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Abstract  - Traffic accidents occur frequently on 

community roads where pedestrians and vehicles coexist, 

therefore safe and smooth autonomous driving is expected. 

Based on this situation, this paper proposes a path planning 

method for autonomous vehicles by extending the Velocity 

Obstacles algorithm (VO). VO is commonly used in mobile 

robotics. Three points were extended to apply the algorithm.

The first point was to use 2D TTC to reduce unnecessary 

avoidance. It was decided that avoidance would not be 

performed if there is room for it based on the 2D TTC 

calculation of collision time. The second point established 

motion constraints by assuming avoidance is performed with 

steady-state circular motion because vehicles have more 

motion constraints than robots. The third point was to 

change the collision detection method from circle 

approximation. Considering the size and shape of the 

vehicle, it was decided to draw tangents from the four 

corners of the vehicle to the obstacle and combine them.

Using the above algorithm, avoidance paths were generated 

and better performance than VO, DWA and risk potential 

method. 
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1 INTRODUCTION 

1.1 Background 

In recent years, although the reduction of traffic accident 

fatalities has been decreasing, the decreasing trend of the 

number of traffic accidents on community roads has 

remained relatively low. According to data from the 

Ministry of Land, Infrastructure, Transport and Tourism, in 

2021, there were approximately 80,000 traffic accidents on 

community roads, compared to approximately 220,000 

accidents on arterial roads [1]. In terms of the reduction 

rate since 2004, arterial road accidents have decreased 

by about 70%, while community road accidents have 

decreased by about 60%. Therefore, in order to reduce 

traffic accidents on community roads as well as arterial 

roads, the realization of safe and efficient autonomous 

driving is desired. 

However, community roads have distinct characteristics 

such as the lack of white lanes, pedestrians freely walking 

along various paths, and narrow road widths, making a 

significantly different traffic environment compared to 

arterial roads. Because there are numerous problems that 

differ from previous autonomous driving environment, it 

difficult to achieve autonomous driving on community 

roads. 

1.2 Related Research

Autonomous navigation in complex environments like 

community roads has been extensively studied in the context 

of mobile robots. Various research has been conducted on 

obstacle avoidance methods for mobile robots. 

The dynamic window approach (DWA) [2] is an approach 

that generates trajectory candidates by combining 

translational and rotational velocities. It evaluates each 

generated trajectory using an evaluation function. Following 

that, the trajectory with the highest evaluation value is 

selected, and the robot follows that trajectory. One of the 

problems of this method is that it does not consider dynamic 

obstacles, which may result in insufficient avoidance of 

dynamic obstacles such as pedestrians. 

The risk potential method [3] defines repulsive potentials 

and an attractive potential to the target reaching position to 

obstacles. It generates target velocities and target paths 

based on the calculated potential gradients. One of the 

problems of this method is that the generated potential 

field is a virtual quantity without physical meaning. Due 

to the lack of physical significance, parameter 

adjustments are required, making it difficult to achieve 

proper control of the trajectory, velocity, and adaptation to 

various traffic environments. 

The freezing robot problem (FRP) have focused on 

predicting the future actions of pedestrians using Social 

LSTM [4] and avoiding areas that may obstruct pedestrians 

(Potential Freezing Zone: PFZ) [5]. However, these methods 

address only pedestrians. 

There is a VO algorithm [6] as a method to avoid various 

dynamic obstacles such as pedestrians, bicycles, and other 

vehicles. VO is a method for motion planning of a robot in a 

dynamic environment with moving obstacles. This method 

defines a "velocity obstacle" as the velocity space within 

which a robot may have potential collisions based on the 

current positions and velocities of the robot and obstacles. 

By calculating velocity obstacles for all obstacles and 

selecting a velocity that does not belong to any velocity 

obstacle, this method generates obstacle-avoiding 

trajectories. VO is considered suitable for path planning 

on community roads, as it is an effective method for 

avoiding dynamic obstacles.  
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  Up to now, various extensions have been attempted in VO. 
Reciprocal Velocity Obstacles (RVO) [7] address the 
vibration problems that arise when VO robots need to avoid 
each other. Optimal Reciprocal Collision Avoidance (ORCA) 

[8] addresses the shortcomings of RVO, which only

guarantees collision avoidance under specific conditions and

does not provide a sufficient condition for general collision

avoidance. This method presents sufficient conditions for

multiple robots to avoid collisions with each other, ensuring

collision-free navigation. Adaptive Velocity Obstacles

(AVO) [9] is proposed to solve that if the robot chooses the

critical velocity of the collision cone to minimize the time

consumption, the error of the sensor will lead to the collision.

