International Journal of Informatics Society, VOL.16, NO.1 (2024) 33-42

Regular Paper

33

Fault Localization with Virtual Coverage and Supervised Learning
based on Execution Count Information

Takuma Ikeda®, Hitoshi KiryuT, Satoshi Suda®, Shinpei Ogata*, and Kozo Okano*

fGraduate School of Engineering, Shinshu University, Japan
tMitsubishi Electric Corporation, Japan
Suda.Satoshi @ay.MitsubishiElectric.co.jp
*Faculty of Engineering, Shinshu University, Japan
{ogata, okano} @cs.shinshu-u.ac.jp

Abstract - Automatic fault localization is a technique that
helps to reduce the costly task of program debugging. Among
the existing approaches, Spectrum-based fault localization
shows promising results in terms of scalability. One Deep
Neural Network (DNN)-based SFL approach that uses vir-
tual coverage has been proposed. This approach uses a DNN
model that classifies whether the test result of an input code
coverage is Pass or Fail. Virtual coverage is code coverage
that expresses that only certain code blocks are executed. The
output value when the virtual coverage is input to a DNN
model is treated as the suspiciousness score. We propose a
new virtual coverage and a DNN model based on the number
of executions. Our idea is that by using execution count-based
virtual coverage, higher accuracy can be achieved than exist-
ing approaches. We evaluate our proposed approach using six
projects available on Defects4j and Software Infrastructure
Repository (SIR). As a result of the evaluation, we confirmed
that our virtual coverages improve the accuracy by up to 4.2
points compared to the existing approach. We confirmed that
our proposed model with our virtual coverages improve the
accuracy by up to 5.6 points.

Keywords: Spectrum-based Fault Localization, Virtual
Coverage, Deep Neural Network, Supervised Learning

1 INTRODUCTION

In software development, fault localization is a costly task.
Testing and debugging are reported to account for up to 75%
of the development cost [1]. Automatic fault localization is an
effective technique to reduce the cost of program debugging.
Among the existing methods, Spectrum-based fault localiza-
tion (SFL) has shown promising results in terms of scalability,
lightweight, and language-agnostic [2—4].

Ochiai [5] and Tarantula [6] are representative SFL tech-
niques. These techniques calculate a failure suspicion score
for each statement based on code coverages. Statements with
high suspiciousness scores are considered highly suspicious
of failure, and developers investigate statements with high
suspiciousness scores as priority. The formulas for calcu-
lating the suspicion score for each statement in Ochiai and
Tarantula are shown below.

€f ..
Ochiai 1
Vervn) errey oM ®
ey
efef+—nfep (Tarantula) 2)

eftny eptnp

These formulas are calculated using the following values

[7].

* ¢y is the number of times the statement is executed in
the Fail test case.

* ¢, is the number of times the statement is executed in
the Pass test case.

* ny is the number of times the statement is not executed
in the Fail test case.

* 1, is the number of times the statement is not executed
in the Pass test case.

Ochiai and Tarantula calculate a failure suspiciousness score
based on the frequency with which each statement is executed
in the Fail and Pass test cases. Thus, the idea in the statistical
SFL approach is that statements that are executed frequently
in the Fail test case and infrequently in the Pass test case are
suspicious.

In recent years, several deep learning-based approaches
have been proposed for locating faults, and the learning ca-
pability of DNNss is effective in locating faults, showing bet-
ter identification results than conventional SFL techniques
(Ochiai, Tarantula) [8]. As one of the deep learning-based
SFL approaches, the approach using virtual coverage has been
proposed [8—11]. An overview of this approach [11] is shown
in Fig. 1. The virtual coverage used in this approach is shown
in Fig. 2. The approach in Fig. 1 takes test coverage as input
and learns a Deep Neural Network (DNN) model that classi-
fies whether the input test execution coverage is Pass or Fail.
Next, the virtual coverage shown in Fig. 2 is input to a learned
DNN model, and a DNN model outputs a score indicating the
suspiciousness of failure for each code block.

