trees

|Advnp : Treenp → list Glues → Trees → Trees

|Advs : Trees → list Glues → Trees → Trees

|Hyp : Trees → list Glues → Trees → Trees.

Parameter Closure : Treest → Prop.

The explanations for each are given below:

• Type Entity represents nouns.

• Type Event represents actions or states expressed by
verbs.

• Type Gluenp represents particles used to connect noun
phrases.

• Type Glues represents conjunctions or particles used to
connect sentences or clauses.

• Type Tense represents the syntactic tense of verbs.

• Type Aspect is a syntactic type used to represent the
nature or progress of actions or states as expressed by
the verb.

• Constant Nilnp represents a non-existent noun phrase
when a verb is not associated with nominative, accusative,
or dative cases.

• Constructor En applies to nouns.

• Constructor Np applies to noun phrases.

• Constructor Adn applies when modifying nouns.

• Constructor Ev generates a term representing an event
consisting of a single verb. It takes as arguments terms
of type Treenp representing noun phrases marked as
nominative, accusative, and dative cases. The fourth
argument is another term of type Treenp representing
complements linked by a copula.

• Constructor Advnp applies in various contexts, such
as when a noun phrase is used adverbially to modify
the entire sentence or is inserted in a specific position
within the sentence.

• Constructor Advs is used to introduce adverbial ele-
ments that modify the entire sentence.

• Constructor Hyp applies in conditional sentences.
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• Function Closure takes instances of type Treenp or Trees
as arguments and returns them as propositions. The
purpose of this function is solely to enable the use of
Coq’s proof assistance capabilities by converting data
types into propositions.

For instances of constant list types, the function used to
append a constant to a list is defined as follows:

Fixpoint append A : Type (l l’: list A) : list A :=
match l with
|nil => l’
|cons a l => cons a (append l l’)
end.

For example, consider an instance of the list Event type,
which is an argument of the constructor Ev:

(append (append (cons ロック (cons 解除
nil))(consし nil))(append nil nil))

In this instance, “ロック”(lock), “解除”(release), and “す
る”(do) are constants of the Event type. The process of ap-
pending these constants is not necessarily done by adding
them one by one to an empty list nil. The order of appending
is influenced by the sequence in which syntactic rules are ap-
plied in the CCG derivation tree. However, the order of con-
catenation does not necessarily affect the meaning. Instead of
deriving the meaning of the event compositionally from each
individual constant’s meaning, it is more natural to assign
meaning to the whole phrase “ロック解除する”(unlock).
Therefore, by using Coq’s proof assistance to execute unfold
append and simplify the concatenation of lists, such as:

(consロック (cons解除 (consし nil)))

This shows that lists with different concatenation orders can
have the same meaning. Besides list Event, other cases where
the order of concatenation does not affect meaning include
list Gluenp for noun phrases, list Aspect and list Tense for
auxiliaries, and list Glues for conjunctions.

After simplifying the list, instances of the data types are
converted into tree structures. Nodes in the tree are repre-
sented as constructors, with the arguments of these construc-
tors serving as child nodes. The positions of the child nodes
correspond to the positions of the arguments.

Once a tree structure like the one shown in Fig. 5 is ob-
tained, subtrees representing events or states are extracted.
Since the constructor Ev represents the minimal event, we
extract information from subtrees with Ev as the root node.
For example, by listing all the leaf nodes within the subtree,
we can obtain a textual representation of the event. However,
since Ev always includes a predicate, it is not possible to ex-
tract event nouns using the same method. Therefore, event
nouns are extracted manually.

5 RULE GENERATION

5.1 Pattern Matching for Binary Relations

We will provide a detailed explanation of how to iden-
tify the relationship between two events or states using paths
within a tree structure. This method involves identifying the
shortest path from a source node (starting point) to a target
node (endpoint) within the tree structure and mapping this
path to the labels of a binary relation. The specific steps of
this method are as follows:

1. The identification and setup of nodes involves first
identifying the nodes within the Treenp or Trees tree
structure that represent events or states, and then setting
the source node (starting point) and target node (end-
point) for analysis. In Fig. 5, we identify three event
nodes:

• Ev1 is Ev that represents “ロックされていた
ら”(if it is locked).

• Ev2 is Ev represents “ロック解除し”(unlock it).

• Ev3 is Ev represents “ロックランプを消灯す
る”(turn off the lock indicator light).