Ellipse-based Velocity Obstacles (EBVO) [10] derived the

VO for an elliptic robot, and showed that the robot could

reach the goal with a less traveled path by controlling the

rotary motion. As these extensions are not effective for path

planning on community roads where it is necessary to avoid

obstacles such as pedestrians and other vehicles, this study

attempted to apply the original VO algorithm.

1.3 Research Question

VO is suited for mixed pedestrian and vehicular 

environments on community roads, but it originally 

developed for mobile robots. Consequently, adapting VO 

directly to vehicles in mixed pedestrian and vehicular 

environments on community roads appears several problems. 

The first problem is the existence of numerous pedestrians. 

On community roads, there are often many pedestrians 

walking in various directions along narrow roadways. When 

applying VO to such situations, the velocity space may 

become entirely covered by velocity obstacle regions, leaving 

no viable velocity options. 

The second problem is related to achieving the selected 

velocity. In VO, the velocity pair 𝑣𝑥 , 𝑣𝑦  that can reach the 
goal fastest among velocities not belonging to the velocity 

obstacle region is chosen. Many mobile robots are equipped 

with differential drives or omnidirectional wheels, making it 

relatively easy to achieve the selected velocity. However, in 

case of automobiles, which mostly adopt front-wheel steering 

and have longer wheelbases, there are significant constraints 

on achievable velocities. As a result, there can be a 

significant difference between the selected velocity and the 

realized velocity, potentially leading to inappropriate 

trajectory generation.  

The third problem relates to road width. Generally, 

community roads have narrow roadways, which limits the 

freedom of path selection. On the other hand, in VO, there 

are cases where a viable velocity is not selected despite 

being capable of driving on narrow roads. One reason is 

that VO approximates both pedestrians and the ego 

vehicle with circles for collision detection. Since the shape 

of automobiles often differs significantly in terms of width 

and length, there can be a significant difference between 

the actual collision detection and the circle 

approximation. Additionally, the circular approximation 

tends to generate avoidance paths that take unnecessarily 

large avoidance distances from obstacles. As a result, on 

narrow community roads, there can be situations where  

no velocity candidates are available. 
  To address these problems, this study attempts to achieve 
autonomous driving on community roads by extending the 
capabilities of VO. The extended method is referred to as VO-

drive in this research. 

2 METHODS 

2.1 VO 

VO is a method for motion planning of a robot in a 

dynamic environment with multiple moving obstacles. In this 

algorithm, based on the current positions and velocities of the 

robot and obstacles, the velocity space of the robot that may 

lead to future collisions is defined as the "velocity obstacle." 

The positions of the robot and obstacle are presented as 𝐀 

and 𝐁, respectively, and their velocities as 𝐯𝐀  and 𝐯𝐁. The

size of the robot and obstacles are approximated by circles 

circumscribing them. Each radius is presented 𝑅𝐴  and 𝑅𝐵 , 
respectively. The circle centered at 𝐁 with a radius of 𝑅𝐴 + 
𝑅𝐵 is defined as the collision circle. In this case, the set of 
relative velocities 𝐯𝑨,𝑩  that would result in a collision 
between 𝐀 and 𝐁 forms a collision cone 𝑪𝑪𝑨,𝑩 (Fig. 1).

The collision cone 𝑪𝑪𝑨,𝑩 is a planar region bounded by two

tangents, 𝜆𝑓 and 𝜆𝑟, from 𝐀 to the collision circle. In this 
region, the relative velocity 𝐯𝑨,𝑩 between the robot and the 
obstacle would result in a collision. Thus, the region of 

relative velocities 𝐯𝑨,𝑩 that lead to a collision is determined.

Next, the region of robot velocities 𝐯𝐀that would result in

a collision is calculated. The obstacle velocity 𝐯𝐁 is added to

each velocity in the collision cone 𝑪𝑪𝑨,𝑩. This is equivalent

to translating 𝑪𝑪𝑨,𝑩 by the velocity  𝐯𝐁 (Fig. 2). If the robot

velocity 𝐯𝐀  lies within this translated collision cone, a

collision would occur. Therefore, this translated collision 

cone is referred as the "velocity obstacle."  

Figure 1 Relative distance 𝐯𝑨,𝑩 and collision cone 𝑪𝑪𝑨,𝑩
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Figure 2 velocity obstacle 

The selection of velocity for robot motion is performed as 

follows. First, an initial velocity is calculated based on a 

predetermined magnitude of velocity, assuming no obstacles. 

