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Abstract - We propose a third-person view (TPV) system
that allows a remote drone operator to easily detect the
surroundings of a drone in a virtual space. However, when the
virtual viewpoint is fixed, obstacles and the drone itself can
cause blind spots, making it difficult for the remote operator
to determine the circumstances in the blind-spot area. To
solve this problem, we aimed to minimize blind spots by
automatically operating a virtual viewpoint and improving
flight safety. We developed an automatic search method for
the virtual viewpoint that minimizes the blind area to capture
the drone. We called this method the Adaptive Virtual
Viewpoint (AVVP) algorithm. In this method, the blind-spot
time is managed in units of 3D grids, and the movement path
of the virtual viewpoint is determined. We improved the
proposed algorithm and evaluated three different algorithms.
The best algorithm gave weight to the angle between the
virtual viewpoints. This algorithm eliminated blind spots and
prevented sudden changes in the direction of virtual
viewpoints.

Keywords: remote operation, drone, blind spot, third-person
view, digital twin

1 INTRODUCTION

In the Japanese logistics industry, the amount of work per
worker is increasing because of the increase in small-lot
deliveries and strict customer delivery-time requirements.
Consequently, the working environment has deteriorated and
created a shortage of manpower [1]. A similar phenomenon
has been observed overseas [2][3]. Specifically , an American
corporation known as Driver Solutions was established to
offer truck driving training for individuals to obtain
commercial driver licenses [4]. In Australia, a platform called
Women in Transport Network was established to increase the
number of female employees [S]. In Japan, measures for
reducing the number of redeliveries include installing home
delivery boxes and improving working conditions, pay, and
welfare benefits. Additionally, much attention is also being
paid to delivery services that use drones.

Drones have been proposed to provide various services [6],
such as delivery, agricultural, disaster relief, and essential
infrastructure monitoring services [7]. Drone delivery
services are expected to play an active role in the last mile.
The last mile is the section from the final logistics base to the

end user. Amazon introduced the Amazon Prime Air drone
delivery service [8]. Various countries are developing
legislation to regulate drone use. In the United States, the
Federal Aviation Administration has approved the
registration of drones on a dedicated website and the
operation of drones flying at altitudes of 400 ft or less [9].
Other countries have made similar progress.

In Japan, the Civil Aeronautics Law was amended in
December 2022 allowing flights beyond visual lines of sight
in populated areas and making drone operations possible in
urban settings [10]. Companies and local governments
collaborate in demonstration experiments for the drone
delivery of pharmaceuticals and lightweight packages and for
flights beyond visual lines of sight. However, complex
building structures and utility poles in urban areas pose
obstacles that complicate drone operations. In 2023, the
number of reported accidents reached 447, of which 89 were
classified as severe incidents [11]. The reported accidents
included contact with power lines and collisions between
buildings and vehicles. Numerous incidents of contact with
other people have been reported, raising the possibility of
similar issues in Japan.

To address this issue, we propose a virtual third-person
view (TPV) system for remotely piloting drones [12].
Through virtual reality (VR) imagery, the system allows users
to determine the spatial relationship between the piloted
drone and the surrounding obstacles. Our research assumed
the presence of a pilot; however, research on autopilot drone
systems is increasing, but accepting the risks of unmanned
drones is difficult [13]. Remote operators of aircraft with
unmanned systems tend to be less willing to accept the risks
of modern drone technology. At the same time, there are
parties involved, such as drone operators, who would take
responsibility in the event of a severe accident [14]. Safe
aviation requires minimizing human error and taking
advantage of human concepts such as flexibility, goal
awareness, and common sense.

As a prerequisite for remote human operation, essential
information must be visual. In this context, virtual systems
can provide satisfactory information. However, in cases
where the virtual viewpoint is fixed, the aircraft itself acts as
a visual hindrance, creating blind spots that may affect hazard
perception. Therefore, for safe remote operation, it is
necessary to make these blind spots observable to remote
operators. In this study, to eliminate blind spots that occur
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when operating a drone, we constructed a virtual viewpoint
search algorithm using 3D grid management in a virtual space
and evaluated the effect of eliminating blind spots by moving
the viewpoint along different courses.