The virtual coverage in Fig. 2 is generated from the test
execution coverage and treats the statements commonly exe-
cuted in all test cases as code blocks. Therefore, the size of

ISSN1883-4566 © 2024 - Informatics Society and the authors. All rights reserved.

34 T.Ikeda et al. / Fault Localization with Virtual Coverage and Supervised Learning based on Execution Count Information

Executable Statements Errors Input o
Training
S1 Sp S3 ... Sy Program
I 1 [e [x)
t]C11 Gz C13 .. Cix 1 1
Output
ty [co1 © @ C €2 A4 X2
2 (€21 C22 Ca3 ... Cx Output
Test Trained
CasesN |- - N DNN Model > r
A
Input
th{Cn1 Cn2 Cn3 ... Omx €n Xe)
- B - -
Createi Virtual Suspicious Score
|
Test Coverage Coverages | .t Each Code Block
Figure 1: Existing Approach of DNN-based SFL
Statements

S1 Sp S3 S4 S5

Virtual
Coverage

vod0 1 1 1 0

v3 |0 0 0 0 1

Figure 2: Virtual Coverage at Code-Block Granularity

some blocks can be too large for some programs, which has
a negative impact on the accuracy of SFL. We propose a new
virtual coverage that can be used with the existing approach
shown in Fig. 1. Our proposed virtual coverage is created
based on the number of executions (execution count reports)
of each statement. Since it is based on the number of execu-
tions, it is possible to divide the source code into more code
blocks than the existing virtual coverage shown in Fig. 2.
Figure 3 shows the creation of existing virtual coverage and
the creation of our proposed virtual coverage. In Fig. 3,11, 2,
and t3 represent the three test cases, and sy, S, ..., and s5 rep-
resent statements in the source code. The vy, vo, v3, and vy
represent the virtual coverages created in each approach. Ex-
ecution count reports describe execution counts of each state-
ment at test runtime. In Fig. 3, the existing approach divides
source code into three code blocks (virtual coverages), and
our approach divides source code into four code blocks.

We evaluated our proposed virtual coverage on the six
projects (Math, Lang, Chart, Print_tokens, Print_tokens2, and
Tot_info) available on Defects4j [12] and Software Infrastruc-
ture Repository (SIR) [13]. As a result, we confirmed that
the proposed virtual coverage improves the accuracy by up
to 4.2 points compared to the existing virtual coverage. Ap-
plying the Wilcoxon Signed-Rank Test to the experimental
results, we confirmed that the proposed approach is signifi-
cantly more accurate than the existing approach. In order to
further improve the accuracy of our proposed virtual cover-
age, we also evaluated the proposed virtual coverage on DNN

models trained on different training data from the existing ap-
proach. As a result, we confirmed that the accuracy is im-
proved by up to 5.6 points compared to the existing approach.

The rest of the paper is organized as follows. Section 2
describes the background of this paper. Section 3 describes
the proposed approach. Section 4 describes the experimental
setup and Section 5 discusses the experimental results. We
conclude in Section 6.

2 BACKGROUND
2.1 Statistical SFL Techniques

Tarantula [6] and Ochiai [5] are representative statisti-
cal SFL techniques. These techniques use test coverage
collected during test execution to compute suspiciousness
scores, which indicate the suspiciousness of failure for each
statement. Several approaches [14—16] have been proposed
to compute suspiciousness scores similar to Tarantula and
Ochiai. Since various metrics have been proposed, the ap-
proach [17] to fuse these SFL techniques and calculate suspi-
cion scores from multiple statistical SFL techniques has been
proposed.

This paper discusses deep learning-based SFL approaches,
which differ from statistical SFL approaches in the idea of
fault localization. In this paper, statistical SFL techniques are
not further discussed.