If the initial velocity lies outside the velocity obstacle, it is 

directly used for motion. If the initial velocity lies within the 

velocity obstacle, the velocity closest to the initial velocity on 

the outside of the velocity obstacle is selected and used for 

motion. 

2.2 VO-Drive

To adapt VO to community roads and autonomous driving, 

three extensions were made. 

2.2.1 Limitation of the Target Object

The first extension addresses the issue of handling a large 

number of pedestrians. In community roads, there may be 

many pedestrians walking in various directions along narrow 

roadways. When applying VO to such a situation, the velocity 

space is covered by the velocity obstacle region, and no 

available velocities become exist. To resolve this, a method 

can be considered to limit the pedestrians (obstacles) that 

need to be avoided using some criteria. Possible criteria 

include distance, direction, etc. In this study, a two-

Dimensional Time To Collision (2D TTC) based on the time 

margin until collision is used [11]. It is known that 2D TTC 

is related to pedestrians' sense of safety in collision avoidance 

for mobile robots. Therefore, pedestrians with a 2D TTC 

value above a certain threshold can be considered to have a 

lower risk of collision and can be excluded from collision 

detection. 

Time To Collision (TTC) is a physical indicator used in 

Autonomous Emergency Braking (AEB) systems in vehicles. 

This indicator represents the time until collision with a 

leading vehicle if the current relative velocity between the 

ego vehicle and the leading vehicle is maintained. In the 

world coordinate system, the ego vehicle's front-end position 

and velocity are presented as 𝑥𝑒 and 𝑣𝑒, respectively, while 
the leading vehicle's rear-end position and velocity are 

presented as 𝑥𝑙  and 𝑣𝑙 , respectively. In this case, the relative 
distance, 𝑑𝑥 , and relative velocity, 𝑣𝑥 , between the host 
vehicle and the leading vehicle can be calculated as 𝑥𝑙 − 𝑥𝑒
and 𝑣𝑙 − 𝑣𝑒, respectively (Fig. 3).

Figure 3 TTC outline figure 

Figure 4 2D TTC outline figure 

Therefore, the value of TTC, presented as 𝑡𝑥 , can be

expressed by the following equation (1). 

𝑡𝑥 = −
𝑑𝑥
𝑣𝑥
= −

𝑥𝑙 − 𝑥𝑒
𝑣𝑙 − 𝑣𝑒

(1) 

In this study, the 2D extension of TTC, referred to as 2D 

TTC was used. This index takes into account the positional 

relationship in a 2D space considering the vehicle's 

longitudinal direction (x-axis in the vehicle coordinate 

system) and lateral direction (y-axis in the vehicle coordinate 

system), whereas the previous TTC was calculated based on 

the positional relationship along the vehicle's longitudinal 

direction (x-axis) only. In the world coordinate system, the 

position of the ego vehicle is represented as (𝑥𝑎 , 𝑦𝑎) , the

position of the obstacle is represented as (𝑥𝑏 , 𝑦𝑏), the velocity

of the ego vehicle is presented as (𝑣𝑎𝑥 , 𝑣𝑎𝑦), the velocity of

the obstacle is presented as (𝑣𝑏𝑥 , 𝑣𝑏𝑦), the size of the ego

vehicle is presented as 𝑟𝑎 , and the size of the obstacle is

presented as 𝑟𝑏. Therefore, the relative distance is calculated

as √(𝑥𝑏 − 𝑥𝑎)
2 + (𝑦𝑏 − 𝑦𝑎)

2 , and the relative velocity is

calculated as √(𝑣𝑏𝑥 − 𝑣𝑎𝑥)
2 + (𝑣𝑏𝑦 − 𝑣𝑎𝑦)

2
 (Fig. 4).

Therefore, the value of the 2D TTC is given by the following 

equation (2). 

𝑇𝑇𝐶2𝑑 =
√(𝑥𝑏 − 𝑥𝑎)

2 + (𝑦𝑏 − 𝑦𝑎)
2 − (𝑟𝑎 + 𝑟𝑏)

√(𝑣𝑏𝑥 − 𝑣𝑎𝑥)
2 + (𝑣𝑏𝑦 − 𝑣𝑎𝑦)

2

(2) 

Pedestrians with a 2D TTC value equal to or greater than a 

certain threshold are considered not requiring avoidance and 

are therefore excluded from the velocity obstacle calculations. 
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2.2.2 Velocity Selection Based on Vehicle

Motion Constraints

The second point is addressing vehicle motion constraints. 

Unlike mobile robots, automobiles have significant motion 

constraints, so an extension was made to select velocities 

achievable by car steering. 