2 RELATED WORK

2.1 Blind Spots Detection Method

Blind spots pose a significant threat to the safe operation of
mobile devices. For example, automated vehicles are unable
to detect hazards in blind spots [15], and fatal construction
accidents have occurred during the operation of heavy
equipment owing to blind spots [16]. If blind spots are
temporary, they can be eliminated immediately; however, if
they persist for a long time and are difficult to recognize,
accidents may occur. This is called the collision course
phenomenon and is considered dangerous in all forms of
mobility, including cars, airplanes, and ships [17][18].

Figure 1 shows the blind-spot detection methods. Blind-spot
detection technology is broadly classified into detection using
sensors and visual recognition. For example, ultrasonic
sensors are used to monitor vehicles that cannot be observed
through side mirrors [19]. In their study, potential risks were
defined at three levels, and LEDs corresponding to each risk
were activated based on distance data obtained from
ultrasonic sensors. To prevent accidents between large
vehicles such as trucks and pedestrians hidden by blind spots,
Bluetooth low energy and a received signal strength indicator

were used to warn both drivers and pedestrians of danger [20].

In their study, attachable LED lights and vibration motors
were used to warn drivers and pedestrians of each other’s
presence. This method for detecting blind spots relies on the
use of sensors which may malfunction; therefore, the visual
recognition of blind-spot areas is also important.

The two visualization methods are drones and virtual space
utilization. Inoue et al. developed a remote drone operation
system, BirdViewAR, as a spatial recognition assistant for
remote pilots during drone operation [21]. BirdViewAR
reveals the surroundings of a drone by controlling a
secondary tracking drone in response to the speed and
direction of the maneuvered drone. The tracking drone
provides a TPV to assist the remote pilot in controlling the
primary drone. The screen provided has an additional
augmented reality (AR) overlay to enhance the spatial
awareness of the piloted drone and its surroundings. In their
study, three patterns were evaluated: first-person view (FPV),
BirdView without AR, and BirdViewAR. They found that
BirdViewAR performed better in both spatial recognition and
maneuvering performance. However, issues remain in
ensuring the safety of tracking drones that provide TPV
images. In a similar study, Temma et al. used a tracking drone
to provide a TPV to enhance the pilot's understanding of the
drone's surroundings but described safety issues with the
tracking drone [22]. The use of drones for visualization does
not address safety issues; therefore, a method that utilizes
virtual space is proposed.

Takeuchi et al. used pre-mapped three-dimensional spatial
information to make obstacles that cause blind spots
transparent for narrow-space exploration within blind-spot
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Figure 1: Blind- spot detection method

areas [23]. They proposed two methods for recognizing
obstacles around a drone at a transparent destination and
compared them with conventional methods. In their
experiment, subjects wore headsets and pilot drones behind
walls using an AR-based TPV. The AR-based method
improved the drone maneuverability compared with that of
conventional methods. However, if obstacles that cause blind
spots are displayed transparently, the operator may have
difficulty accurately perceiving the distance between the
drone and the obstacle. In this case, the operator must change
their position and check the spatial relationship from a
different angle.

2.2 Automatic Viewpoint Movement

Moving the viewpoint to verify the relationship between the
drone and obstacles from different angles can increase the
operator's workload. Therefore, technologies that can
automatically move viewpoints are required. For example,
autonomous cameras that adapt to a surgeon's movements
using machine learning [24] and methods that present a
viewpoint adapted to the operator to assist in the remote
operation of a robot [25] are available. These methods are
suitable for presenting viewpoints in environments in which
the operator's work pattern is fixed. However, they are not
adaptable to the high degrees of freedom of drone flights.
Thomason et al. automatically detected dangerous obstacles
and made the pilot aware of the positional relationship
between a drone and obstacle by moving the viewpoint in a
VR environment [26]. In their study, when the virtual drone
detected an obstacle, the camera position changed according
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Figure 2: Automatic adjustment for virtual viewpoint
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to the situation. For example, if there is no danger, the virtual
viewpoint follows the drone and is positioned 3 m behind it
(Fig. 2(a)). On the other hand, if the drone approaches an
obstacle, the virtual viewpoint moves between the drone and
the obstacle to clearly show the positional relationship
between the drone and the obstacle (Fig. 2(b)).