Based on these nodes, we consider the following three
binary relations, where the left node is the source and
the right node is the target:

Ev1 → Ev2, Ev2 → Ev3, Ev1 → Ev3

2. The identification of the Lowest Common Ancestor
is crucial for finding the shortest path from the source
node to the target node. Specifically, this requires iden-
tifying the Lowest Common Ancestor (LCA) of both
nodes, which is the most distant ancestor node from
the root that is common to both the source and target
nodes. This node will serve as the reference point for
determining the path. For the three relations in Fig. 5,
the LCA is identified as follows:

• The LCA for Ev1 and Ev2 is Hyp.

• The LCA for Ev2 and Ev3 is Advs.

• The LCA for Ev1 and Ev3 is Advs.

3. The construction of the shortest path can be achieved
once the LCA is identified, by combining the path from
the source node to the LCA and the path from the LCA
to the target node. Additionally, tregex patterns are
used to represent the shortest paths within the tree struc-
ture. Tregex [22] is a pattern language designed for
efficiently performing pattern matching on tree struc-
tures. Each pattern specifies dominance or sibling rela-
tionships between nodes and is used to identify specific
patterns within a tree structure. Basic node relation-
ships supported by tregex patterns include:

• A <i B: Node B is the i-th child of node A
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Figure 5: A Trees type tree structure of “ロックされていたらロック解除し、ロックランプを消灯する”(If it is locked,
unlock it and turn off the lock indicator light).

• A >i B: Node A is the i-th child of node B

By combining these patterns, it is possible to gain a de-
tailed understanding of the relationships between nodes
within the tree structure and to identify relationships us-
ing paths. For the relations shown in Fig. 5, the shortest
paths are as follows:

• The path from Ev1 to Ev2 is represented by the
tregex pattern (Ev1 >1 (Hyp <3 Ev2)).

• The path from Ev2 to Ev3 is represented by the
tregex pattern (Ev2 >3 (Hyp >1 (Advs <3 Ev3))).

• The path from Ev1 to Ev3 is represented by the
tregex pattern (Ev1 >1 (Hyp >1 (Advs <3 Ev3))).

4. The mapping to binary relation labels involves map-
ping the obtained shortest path to the labels of a binary
relation through annotations. For the paths shown in
Fig. 5, the relations are labeled as follows:

• Ev1 → Ev2: Preconditions—Actions

• Ev2 → Ev3: Actions—Actions

• Ev1 → Ev3: Preconditions—Actions

The rule consists of the relationship between nodes,
including surrounding information such as the source
node, target node, and the shortest path represented by
tregex patterns, with labels assigned to the relationship.
When applying the rule to automatically assign labels,
the condition is that the shortest path between nodes
must match.

5.2 Annotations
To automatically extract information from functional re-

quirements, it is necessary to prepare extraction rules in ad-
vance. We describe a method for creating effective extraction 
rules with minimal annotation, even for users without exper-
tise in syntactic or semantic analysis. The system performs 
the following steps automatically:

1. The syntactic and semantic parsing generates a tree
structure of type Treenp or Trees from the input data.

2. The extraction of event and state nodes involves iden-
tifying and extracting nodes that correspond to events
or states from the tree structure.

3. The identification of the shortest path determines the
shortest path between the source node and the target
node.

Following these steps, the user performs the following task:

• The manual annotation involves the user manually
annotating the relationships between the source and tar-
get node pairs.

For this task, a simple tool is used that allows users to visually
verify the output of common processing. The tool clearly in-
dicates the source and target nodes for each data item and pro-
vides visual support, allowing the user to determine whether
the items correspond to functional requirements. This method
makes the annotation process efficient. After annotation, the
assigned labels are mapped to tregex patterns, and extraction
rules are accumulated accordingly.

In this way, users are only involved in the annotation phase
and do not need specialized knowledge, facilitating the auto-
matic generation of extraction rules.

6 METHOD APPLICATION AND
RELATION RESULTS

We report the results of applying this method to practical 
data, evaluating the extraction of events and states, annota-
tion, and identification of binary relations.

6.1 Sentence Unification Process
We conducted experiments using 46 functional requirements 

related to the behavior of an electric kettle, as described in 
Wadai-Futto pot Ver. 7 [7]. Each functional requirement is 
written as a single sentence that represents a specification. 
However, if the original text contained bulleted lists, we re-
placed them with variables and converted the entire content 
into a single sentence.