2.2 Deep Learning-based SFL Approaches

Existing function-level fault localization techniques [18,
19] use function coverage or statement coverage to compute
the suspiciousness values. Murtaza et al. [18]’s approach
uses decision trees to identify patterns of function calls re-
lated to failures. Sohn et al [19]. proposed the approach to
rank faulty methods higher using genetic programming (GP)
and linear rank-supported vector machines (SVM). These ap-
proaches are function grain SFL approaches, which are dif-
ferent in granularity from the statement granularity SFL ap-
proaches discussed in this paper.

International Journal of Informatics Society, VOL.16, NO.1 (2024) 33-42

4t 11 1T 1 1 > v 0 1 1 1 0

t3 0 1 1 1 1 v 0 0 0 O 1

Existing Approach

- Test Coverage - - Virtual Coverage A

Sq Sy S3 Sy Sg S4q So S3 S4 S5

tt 0 1 1 1 0 vi 1. 0 0 0 0
Create

L J L J

35
Virtual Coverage
Execution Count Report _ (S; S, S3 S4 S5 |
S{ Sy S3 S4 Ss vi 1 .0 0 O 0

tt 0 1 1 1 0
Create | 2 0 1 1 0 0

b 1 2 2 1 1 }——> .
vi 0 0 0 1 0
3 0 6 6 3 1

vy 0 0 0 0 1

v J

Our Approach

Figure 3: Virtual Coverage Creation in Each Approach

Statements
Sq So S3 S4 Sj5
vi[1 O 0 0 O

V2if0 1 0 O O

Virtual

Coverage Va0 0 0 04}

V4|0 O o 1 O

vs{0 0 0 0 1|

Figure 4: Virtual Coverage at Statement Granularity

As one of the latest techniques for dynamic analysis us-
ing machine learning, Li et al. proposed DeepRL4FL, which
identifies buggy code by treating fault localization as an im-
age pattern recognition problem [20]. Li et al.’s approach re-
quires marking the statements that are faulty as training data.
This is so that a model can distinguish between statements
that are faulty and non-faulty at training. In our approach,
we treat the label of whether each test case is Pass or Fail
as training labels. Therefore, the training data used in Li et
al.’s approach is more informative than our approach’s train-
ing data.

The most relevant researches to this paper are approaches
[8,9, 11] that use virtual coverage to locate faults. In these
approaches, a DNN model is first trained that takes test exe-
cution coverages as input and classifies whether the test re-
sult is Pass or Fail. Next, virtual coverage is constructed
that indicates that only certain a statement or a code block
is executed. Several approaches have been proposed for con-
structing virtual coverage, including the approach [8] at the
statement granularity and the approach [11] at the code block
level. The statement granularity virtual coverage is shown
in Fig. 4 and the code block granularity virtual coverage is
shown in Fig. 2. By inputting the virtual coverage in Fig.
4 and 2 into a trained DNN model, a failure suspiciousness
score is given for each virtual coverage. Since each virtual
coverage is a coverage that represents only certain a statement
or a code block executed, output values of a DNN model are
treated as suspiciousness scores for each statement or code
block. It is known experimentally that using virtual coverage
at the code block granularity is more accurate for SFL than
virtual coverage at the statement granularity [11].

Existing virtual coverage treats statements that are exe-

cuted at least once in common in all test cases as code blocks.
In this approach, the source code is divided into code blocks,
which improves the accuracy to the limit of coverage-based
SFL. Since the existing approach constructed virtual coverage
on a coverage basis, there are possible cases where statements
are aggregated in some blocks and the sizes of the blocks
are too large. Since our approach constructs virtual coverage
based on the number of executions, it is expected that large
code blocks can be divided and the accuracy improved.

3 OUR APPROACH

An overview of the fault localization in our approach is
shown in Fig. 5 and Fig. 6. Fault localization in our approach
consists of the following steps.