The subjects wore headsets and flew a drone using only the
VR video to compare the effectiveness of the FPV and TPV
viewpoints. The results demonstrated the effectiveness of
automatic viewpoint movement during maneuvering as it
reduced the number of obstacle collisions compared to that of
FPV or TPV. However, although this method was designed
for obstacle avoidance, obstacles that are always present are
likely to be handled safely based on the pilot's experience.
However, there is a risk that the system may misjudge sudden
obstacles. Therefore, relying on machines to judge obstacles
is not an appropriate solution.

As described above, there have been many related studies
on the use of virtual spaces for blind-spot detection and
automatic viewpoint adjustment. However, even if temporary
blind spots can be eliminated, some blind spots remain
difficult to recognize. For example, the collision course
phenomenon can be difficult to notice, as it creates a situation
where an approaching object remains unnoticed for a long
time.

3 PROPOSAL METHOD

3.1 Architecture for Automatic Viewpoint
Movement

In our proposal to eliminate blind spots, we propose the
Adaptive Virtual Viewpoint (AVVP) algorithm, an algorithm
that detects areas where blind spots appear in the virtual space
and finds the viewpoint that minimizes the duration of the
blind spot. Specifically, the space is divided into 3D grids of
a defined size, and the durations of the blind spots are
managed on a grid-by-grid basis. The sum of the durations
across all grids is used as the blind-spot cost, and the virtual
viewpoint with the lowest blind-spot cost is chosen as the next
virtual viewpoint. However, because a large viewpoint shift
can disturb the pilot's situational awareness, we aim to select
a virtual viewpoint with both a low blind-spot cost and
minimal shift to prevent such disturbances.

Figure 3 shows the process flow from virtual space
generation to viewpoint shift. Information on blind-spot costs
was managed through the grid-based management of blind
spots, and blind-spot detection was performed based on this
information. To find a new virtual viewpoint, the system
searches for viewpoint candidates for the next position that
can most effectively reduce accumulated blind-spot costs.
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Figure 3: Architecture for AVVP algorithm
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Table 1: Management table information

Management Information Type Description
Position Tuple Grid Coordinate
Building Bool Presence of

Building
Drone Bool Presence of
Drone
BlindParameter Float Elapsed Time of
Blind Spot
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Figure 4: Image of blind-spot detection

3.2 3D Grid Partitioning

3D grids were generated by dividing the progenerated 3D
virtual space to manage the blind spots. Each grid generates
a table that can manage a “BlindParameter” called the blind-
spot cost, along with the location information of the
corresponding building, the presence or absence of a virtual
viewpoint or drone (Table 1). The position coordinates stored
in the table are calculated relative to the absolute coordinates
of the virtual space. The grid size can be freely set; however,
the grid size must be set appropriately because it affects the
amount of viewpoint movement, and the time required to
search for blind spots.

Let i be the total set of divided grids and j be the area where
the virtual viewpoint can detect blind spots. Area j, referred
to as the view area, is defined as a region centered on the
drone's coordinates, with a predetermined size. Additionally,
a set k of grids exists that are judged as blind spots in the
viewing area. The relation between the total set i, the view
area j, and the blind-spot set k is expressed by (1).

kejei €Y
33 Blind-Spot Detection

In this study, we detected blind spots caused by the drone
hindering visibility in virtual space. The drone is represented
as a sphere with radius r centered at the drone's position D,
and blind-spot detection is performed within the view area j.

As shown in Fig. 4, the grids inside the straight lines PQ,
and PQ,, which are the boundary lines passing through the
virtual viewpoint P and the surface coordinates of the spheres
Q, and Q,, were determined to be blind spots. Here, for the
purpose of eliminating all hazards, grids touching the
boundary lines are also classified as blind spots. When the
viewpoint was closer to the drone, the blind-spot area



18 R. Akamine et al. / Automatic Viewpoint System to Eliminate Blind Spots in Remote Drone Operation Using Virtual Third-Person View

increased, whereas when the distance was greater, the blind-
spot area decreased.