First, assuming the vehicle is either moving straight or 

performing a steady-state circular motion, the trajectory is 

calculated [12]. The illustration of this is shown in the figure 

below (Fig. 5). Let 𝜃 be the angle between the X-axis and the 

vehicle's longitudinal direction (yaw angle), 𝛽 be the angle 

between the vehicle's direction of travel and its longitudinal 

direction (slip angle), 𝑟 be the angle between the X-axis and 

the vehicle's direction of travel, and 𝑉  be the vehicle's 

velocity. The slip angle is determined by Equation (3), and 

the angle between the X-axis and the vehicle's direction of 

travel is given by Equation (4). 

𝛽 =

(

1 −
𝑚
2𝑙

𝑙𝑓
𝑙𝑟𝐾𝑟

𝑉2

1 −
𝑚
2𝑙2

𝑙𝑓𝐾𝑓𝑙𝑟𝐾𝑟
𝐾𝑓𝐾𝑟

𝑉2
)

𝑙𝑟
𝑙
𝛿 (3) 

𝑟 =

(

1

1 −
𝑚
2𝑙2

𝑙𝑓𝐾𝑓 − 𝑙𝑟𝐾𝑟
𝐾𝑓𝐾𝑟

𝑉2 
)

𝑉

𝑙
𝛿 (4) 

Therefore, the trajectory of the moving vehicle's center of 

gravity is considered. The positions and velocities of the 

vehicle and the obstacle in the world coordinate system are 

shown in the figure below (Fig. 6). Let (𝑥𝑒 , 𝑦𝑒) and (𝑣𝑒𝑥 , 𝑣𝑒𝑦)

represent the position and velocity of the vehicle, respectively, 

and (𝑥𝑝, 𝑦𝑝)  and (𝑣𝑝𝑥 , 𝑣𝑝𝑦)  represent the position and

velocity of the obstacle. The obstacle is assumed to move in 

a straight line at a constant speed, and its trajectory is 

predicted. 

Figure 5 Vehicle trajectory prediction 

Figure 6 Each variable in the world coordinate system 

Given the initial position (𝑋0, 𝑌0) and the initial yaw angle 𝜃0,

the position (𝑋, 𝑌) and the yaw angle 𝜃 at any given time 𝑡 
can be calculated using equations (5), (6), and (7). 

𝑋 = 𝑋0 + 𝑉∫ cos(𝛽 + 𝜃) 𝑑𝑡
𝑡

0

(5) 

𝑌 = 𝑌0 + 𝑉∫ sin(𝛽 + 𝜃) 𝑑𝑡
𝑡

0

(6) 

𝜃 = 𝜃0 +∫ 𝑟𝑑𝑡
𝑡

0

(7) 

The actual calculation process is outlined below. 

Step1 Provide steering angle for ego vehicle. 

Step2 Calculate 𝛽 and 𝑟 using the steering angle from Step1 

according to equations (3) and (4). 

Step3 Using equations (5) and (6) from Step2, calculate the 

reachable points. 

Step4 Calculate the velocity required to reach the speed in 

Step3. 

Step5 Convert the velocity in Step4 to the velocity within the 

VOmap. 

Step6 Prepare a map similar to VOmap, and substitute the 

value of the steering angle at the velocity position in 

Step5. 

Step7 Repeat Step 1 to 6. 

Here is the outline of trajectory prediction (Fig. 7). 

Figure 7 Outline of trajectory prediction 
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Figure 8 Example of trajectory prediction 

However, there is a difference when combining the VO 

method with trajectory prediction. VO assumes both the ego 

vehicle and the obstacles move in constant linear motion and 

generate avoidance paths based on the assumption that the 

current velocity will continue. On the other hand, trajectory 

prediction for constant circular motion involves nonlinear 

motion with constant translational and rotational velocities, 

making it incompatible to directly apply the VO method. 

Therefore, in this case, an attainment point based on the 

current velocity that would result in a constant circular 

motion was assumed. The line connecting the starting point 

and the attainment point was approximated. 

The generated trajectory prediction points for the ego 

vehicle are shown in the figure below (Fig. 8). 

2.2.3 Collision Detection Based on the Vehicle

Contour

The third point addresses the issue of narrow road widths. In 

the VO approach, both pedestrians and ego vehicles are 

approximated as circles for collision detection. However, this 

approximation can result in significant differences between 

the actual collision detection and the circle approximation. 

Using circular approximation often leads to unnecessarily 

large avoidance routes. 