1. Execute tests of the System Under Test (SUT).

2. Collect a Coverage Report for each test case at test run
time and generate an execution count report.

3. Label the test results (Pass or Fail) in the generated ex-
ecution count report.

4. A DNN model is trained using generated execution
count reports and test result labels.

5. Create virtual coverage from the execution count re-
port.

6. Virtual coverage is input to a trained DNN model and a
suspiciousness score is given to each code block.

7. Rank the suspiciousness of each code block in descend-
ing order of the suspiciousness score.

Figure 5 shows Steps 3 and 4; Fig. 6 shows Steps 6 and 7.
Figure 7 shows the DNN architectures. The coverage report
in Step 2 describes information such as how many times each
statement of the SUT is executed during each test case. An
overview of the execution count report in Step 2 is shown in
Fig. 8. The execution count report shown in Fig. 8 indicates
how many times each statement of the SUT is executed in
each test case. Code coverage is represented as 1 if a state-
ment is executed at least once and O if it is not. On the other
hand, in the execution count report, each statement is repre-
sented by the number of execution at test runtime.

T.Ikeda et al. / Fault Localization with Virtual Coverage and Supervised Learning based on Execution Count Information

Executable Statements Labels) Input L
(Pass:0, Fail:1) Training
S4 S» 83 .. S Program
r 9 r ! r 9 r I
ty[c11 c12 13 .. Ok g X1 b
tplc21 c22 C23 .. O 0 X2 0
Test Output
es
CasesN |~ -~ - T [DNN Model el [
th{Ch1 Cn2 ©Cn3 ... Cnx 1 Xn 1
L J L J L J L J
Execution Count Report Prediction Result Targets
(Float Values) (Pass:0, Fail:1)
Figure 5: Training A DNN Model in Our Approach
Statements
S1 S22 S3 S4 S5
vif1 o o o o) [x) (% 1 [v)
Vol 0 1 1. 0 0 X2 Sort in X3 V3
CVIrtuaI) mput Trained OUtpUt I Descending Order -4 i) i
overage
vyl 0 0 0 1 0 DNN Model X3 X1 V1
vyl0 0 0 0 1 X4 X4 V4
L J L J L J L J
Suspicious Score Rank of
of Each Code Block Suspicious Score

Figure 6: Calculating Suspicious Scores in Our Approach

Execution Count Report Test Result
[ciy ©

C1x | [eq] ¢

12 C13
Prediction of Target
Test Result 9
Dense Dropout Dense Dropout Dense . .
Layer Layer Layer Layer Layer sdiad [x1] [eid

Figure 7: DNN Architecture in Our Approach

International Journal of Informatics Society, VOL.16, NO.1 (2024) 33-42

Test Cases

Statements | S3 | 2 1 6

s4f2 3 1

s5 ! 0 1 1

Execution Count
Figure 8: Execution Count Report

In step 4, the developer can use a DNN model that takes the
execution count reports as input and classifies the test results.
The output value of this DNN model is a float value between
0 and 1, which is regarded as the probability that the classifi-
cation result is a Fail. A DNN model learns the difference in
pattern between the execution count reports of Pass test and
Fail test.

The next step is to create virtual coverages that will be in-
put to a trained DNN model. Virtual coverage is code cov-
erage that virtually represents that only a certain code block
is executed. The developer creates a virtual coverage and in-
puts it to a DNN model. Since the output of a DNN model is
considered to be the probability that the classification result is
Fail, the output value of a DNN model when a virtual cover-
age containing the faulty statement is input is expected to be
higher than other input values. Therefore, the output values
of a DNN model in descending order are treated as the rank
of the final suspiciousness score, and a suspiciousness rank is
assigned to each code block.

The basic idea of SFL (Steps 6 and 7) is the same as the
existing approach [11] and is not a new contribution of this
paper. We propose a DNN-based virtual coverage fault local-
ization approach based on execution count information. Our
proposed approach is used in Steps 4 and 5. The details of our
proposed approach are described below.