Grids identified as blind spots have an increased blind-spot
cost value in the grid management table. The cost value was
weighted using a weight w(Distance) assigned based on the
distance between the virtual viewpoint and each grid. To
prioritize the elimination of blind spots in grids closer to the
virtual viewpoint, a higher weight was assigned to these grids.
As the distance from the virtual viewpoint increased, the
priority for blind-spot elimination decreased.

Additionally, let a; represent the total sum of grids within
the view area j that were identified as blind spots. This value
is defined as

A = Zyejmy(x) - W(Distance(P, x)) (2

where w(Distance(P, x)) represents the weight based on the
distance from viewpoint P to grid x.

The calculated total number of blind-spot determinations,
ay, is considered the blind-spot cost and is used to derive a
new virtual viewpoint position aimed at resolving the existing
blind spots.

The function m,, indicates whether grid x belongs to the set
of blind spots k, and it is defined as follows.

(1 ifxek
m"(x)_{o ifx ¢k )

3.4  Blind-Spot Elimination Algorithm

To reduce the detected blind-spot area, it is necessary to
move the current virtual viewpoint to a new position. Set L is
defined as the set of adjacent grids that include the current
virtual viewpoint, and the new virtual viewpoint is selected
from this set.

From set L, we search for a new virtual viewpoint that can
eliminate the largest number of blind spots. As a search
method, we performed a blind-spot judgment within the new
viewing area j' from the viewpoint candidate P;. Here, the set
of blind spots determined in the viewing area is kP;.

Next, the complement set kP, is obtained by excluding the
blind-spot set kP, from set i of the grids as

kP,=i—kP,l€L 4

Equation (4) shows the part excluded from the viewing area
Jj', that is, the set that is not a blind spot. Next, the common
set between the blind-spot set k at the previous virtual
viewpoint P and the complement set kP, is determined. This
is called Sp, and is defined as

Sp,= kKR 5)

Equation (5) represents the set that was determined to be a
blind spot at the previous virtual viewpoint P but was not
determined to be a blind spot from the new virtual viewpoint.
The total cost of this set is called the blind-spot elimination
cost, C(P;), which is the cost of the blind spot that occurred

at the previous virtual viewpoint P.

The new virtual viewpoint Py, is the one that achieves the
maximum blind-spot elimination cost, maxC (P;). In addition,
maxC (P,)) is evaluated using a cost function.

C(P) = 1Sp, (6)
maxC(P,)) > 10 n (7
Paap = argmaxC(P;) (8)

The variable n in Equation (7) represents the number of
steps taken to explore the new virtual viewpoint Pyg,. A
higher number of steps indicates that the new virtual
viewpoint F,,, moved farther from the previous virtual
viewpoint P. This cost function was designed to prevent
excessive movement.

Finally, if the grids determined to be blind spots at the
previous virtual viewpoint P remained at the new virtual
viewpoint Pggy,, they were used as parameters to determine
the new virtual viewpoint F,,,,,. This process yields the total
blind-spot cost a’,. Additionally, if the time step t is greater
than or equal to 1, the cumulative blind-spot cost X (i, t) is
incremented by this value. Equation (9) is used to calculate
the total blind-spot cost, and Equation (10) is used to calculate
the cumulative blind-spot cost.

a'y = a, —argmaxC(P) 9
Xi,t+1 = Xi,t + a'k, t> 1 (10)

The new virtual viewpoint F,,,, obtained by Equation (8) is

moved from the previous virtual viewpoint P to provide the
pilot with a new virtual viewpoint.

3.5 Viewpoint Movement

The Slerp method was used to ensure a smooth transition of
motion between a new virtual viewpoint and the previous
virtual viewpoint. Slerp utilizes a technique called quaternion,
which efficiently handles rotations in a 3D space to perform
interpolation on the surface of a sphere [27]. This allows for
the creation of a natural and smooth trajectory between the
previous and new virtual viewpoints.

Slerp were used to find new virtual viewpoints and eliminate
blind spots.