We made this modification because structured sentences or 
sentences with coordinate conjunctions tend to reduce syn-
tactic parsing accuracy. Since our research does not focus 
on improving syntactic parsing accuracy, we unified all sen-
tences to avoid these issues. For example, if the original text 
had a bulleted list like this:

以下のいずれかの時、ロック/ロック解除で
きない。
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• 給湯中

• 蓋センサoff

Lock/unlock is disabled in the following cases:

• During water dispensing

• When the lid sensor is off

We converted it into a single sentence as follows:

aのいずれかの時、bできない。

• a: 給湯中,蓋センサoff

• b: ロック/ロック解除

b is disabled when condition a occurs.

• a: During water dispensing, when the lid
sensor is off

• b: Lock/unlock

Using this unification rule, we converted all 46 sentences and 
then extracted events and states.

6.2 Event and State Extraction Results

We conducted experiments on the extraction of events and
states. From these sentences, 130 events/states were extracted.
Here, we present some notable results of the extraction. In the
sentence:

[アイドル中]stateに[蓋センサonとなったら]event
[沸騰行為に遷移する]event

[While idle]state [When the lid sensor is turned
on]event [transition to boiling]event

was successfully extracted with most of the vocabulary in the
sentence being identified as events or states. On the other
hand, in the sentence:

[カルキ抜きの加熱を終えたら]event[沸騰行
為を中止し]event保温行為に[遷る]event

[When dechlorination heating is finished]event [stop
boiling]event and switch to warming [transition]event

the expected extraction was “保温行為に還る”(switch to
warming transition), but some information was missing.

When counting the number of missing characters, it was
found that, as shown in Table 1, there was an average of 6.49
characters missing, which corresponds to an average of 0.17
in terms of the proportion of the text, with a maximum of
0.61. Missing characters are generally not problematic when
they are conjunctions. However, if the missing characters are
nouns, it indicates that important information related to events
or states in the text is absent, which could potentially cause
issues.

Table 1: Descriptive Statistics of Missing Character Counts

Metric Value

Mean 6.49
Standard Deviation 6.94

Table 2: Distribution of labels for the 186 binary relations

Pair Frequency

Preconditions—Preconditions 26
Preconditions—Actions 92
Preconditions—Resulting State 14
Actions—Actions 45
Actions—Resulting State 2
Resulting State—Resulting State 3
Other 4

Total 186

6.3 Labeling of Binary Relations
From the extracted events and states, 186 binary relations 

were generated, and we conducted annotation on these rela-
tions. The distribution of the labels is shown in Table 2.

By prioritizing the classification of frequently occurring la-
bels, we ensure the utility of the proposed system for the most 
common cases. Therefore, we retrieve Preconditions, Ac-
tions, and Resulting State from Preconditions—Actions and 
Preconditions—Resulting State, without distinguishing between 
the categories of Actions and Resulting State. The validation 
method is explained as follows. The data is divided into 69 
test data and 117 training data. Tregex patterns created from 
the training data, combined with annotated labels, are used 
to accumulate extraction rules. Then, tregex patterns gener-
ated from the test data are compared against these extraction 
rules to determine their applicability. Specifically, based on 
the label distribution shown in Table 2, the label “CAUSE” is 
reassigned to the pairs Preconditions—Actions and Precon-
ditions—Resulting State, while the label “OTHER” is reas-
signed to all other pairs. The evaluation focuses on accurately 
classifying these binary labels. Test data are prepared accord-
ing to the distribution shown in Table 3, and the remaining 
data are used as training data.

To avoid bias, careful attention was given to the data al-
location. The functional requirements in [7] are divided into

Table 3: Distribution of labels for the 186 binary relations

Pair Label test data

Preconditions—Preconditions OTHER 14
Preconditions—Actions CAUSE 29
Preconditions—Resulting State CAUSE 12
Actions—Actions OTHER 6
Actions—Resulting State OTHER 2
Resulting State—Resulting State OTHER 3
Other OTHER 3

Total 69
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Table 4: Comparison of Accuracy Metrics for Different Rule
Application Methods.