According to the Japanese Cabinet Office, a "community 

road width" is defined as a road with a carriageway width of 

less than 5.5 meters in urban areas. If the avoidance route is 

too large, there is a risk of veering off the road or even the 

possibility of being unable to avoid the obstacle altogether. 

To achieve a compact and safe avoidance route, a collision 

detection method that takes into account the vehicle's contour 

was adopted (Fig. 9). 

By utilizing the vehicle's contour, performing VO 

calculations from the four corners of the vehicle to the 

obstacles. Figure 10 shows velocity obstacle area. The 

original VO area is shown in gray and extended method area 

shown in black. This shows that it can be observed that 

extended method results in a smaller area compared to the 

original method.  This approach allows for more precise 

collision detection and avoidance planning, taking into 

account the actual shape and size of the vehicle. 

Figure 9 Comparison between circle approximation and 

contour-based methods 

Figure 10 Caomparison of calculation methods between 

original VO and extended method 

Figure 11 Example of avoidance using circle 

approximation 

Figure 12 Example of avoidance using vehicle contour 

When actually performing circular approximation in a 

scenario simulating a community road environment, as 

shown in Fig. 11, attempting to avoid obstacles leads to 

deviating from the lane due to the constraints of the road 

width. Therefore, by performing calculations from the four 

corners of the vehicle, it becomes possible to avoid obstacles 

while staying within the lane width, as shown in Fig. 12. This 

approach ensures that the vehicle navigates safely within the 

available space and minimizes the risk of deviating off the 

road. 
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3    SIMULATION EXPERIMENT AND RESU
LTS 

3.1   Experimental Conditions

Using the VO-drive method proposed in this study, a 

simulation experiment was conducted to compare it with the 

original VO (Velocity Obstacle) method, DWA (Dynamic 

Window Approach), and the risk potential method. 

The simulation was performed using MATLAB. A time 

step of 0.1 seconds was used, and the initial value of the 

vehicle speed was set to 15 km/h. When the path generation 

method instructed a specific speed, it followed the generated 

speed by each route generation accordingly. 

About the risk potential method, only the repulsive 

potential from obstacles was defined [13]. The repulsive 

potential was calculated by the distance from the surface of 

obstacle. Here, 𝑃𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒  shows repulsive potential energy, 
𝐾𝑟𝑒𝑝  shows repulsion coefficient, and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑏  shows 
distance to the obstacle. The expression for the repulsive 

potential energy is given as Equation 8. 

𝑃𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑣𝑒 =∑(
𝐾𝑟𝑒𝑝

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑏
) (8) 

When TTC falls below 6 seconds, the route is generated to 

select areas with lowest potential. 

DWA (Dynamic Window Approach) requires the setting 

of three weights: goal direction weight, obstacle distance 

weight, and velocity weight. In this experiment, these weights 

were set to 0.1, 0.2, and 0.3, respectively. 

For VO-drive, the threshold for 2D TTC was set to 6 

seconds as a limitation condition for the target obstacle. Only 

obstacles with TTC values below this threshold are 

considered for avoidance. And, the attainment point was 

defined as the point reachable 0.1 seconds later. For obstacle 

behavior prediction, the walking speed of the tracked obstacle 

was calculated using a Kalman filter, and the predicted 

position was calculated based on the calculated walking 

speed [14]. 

3.2 Comparison Between VO-Drive and VO

First, a comparison was conducted between the original 

VO and the extended VO-drive to confirm the effectiveness 

of the extension. 

A comparative experiment was conducted on the limitation 

of the target obstacle. The results are shown in Fig. 13. The 

ego vehicle starts from the position (-15,0) in the world 

coordinate system and moves straight at a speed of 15 km/h. 

An experimental scenario was designed where the vehicle 

needs to avoid a stationary obstacle located at (15,0). From 

Fig. 13, it can be observed that the extended VO-drive leads 

to a delay in the timing of avoidance initiation. Conventional 

VO begins avoidance from the start point, whereas the 

extended VO-drive proceeds straight initially due to the 

absence of collision risk and begins avoidance only upon 

detecting a potential collision danger. 

Figure 13 Comparison of target obstacle limitation 

Figure 14 Comparison of vehicle motion constraints 

Figure 15 Comparison of collision detection 

Second, a comparative experiment was conducted on 

velocity selection based on vehicle motion constraints. The 

results are shown in Fig. 14. The ego vehicle starts from the 

position (-12,0) in the world coordinate system and moves 

straight at a speed of 15 km/h. Two obstacles are introduced, 

each moving diagonally at a speed of 0.5 m/s, creating a 

crossing scenario. From Fig. 14, it can be observed that the 

proposed method achieves smoother and more efficient 

avoidance, while the original VO approach exhibits sharp 

turns. 