4 EVALUATION

4.1 Evaluation Method

To verify the effectiveness of the proposed AVVP algorithm,
we used the prepared scenario to explore new virtual
viewpoints. The viewpoint paths and the blind-spot
elimination rates obtained from three different algorithms
were then evaluated:

(A) proposed virtual viewpoint search AVVP algorithm,

(B) algorithm with an added function to predict the

movement of the drone, and

(C) algorithm with an added function to predict drone

movement and new weighting function.
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Table 2: Parameters used for evaluation

Variable Parameter
Virtual Space Area 50(m)
3D Grid Size 1(m)
View Area Size 20(m)
Radius of a Sphere 0.5(m)
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Figure 5: Path of drone

Parameters such as the size of the view area and 3D grid are
required to search for new virtual viewpoints, and these
details are listed in Table 2. In addition, the weight value
based on the distance between the virtual viewpoint and each
3D grid detected as a blind spot in the algorithm is given by
Equation (11). The values of these parameters were set
intuitively.

1.0 if 0.00 < Distance < 5.00
0.8 if 5.01 < Distance < 6.00
0.6 if 6.01 < Distance <7.00
w(Distance) = f (11)
0.4 if 7.01 < Distance < 8.00
0.2 if 8.01 < Distance < 9.00

\ 0.1 if Distance > 9.00

The three algorithms used for evaluation were evaluated
under the following scenario of a drone path experiencing a
sudden change in the direction as shown in Fig. 5:

+ the same initial position of virtual viewpoint was set for
each algorithm, and
+ the virtual viewpoint field of view was set at 120°.

First, we evaluated using Algorithm (A) as proposed in the

previous section.

4.2 Evaluation of the No-Movement-
Prediction-Algorithm

Figures 6 and 7 show the results of searching for a new
virtual viewpoint using Algorithm (A). Figure 8 shows a
graph of the elimination rate of blind spots for each virtual

viewpoint. Figure 6 shows the movement of the drone and
virtual viewpoint on the XY-plane, and Fig. 7 shows the
movement of the virtual viewpoint in the Z-axis direction
relative to the XY-plane. In this case, the initial position of
the virtual viewpoint was set to one.

From these figures, the blind spots at each point were
eliminated; however, the issue of a new virtual viewpoint path
being searched for sudden changes became apparent.
Although this rapid change contributes to the elimination of
blind spots, it can be a significant burden on the remote
operator and may impair the maneuverability of the drone.
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We installed a drone-movement prediction function to
suppress rapid changes in the virtual viewpoint path. This
prediction function uses the most recent drone movement
data to predict the distance of movement and angle of change
in direction. This is expected to enable the virtual viewpoint
to be searched based on the predicted drone coordinates and
for the virtual viewpoint path to follow the predicted drone
movement direction.

4.3 Evaluation of Algorithms with
Movement Prediction

The results of the drone movement prediction function and
the new virtual viewpoint search are shown in Fig. 9, 10, and
11, and a graph of the elimination rate of blind spots at each
point compared to Algorithm (A) as shown in Fig. 12. In Fig.
9, the numbers with dashed marks indicate the results of the
predicted drone movement. When these results match the
actual movement trajectory of the drone, the prediction is
accurate. Furthermore, Fig. 10 shows the movement of the
drone and virtual viewpoint on the XY-plane, and Fig. 11
shows the movement of the virtual viewpoint along the Z-axis,
relative to the XY-plane. In this case, the initial position of
the virtual viewpoint was set to one.

While movement prediction was successful on a straight
course, it was difficult to predict the movement at points
where sudden changes in direction occurred. It was confirmed
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that the virtual viewpoint was concentrated around Point 4,
where the direction of travel changed suddenly, and the drone
was not being followed. Figure 12 shows only a slight
difference in the elimination rate of the blind spots for
Algorithm (A).

The evaluation results show that the explored virtual
viewpoint paths changed abruptly. To solve this problem, we
set weights for the angles between virtual viewpoints when
the virtual viewpoints moved. This is Algorithm (C). The
weights used in Algorithm (C) are intuitively set weight
values and are shown in Equation (12).