F1-score precision recall

rule only 0.53 0.70 0.57
rule + TED 0.80 0.81 0.80

sections by functionality, with sentences within each section 
tending to have similar syntax. Allocating sentences with 
similar syntax from the same section to both the test and train-
ing datasets could lead to easy predictions using similar rules 
from the training data, thereby not accurately reflecting the 
system’s performance on truly unknown data. Therefore, test 
data were created from sections different from those used for 
training.

6.4 Evaluation of Rule Application Methods

The rules generated from the training data total 92, which
means that approximately 80% of the binary relations in the
training data were used to create these rules. The generated
rules were applied to the test data using two different meth-
ods, each with distinct characteristics:

1. Applying rules only when paths are identical ensures
that when paths are the same, the structure of the tar-
get data matches exactly, making the application of the
rules expected to be accurate. This method maintains
structural consistency in the data and helps avoid incor-
rect applications.

2. Applying the rule with the Tree Edit Distance (TED)
of paths quantitatively indicates how different two pat-
terns are. By utilizing the minimum TED for the rule
application, the transformation that is closest to the orig-
inal data is achieved, resulting in a more natural appli-
cation. The APTED algorithm [23] is used to calculate
the TED of paths.

The results of applying each method are shown in Table 4.
It was found that, even without considering the meaning

of vocabulary, 80% of the relations between two events/states
included in functional requirements could be identified based
solely on structure. Allowing the rules to apply to similar
paths using the TED, rather than applying them strictly, sig-
nificantly improved accuracy. The maximum F1-score is around
80% at the TED threshold of 7. According to Fig. 6, us-
ing only precondition-action/resulting state labels without the
OTHER labels causes the F1-score to drop to about 50%. This
shows that using multiple labels is more effective than using
a single label.

An example that contributed to the improvement in accu-
racy is provided. A binary relation labeled as Preconditions—
Actions/Resulting State was generated from the sentence:

ロック中に[このボタンを]source100msec以上
[押す]sourceとロックは解除され、[ロックラ
ンプを消灯する]target

2 4 6 8 10

0.5

0.6

0.7

0.8

TED threshold

F1
-s

co
re

Precondition-Action/State Labels
Precondition-Action/State and OTHER Labels

Figure 6: Changes in F1-score with respect to the threshold.

While locked, if [this button]source is [pressed]source
for more than 100 msec, the lock will be released
and [turn off the lock indicator light]target

The Trees type tree structure generated from this sentence is
shown in Fig. 7. The red nodes in the figure are located on
the path from the source node with the Ev label to the target
event. Representing the path with a tregex pattern yields:

(Ev >3 (Advnp >3 (Advnp >1 (Hyp >1 (Advs <3

Ev))))

Although this exact pattern was not included among the cre-
ated extraction rules, a tregex pattern with the minimum TED:

(Ev >3 (Advnp >3 (Advnp >1 (Hyp >1 (Adn >1

(Advnp <3 Ev))))))

was included. This path differs from the path in Fig. 7 only
by the presence of Adn, yet the two paths exhibit very simi-
lar structures when expressed as tregex patterns. This pattern
was created from Fig. 8. Furthermore, this Trees type tree
structure was generated from the sentence:

60min0secのときに、[更にタイマボタンを]source
1回[押される]sourceと、1min0secをセットし
たことに[なる]target

At 60 minutes and 0 seconds, if [the timer button]source
is [pressed]source once more, it [sets]target the timer
to 1 minute and 0 seconds.

This binary relation represents a Preconditions—Actions/Resulting
State and has a syntactic structure similar to the binary rela-
tion in Fig. 7. By considering TED, the rule generated from
Fig. 8 was successfully applied for classification.
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Figure 7: The tree structure generated from one of the test data and the path between the two events that have a Preconditions—
Actions relationship
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Figure 8: The tree structure generated from one of the training data and the path between the two events that have a condition-
action relationship

7 CONCLUSIONS

This study demonstrated the effectiveness of a rule-based
approach using syntactic and semantic analysis to extract func-
tional requirements from Japanese specification documents.
Notably, the method of minimum TED achieved the highest
accuracy, confirming the importance of structural similarity.

Experiments using the functional requirements of Wadai-
Futto pot Ver. 7 showed that the generated rules could accu-
rately identify functional requirements with about 80% preci-
sion. This result indicates that even complex rules can be ef-
fectively applied, supporting the scalability of our approach.

Future work includes extracting functional requirements that
span multiple sentences, improving the accuracy of events/states
extraction, and ensuring that no information is lost from the
sentences.
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