Lastly, a comparative experiment was then conducted on 

collision detection based on the vehicle contour. The results 

are shown in Fig. 15. The ego vehicle starts from the position 

(-12,0) in the world coordinate system and moves straight at 

a speed of 15 km/h, aiming to compare whether it can 

navigate between the obstacles. From Fig. 15, it can be 

observed that the conventional circle approximation method 

fails to navigate between the obstacles and takes a 

significantly larger avoidance path, while the extension 

allows the vehicle to pass between the obstacles successfully. 
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3.3 Comparison of VO-Drive and Other

Methods

Then, a comparison was made between the proposed VO-

drive method and the original VO, DWA, and risk potential 

method. The horizontal lines shown in the figure represent the 

width of the community roads, with the width between the 

upper and lower lines being 5.5m. The experiment scenario 

was the same as described earlier, with two diagonal-crossing 

obstacles. In the figures, the distance traveled by each method 

is shown at the same elapsed time as the progress of the VO-

drive method. The elapsed time in the experiment was 23 

seconds. The results are shown in Fig. 16. From Fig. 16, it 

can be observed that the VO-drive method has traveled the 

farthest within the same elapsed time. The original VO 

method exhibits similar behavior as in Fig. 14. DWA shows 

larger avoidance routes compared to the VO-drive method. 

The risk potential method failed to avoid and came to a stop. 

The final generated trajectories are shown in Fig. 17. The 

elapsed time and maximum avoidance amount for each 

method until reaching the target point are shown in Table 1. 

It is evident that the proposed method, VO-drive, achieves the 

shortest time and maintains avoidance within the road width. 

VO achieves avoidance with some margin to the road width 

but takes longer to avoid. DWA avoids by a larger margin 

than the road width. Regarding the risk potential method, it 

failed to avoid the obstacle, resulting in a collision after 17 

seconds. 

Figure 16 Trajectories of each method at 23 seconds 

elapsed 

Figure 17 The generated trajectories in the end 

Table 1 Comparison of results for each method 

Based on the results and analysis, it can be concluded that 

a suitable avoidance method for vehicles and community 

roads can be proposed by comparing the original approach 

with the extended one. 

4 CONCLUSIONS 

By conducting a comparison of methods using simulations, 

it was possible to demonstrate the usefulness of the proposed 

VO-drive approach for autonomous driving on urban roads. 

After conducting simulations, actual experiments were 

carried out using a vehicle, and successful avoidance routes 

were performed. 

Three research problems were examined. For the first 

problem, “many pedestrians are present on community roads”, 

2D TTC was used to limit pedestrians performing avoidance 

in “limitation of the target object” of extension 1. From Fig. 

13, it was observed that this limitation delays the avoidance 

timing, suggesting that avoidance can be performed even in 

congested situations. For the second problem, the difference 

between the motion of vehicles and robots, the vehicle 

dynamics of vehicles were applied in extension 2. This 

allowed the transition from the conventional two-wheeled 

model to be restricted to the motion of vehicles. For the third 

problem, the narrow road width, calculations using the 

vehicle’s four contour instead of the conventional circular 

approximation were adopted in extension 3. As shown in Fig. 

15, using the vehicle’s contour demonstrated that it is 

possible to pass through the shortest path without large 

avoidance maneuvers. This suggests that avoidance can be 

performed even on narrow roads such as community roads. 

5 FUTURE WORKS 

Currently, the real vehicle experiments are still ongoing. In 

the future, it is plan to conduct real vehicle experiments, 

increasing the vehicle's speed and introducing moving 

obstacles to create an environment closer to real-life urban 

road conditions. In addition, by having pedestrians actually 

walk, it is aim to realize avoidance that makes them feel safe. 

Finally, the remaining problem for the practical use of the 

proposed method are discussed. In the second extension, 

vehicle motion constraints were considered. However, since 

the avoidance speed determined here was linearly 

approximated, the motion was not fully accounted for. Actual 

vehicle motion is nonlinear. Therefore, it is planned to 

address this issue by using the bicycle model and conducted 

real vehicle experiments to perform model identification. 
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APPENDIX 

When calculating the VO region, a comparison will be 

made between the conventional method of circular 

approximation and the method proposed in this paper, which 

uses the vehicle's corner points. In contrast to square robots, 

vehicles have a rectangular shape. Therefore, when 

approximating with a circle, unnecessary parts may emerge 

(refer to Fig. 9). Performing circular approximation on 

narrow roads, such as community roads, in this state may not 

provide sufficient space for obstacle avoidance, or there is a 

risk of avoiding obstacles largely. Therefore, by conducting 

an approximation from the four corners of the vehicle, it is 

believed that even large vehicles like cars can navigate 

narrow roads like community roads while avoiding obstacles. 