(1.0 if 0 < Angle <10

0.9 if 10 < Angle < 20

0.8 if 20 < Angle < 30

0.7 if 30 < Angle < 40

0.6 if 40 < Angle <50 (12)
0.5 if 50 < Angle < 60

0.4 if 60 < Angle <70

0.3 if 70 < Angle < 80

0.2 if 80 < Angle <90

\ 0.1 if Angle =90

w(Angle) = A

By assigning weights to the angles between the virtual
viewpoints, it is expected that the changes in the virtual
viewpoints will be more suppressed and that sudden
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fluctuations between the virtual viewpoints will be
suppressed.

4.4  Evaluation of Weighted Algorithm

Figures 13 and 14 show the results of the virtual viewpoint
search weighted by the angles between the virtual viewpoints.
Figure 15 shows the percentage of blind spots eliminated at
each point compared with Algorithms (A) and (B). Figure 13
shows the movement of the drone and the virtual viewpoint
on the XY-plane, and Fig. 14 shows the movement of the
virtual viewpoint in the Z-axis direction relative to the XY-
plane. In this case, the initial position of the virtual viewpoint
was set to one.

Consequently, we confirmed that the position of the virtual
viewpoint prevented sudden changes in the virtual viewpoint
path that had occurred up to this point. However, as shown in
Fig. 15, a significant difference in the blind-spot elimination
rate between Algorithms (A) and (B) existed, and in some
cases previously eliminated blind spots were not eliminated.
The blind-spot elimination rate decreased significantly at
Point 8.

These results suggest a tradeoff between preventing sudden
changes in the direction of the virtual viewpoint path and
maximizing the blind-spot elimination rate. Specifically,
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although the path stability can be improved by restricting the
angle between virtual viewpoints, there is a possibility that
the selection of virtual viewpoints to achieve a high dead-
angle elimination rate will be restricted. To resolve this
tradeoff, it is necessary to have an algorithm that can
appropriately adjust the balance between restricting the angle
between virtual viewpoints and the dead-angle elimination
rate and one that can adjust the weight values.

Furthermore, from the current virtual viewpoint, the line-of-
sight of each virtual viewpoint was set such that it always
captured the virtual drone directly (Fig. 16 and 17).

However, with this method, the angle of the virtual
viewpoint line-of-sight changes when the virtual viewpoint
moves, and the remote operator may be confused by the
sudden change in the scenery. To solve this problem, we
introduce a line-of-sight control algorithm that improves the
line-of-sight stability.

4.5  Evaluation of Line-of-Sight Control

In the line-of-sight control algorithm, the angle difference
between the line-of-sight vector of the previous virtual
viewpoint and that of the new virtual viewpoint was limited
as it did not exceed half the viewing angle. It was further
adjusted lower than the set angular movement amount.
Through this control, we ensured that the drone images of the
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surroundings did not change abruptly. The viewing angle was
set to 120°, and the angular movement amount was set to 10°.

Figures 18 and 19 show the line-of-sight vectors for each
virtual viewpoint explored. For example, no significant
change in the direction of the line-of-sight vector occurred
during the line-of-sight shift from Point 6 to Point 7. In the
conventional method, virtual viewpoints are continuously
adjusted to look directly at the drone; therefore, the viewpoint
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Figure 17: Line-of-sight before control from side
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shift is significant. In contrast, in the proposed line-of-sight
control algorithm, the maximum change between the line-of-
sight vectors was 60°, and the minimum movement was
within the set angular movement of 10°, which suppressed the
line-of-sight shift by capturing the virtual drone within the
viewing angle.

Summarizing the evaluation results, it was confirmed that
the proposed algorithm searched for virtual viewpoints while
prioritizing the elimination of blind spots. However, this
method suffered from sudden changes in the virtual
viewpoint path. In response, it was shown that assigning a
weight to the angle between virtual viewpoints was effective
in suppressing sudden changes in the virtual viewpoint path.
However, a tradeoff exists between the blind-spot elimination
rate and the suppression of sudden changes in the virtual
viewpoint path. To resolve this, it is necessary to design an
algorithm that can appropriately adjust the balance between
the suppression of the angle between the virtual viewpoints
and the blind-spot elimination rate and to adjust the weight
values.