3.1 Training a DNN Model Using Execution
Count Reports

Our approach is to train a DNN model based on execu-
tion count information. For this purpose, we use an execution
count report. An overview of the execution count report is
shown in Fig. 8, which describes the number of times each
statement is executed at test runtime.

In our approach, we use execution count reports as training
data for a DNN model. Using the execution count reports as
training data is expected to improve the accuracy of SFL with
our proposed new virtual coverage described in Section 3.2.

3.2 Create Virtual Coverage with Execution
Count Reports

The following is a step-by-step description of how to create
virtual coverage using execution count reports.

37

1. In each test case, statements that are adjacent and have
the same number of executions shall be temporary
blocks.

2. Statements contained in a common temporary block are
defined as code block.

3. Create virtual coverage based on defined code blocks.

An overview of each Step is shown in Fig. 9. In Fig. 9,
the dotted squares are temporary code blocks and the blue
squares are the final code blocks to be defined. In Step 1,
temporary code blocks are defined in each test case. In test
case 1 (¢1), three temporary code blocks are defined, and in
to, four temporary code blocks are defined. Each temporary
code block is assigned a block id. The color of the dotted
line in Step 1 indicates the id of the temporary code block.
For example, statement 1 (s1) belongs to the same temporary
code block with the same id in all test cases.

In Step 2, statements that belong to the temporary code
block with the same id in all test cases are defined as the fi-
nal code block. Since s; belongs to the temporary code block
with the same id (color) in all test cases, we define it as the
final code block (blue square). Next, since so, and s3 belong
to the same id (color) in all test cases, they are defined as the
final code block. At this time, the temporary code block id of
54 int; is changed to the same id (color) as the next statement,
s5. Next, in Step 2-2, s4 is defined as the final code block, and
the temporary code block id of s5 in ¢, t3 is changed to the
next temporary code block id (yellow). Finally, in Step 2-3,
s5 1s defined as the final code block, and four code blocks are
defined in the execution count report shown in Fig. 9.

Our proposed virtual coverage treats statements that are
common execution count patterns in all test cases as code
blocks. Since code blocks can be created according to the ac-
tual execution patterns, source code can be divided into more
code blocks than the existing approach. The difference be-
tween our proposed code block and the existing approach [11]
is shown in Fig. 10.

In Fig. 10, our approach creates four code blocks, while the
coverage-based existing approach creates three code blocks.
By creating code blocks according to the pattern of execution
counts, code blocks can be created with a finer granularity
than the existing approach.

The virtual coverage is created from the code blocks and
the fault location is identified (Steps 6 and 7). We believe that
we can achieve higher accuracy than the existing approach
by creating virtual coverage with a finer granularity than the
existing approach, and by training a DNN model with data
that is more suitable for the proposed virtual coverage.

4 EVALUATION EXPERIMENT

4.1 Research Questions

In this paper, the following research questions are investi-
gated in the evaluation experiment.

RQ1. Comparison of fault localization accuracy with ex-
isting approach [11] when virtual coverages created based on

38 T.Ikeda et al. / Fault Localization with Virtual Coverage and Supervised Learning based on Execution Count Information

Test Cases Test Cases Test Cases Test Cases
$q 0 3 0 Sq 0 3 0 $q 0 3 0 $q 0 3 0
Sy 2 1 6 Sy 2 1 6 Sy 2 1 6 Sy 2 1 6
Statements | S3 2 1 6 S3 2 1 6 S3 2 1 6 S3 2 1 6
Sy 2 3 1 Sy 2 3 1 Sy 2 3 1 Sy 2 3 il
'''' ss | 0 1081 ss [0 i1 1 1 ss| 0 1 1 ss | 0 1 1
Temporary Block -- ' L y Code Block
Step 1 Step 2-1 Step 2-2 Step 2-3

Figure 9: Steps in The Creation of Our Proposed Code Block

E t4 to t3 | Block
s1i 0 3 0 |Block4
202 1 6

Block,
s3! 2 1 6

é tq 193 t3 Block
Sq i 0 1 0 |[Blocky
20 1 1 1
s3 1 1 1 1 |Blocky
sS4 1 1 1
s51 0 1 1 |Blocks
Existing Approach

sai2 3 1 |Blocks
S5 : 0 1 1 Blocky,
Our Approach

Figure 10: Differences in Code Blocks

the number of executions are input to a DNN model trained
with coverages.