Vehicle corner approximation is shown in Fig. 10. 

The discussion will consider simplified shapes of "vertical 

bar" and "horizontal bar," and subsequently extend to 

rectangular shapes resembling vehicles. 

To begin, it will be examined the case where a vertical bar, 

representing a simplified shape, is moving and encountering 

an obstacle of a certain size. The length of the vertical bar in 

Fig. 18 is taken as 2 × 𝑟1, and the obstacle is approximated as

a circle with a radius of 𝑟1.

In this scenario, considering that the top and bottom two 

points of the vertical bar can move as individual points, the 

resulting VO region can be depicted as shown in Fig. 19. 

As the bar is rigid, the top and bottom endpoints cannot 

move independently. To translate this scenario into one where 

the velocity obstacle is defined with respect to the center point 

of the bar, the VO region generated from these two points is 

shifted to the center of the vertical bar. These two regions, 

VO𝑎  and VO𝑏 , become the velocity obstacle regions where

the endpoints of the bar would collide as it moves. As all 

points between the top and bottom endpoints lie within the 

bar, the combined VO𝑣  region encompassing VO𝑎  and VO𝑏
becomes the velocity obstacle region for the entire bar's 

movement. In this case, the distance from the obstacle to the 

boundary of the VO𝑣  region is 𝑟1 + 𝑟2 , where 𝑟1  represents

the radius of the vertical bar and 𝑟2 represents the radius of

the obstacle (Fig. 20). This is equal to the conventional VO 

calculation method using circular approximation. 

Next, it will be considered a similar analysis for the 

horizontal bar scenario in Fig. 21. 

In this scenario, generating the VO region from two points 

on the left and right results in the configuration shown in Fig. 

22. 

Similarly, shift the VO region generated from the two 

points on the left and right to the center of the horizontal bar. 

This is illustrated in Fig. 23. 

At this point, it becomes evident that the distance from the 

shifted VO region to the obstacle is shorter than 𝑟1 + 𝑟2. This

suggests that when approximating with a horizontal bar, the 

size of the VO region might be smaller compared to the 

conventional VO calculation method. Let's now verify how 

much smaller the size of the VO region becomes when 

compared to the traditional VO calculation method (Fig. 24). 

Figure 18 Scenario of vertical bar approximation 

Figure 19 Generation of VO region using vertical bar 

approximation 

Figure 20 Shifting the VO region to the center of the 

vertical bar approximation 

Figure 21 Scenario of horizontal bar approximation 

Figure 22 Generation of VO region using horizontal bar 

approximation 

Figure 23 Shifting the VO region to the center of the 

horizontal bar approximation 

Figure 24 Calculation 𝜽 from the right point of the 

horizontal bar approximation 
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Considering the VO region from the right point when 

approximated by a horizontal bar, as shown in Fig. 24. Here, 

the angle 𝜃 can be expressed as Equation 9. 

𝜃 = tan−1
𝑟2

𝑙 − 𝑟1
(9) 

Here, it will be examined how much the VO region generated 

from the right side of the horizontal bar increases when 

shifted to the center of the bar (Fig. 25). 

Here, when considering the difference 𝒅 between the VO 

regions before and after the shift, it can be expressed as 

Equation 10. 

𝑑 = 𝑙 ∙ tan (tan−1
𝑟2

𝑙 − 𝑟1
) − 𝑟2 (10) 

If the calculated value of  𝒅 obtained here is shorter than 

𝒓𝟏, it becomes evident that the resulting VO region will be

smaller than the conventional VO region. 

Finally, it will be considered the calculations from the 

corners of the vehicle. It will examine a scenario depicted in 

Fig. 26. 

As mentioned earlier, it has been established that the 

vertical bar approximation results consistent with the 

conventional VO method, while the horizontal bar 

approximation leads to a smaller VO region compared to the 

traditional method. Based on this, the approach is to calculate 

the velocity obstacle region in the width direction of the 

vehicle using conventional circular approximation and then 

combine this region with the velocity obstacle region in the 

length direction of the vehicle using a similar method as the 

horizontal bar approximation (Fig. 27). This way, the overall 

velocity obstacle region for the entire vehicle can be 

determined. 

For this scenario, the generated VO regions are shown in 

Fig. 28. 