S DISCUSSION

Furthermore, it is possible to prevent sudden changes in
gaze direction by controlling the line-of-sight vector;
however, several issues have become clear during the
evaluation process.

First, the point at which the drone movement prediction
cannot respond to changes in direction is raised. We assumed
that the drone movement prediction was inaccurate. This
affects the virtual search, and it is possible that an appropriate
virtual viewpoint position will not be selected. We predicted
changes in the drone speed and travel direction. As shown in
Fig. 20, although the prediction results up to Point 8 were
obtained, an error occurred during the prediction process, and
the process ended halfway through. It was found that the
prediction of the change in speed needed to be more accurate.
For example, it was confirmed that the order of Points 7 and
8 was switched. To address these issues, we are considering
a method that uses machine learning to learn past drone
movement patterns and predict changes in speed and
direction more accurately.
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Figure 20: Prediction results for speed-change case
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Next, our proposed algorithm required the setting of many
parameters, such as the range of the view area, weight based
on the distance between the virtual viewpoint and the blind-
spot grid, and the angle of movement of the line-of-sight
vector. The values of these parameters can significantly affect
the evaluation results; therefore, it is necessary to establish a
basis for setting the appropriate values. Adjusting these
parameters appropriately and repeating the evaluation are
essential to achieve safe drone operation and eliminate blind
spots.

The calculation time of the algorithm was also an issue. In
this algorithm, searching for a new virtual viewpoint required
approximately five hours, which is a practical operational
bottleneck. Long calculation times reduce the efficiency of
the viewpoint search. Speeding up the calculations by
parallelizing loop processing and introducing pattern memory
could be a solution. It is necessary to review the algorithm
and calculation procedure and consider a more efficient
approach.

Finally, we address the limitations of this study. As the main
objective of this research was to eliminate blind spots, the
“visibility” and “way of seeing” from the explored virtual
viewpoints were not considered. In this respect, even if the
virtual viewpoints eliminated blind spots, they may be
visually inappropriate for the remote operator. In future, it
will be necessary to devise a method for exploring virtual
viewpoints to improve visual comfort.

6 CONCLUSIONS

To solve the problem of manpower shortage in the logistics
industry, we proposed a method of increasing the safety of
drone delivery operation in urban areas by eliminating the
blind spots that occur during delivery and providing blind-
spot information by moving the viewpoint. Related research
has presented methods for detecting blind spots in a
surrounding area and freely moving viewpoints in a virtual
space. However, these studies do not address the elimination
of blind spots that are difficult to recognize over long periods.

We developed an AVVP(Adaptive Virtual Viewpoint)
algorithm that uses a 3D grid in a virtual space to search for
new virtual viewpoints and derives viewpoint paths based on
a table that manages blind-spot costs and object information.
To verify the effectiveness of this algorithm, we used a
scenario prepared in advance to search for new virtual
viewpoints and evaluate the viewpoint paths.

The evaluation confirmed that the blind-spot elimination
rate was high for both the proposed algorithm and the
algorithm with the drone movement prediction function;
however, sudden changes occurred in the direction of the
viewpoint path. By assigning weights to the angles between
the virtual viewpoints, the blind-spot elimination rate
decreased slightly and there was no sudden change in the
direction of the virtual viewpoint path. From these results,
there is a tradeoff between the suppression of sudden changes
in the virtual viewpoint path and the blind-spot elimination
rate, and an appropriate adjustment of the algorithm and
weights is necessary to eliminate this tradeoff.

Furthermore, this study identified issues such as the
insufficient prediction of changes in the speed and direction
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of drone flight and the length of the calculation time.
However, even if the position of the virtual viewpoint
eliminated the blind spot, the remote operator was not
necessarily able to visualize it.

In future research, it will be necessary to develop a
viewpoint search algorithm and to evaluate it quantitatively,
improve the prediction accuracy and computational
efficiency, and evaluate the “visibility” and “viewing” of
virtual viewpoints.
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