In this paper, we propose a new approach for creating a
new virtual coverage. We evaluate the effectiveness of our
proposed virtual coverage by comparing its fault localization
accuracy with existing coverage-based virtual coverage.

The TopN % is used as a measure of the accuracy of fault
localization, where the TopN % represents that a bug is classi-
fied into the top N % of the total, and a smaller value indicates
a better fault localization performance. In the case of multiple
bugs, the largest TopN % is used.

RQ2. Comparison of fault localization accuracy with ex-
isting DNN model when virtual coverage created based on the
number of executions is input.

In our approach (Fig. 5), we use execution count reports
as training data to enhance the effectiveness of our proposed
virtual coverage. We input the proposed virtual coverage into
the existing DNN model and our DNN model, and compare
the accuracy of fault localization.

4.2 Subject Programs

We conducted an evaluation experiment using bugs and
their fixes provided by Defects4j [12] and Software Infras-

tructure Repository (SIR) [13]. Defects4] is a database of
actual bugs in Java projects. Lang, Math, and Chart from
Defects4j and Print_tokens, Print_tokens2, and Tot_info from
SIR are selected as the projects for the experiments. We use
bugs that meet the following conditions for our experiments.

* Bug fixes only with code addition are excluded. If the
bug is fixed by code addition only, the original buggy
source code does not have any defects to be pointed out.

* The fault statement is executed at least once in each of
the fail and pass tests: the SFL approaches require the
bug to be executed in those tests.

Execution coverage and execution count reports are collected
using OpenClover [21] and gcov [22]. We use OpenClover
to collect coverages of Defects4j’s projects, and we use gcov
to collect coverages of SIR’s projects. Because execution is
not recorded for class member variable definitions, etc., due
to OpenClover’s specifications, we excluded parts of the pro-
gram that are not recorded as execution coverage from the
fault set. The number of lines (LOC) and number of tests for
the experimental program are shown in Table 1.

International Journal of Informatics Society, VOL.16, NO.1 (2024) 33-42

Table 1: Details of Target Programs

Project Number | LOC | Number
of Versions of Tests

Lang 30 | 58389 54987
Math 29 | 23623 83364
Chart 15 | 10094 27036
Print_tokens 7 336 4130
Print_tokens2 9 343 2064
Tot_info 23 268 1052

TopN % of Each Approach in Defects4j

100
90
80
70
60
50

40

% of SUT Bug Locailzed

30
20
10
0 10 20 30 40 50 60 70 80 90 100
TopN %

Existing Code Block and Existing Model Our Code Block and Existing Model

Figure 11: Results in RQ1 of Defects4]J

4.3 Setup for a DNN Model

In performing supervised training, the weight parameters
of Dense Layers are initialized with random values. The size
of the hidden layer of each Dense Layer is changed accord-
ing to the size of the coverage size to be trained. The first
Dense Layer is the minimum size of 100, and the second
Dense Layer is the minimum size of 20 hidden layers. The
third Dense Layer is the Output Layer, which is a hidden
layer of size 1. The ReLu and Sigmoid functions are used
as activation functions. In addition, a Dropout Layer is used
to suppress over-learning. Adam optimizer [23] is used, and
the learning rate is set to 1.0e — 3. TensorFlow (ver. 2.12.0)
is used as the learning framework.