Upon shifting the generated VO regions to the center of the 

horizontal bar, they transform as shown in Fig. 29. 

In this context, the modification in size due to the 

displacement of the VO regions will be examined. 

For the angle 𝜃  shown in Fig. 30, it can be expressed 

Equation 11. 

𝜃 = tan−1
𝑟1 + 𝑟2
𝑙 − 𝑟1

(11) 

Subsequently, the difference 𝑑  between the VO regions 

before and after the shift, it can be expressed as Equation 12. 

𝑑 = 𝑙 ∙ tan (tan−1
𝑟1 + 𝑟2
𝑙 − 𝑟1

) − (𝑟1 + 𝑟2) (12) 

Here, a comparison between the proposed method and the 

conventional circular approximation is conducted. As a 

method of comparison, the radius of the extended circle from 

the conventional VO calculation method and the value 𝑑 +
(𝑟1 + 𝑟2) from the current approach are contrasted. Since the

value depends on the distance 𝑙 from the center of the vehicle 

Figure 25 Calculation 𝜽 and 𝒅 from the center of the 

horizontal bar approximation 

Figure 26 Scenario of four points approximation 

Figure 27 Suggest method to generate VO region 

Figure 28 Generation of VO region from suggest method 

Figure 29 Shifting VO region to the center of the four 

points approximation 

Figure 30 Calculation 𝜽 and 𝒅 from the center of the four 

points approximation 
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to the center of the obstacle, the comparison was carried out 

by varying the value of 𝑙. The radius of the host vehicle 𝑟1 is

set to 0.75 m, and the radius of the obstacle 𝑟2 is set to 0.5 m.

For simplicity, consider the length of the vehicle as being 

twice its width. As a result, it was found that for distance less 

than 1 to 4.9 meters, the conventional circular approximation 

yields a smaller generated VO region, whereas for distance 

greater than 4.9  meters, the proposed method leads to a 

smaller VO region. 

 So far, assumptions have been made regarding vehicles 

performing only parallel movements. However, in reality, 

vehicles not only engage in parallel movements but can also 

involve rotational motion during navigation. Therefore, 

navigation in dynamic environments for robots like cars has 

been developed by David Wilkie and others [15]. The paper 

introduces the concept of generalized velocity obstacles, 

aiming to address challenges when utilizing velocity 

obstacles with kinematically constrained agents such as car-

like robots. The formulation is expressed as follows: 

𝑉𝑂(𝐴|𝐵) = {v|∃𝑡 > 0 ∷ ‖𝐴(𝑡, 𝑢) − 𝐵(𝑡)‖ < 𝑟𝐴 + 𝑟𝐵  } (13)

𝑢 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑢′∉∪𝐵𝑖𝑉𝑂(𝐴|𝐵𝑖)

‖𝑢∗ − 𝑢′‖ (14)

However, because analytical solutions were not feasible, 

experiments were conducted through simulations. 

Specifically, additional simulations were conducted to 

examine the differences in trajectories when the vehicle 

performs circular evasion around obstacles. In this scenario, 

the vehicle travels straight from the Start point to the Target 

point at a speed of 15 km/h, avoiding obstacles. The size of 

the vehicle in VO-drive simulations was set at a width of 1.5m 

and a length of 2.13m, and experiments were performed with 

a radius of 1.357m during VO scenarios. The experiments 

started with a distance of 25m between the vehicle and the 

obstacle. For the simulation comparison of differences due to 

vehicle approximation, 2D TTC was set to 6 seconds for both 

VO-drive and VO, and self-vehicle trajectory prediction was 

applied to both. Figure 31 shows the results of the simulation. 

The upper and lower lines in Fig. 31 represent the road width, 

set at 5.5m to simulate a community road. As evident from 

the figure, the proposed method can avoid obstacles while 

staying within the vehicle width. In contrast, with the 

conventional circular approximation, it is clear that avoiding 

within the vehicle width is not achieved. Consequently, it can 

be inferred that the proposed method performs better in 

narrow road scenarios when following a straight trajectory. 

VO-drive, in contrast to the conventional VO, differs in 

computational complexity. While the conventional method 

performs VO calculations from the center of the vehicle, the 

proposed method calculates VO from the four corners of the 

vehicle. As a result, the computational complexity of the 

proposed method is expected to be four times higher than that 

of the conventional method. 

Figure 31 Differences in trajectory by vehicle 

approximation 

It should be noted that the proposed method mentioned 

above only accounts for parallel displacement. Future work 

needs to include considerations for rotational movement as 

well. 
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