5 RESULTS AND DISCUSSIONS
5.1 RQ1: Result

Figure 11 shows the experimental results for RQ1 of De-
fects4J. The horizontal axis in Fig. 11 represents the TopN
% and indicates the amount of source code examined by the
developer. The vertical axis shows the percentage of identi-
fied faults, where 100 % on the vertical axis means that all
faults are identified. For example, a vertical axis plot with a
Top 50% is more than 90%, indicating that more than 90%
of the faults are identified by investigating half of the source
code. There are two plots in Fig. 11: the gray plot shows the
accuracy of the existing approach, and the orange plot shows
the accuracy of the proposed virtual coverage.

As a result, except for the 25% and 35% TopN % plots, the
proposed virtual coverage has a larger value in the vertical

39

TopN % of Each Approach in SIR

% of SUT Bug Locailzed

0 10 20 30 40 50 60 70 80 90 100
TopN %

Existing Code Block and Existing Model Our Code Block and Existing Model

Figure 12: Results in RQ1 of SIR

Table 2: Test Results in RQ1
Subject \ 1-tailed (left) \ 1-tailed (right)
Defects4] 3.534E-02 9.647E-01

SIR 5.671E-02 9.433E-01

axis plot. This means that for each TopN %, the number of
faults that can be identified is higher than with the existing
approach.

Figure 12 shows the experimental results for RQ1 of SIR.
In Fig. 12, there is no difference in accuracy between the ex-
isting and proposed approaches in SIR. Figure 12 shows the
accuracy at a granularity of Top 5%, so there is no differ-
ence at all, but at a finer granularity, the proposed approach
is slightly more accurate (< 5 points) than the existing ap-
proach.

Table 2 shows the results of adapting the Wilcoxon Signed-
Rank Test to the experimental results. The Wilcoxon Signed-
Rank Test is a nonparametric test that tests for differences
between two corresponding groups. The null hypothesis in-
dicates that there is no significant difference between the two
groups, while the alternative hypothesis indicates that there is
a significant difference between the two groups. The 1-tailed
test and the alternative hypotheses are listed below.

* 1-tailed (left): The proposed approach has a smaller
TopN % value than the existing approach.

* 1-tailed (right): The proposed approach has a larger
TopN % value than the existing approach.

Since the value of TopN % is the amount of code investi-
gated by the developer to identify the fault location, a smaller
value indicates a high accuracy. Therefore, if the left-tailed
Wilcoxon Signed-Rank test is accepted, the proposed ap-
proach is significantly better than the existing approach in
fault localization performance.

The test results of Defects4] show that p = 0.035 <
0.05 = «, so the proposed virtual coverage is significantly
more accurate than the existing approach. However, the test
results of SIR show that p = 0.057 > 0.05 = «, so the pro-
posed virtual coverage is not significantly more accurate than
the existing approach.

40 T.Ikeda et al. / Fault Localization with Virtual Coverage and Supervised Learning based on Execution Count Information

Table 3: Percentage Increase of The Number of Code Blocks
in the Defects4]J Project

Project Bugs with Bugs with
Improved Accuracy | Decreased Accuracy

Lang 52.36 % 98.54 %

Math 65.34 % 73.01 %

Chart 21.00 % 32.69 %

Table 4: Average Number of Source Code Divisions
in Each Project

Project \ Existing Approach \ Our Approach
Lang 143.86 294.93
Math 80.68 120.93
Chart 65.93 78.33

Print_tokens 120.25 120.25
Print_tokens2 140.63 140.63
Tot_info 72.72 74.00

5.2 RQ1: Discussions

In our approach, the source code is divided into many more
code blocks than the existing approach. We consider that
defining code blocks with a finer granularity than the existing
approach according to the actual execution pattern (number
of executions) contributed to the improved accuracy shown in
Fig. 11.

On the other hand, for some bugs, the proposed approach
showed lower accuracy than the existing approach. Table 3
shows the percentage of increased number of code blocks for
each project when the proposed approach achieved higher ac-
curacy than the existing approach, and the proposed approach
showed lower accuracy than the existing approach. In Table 3,
for all three projects, bugs (Version) with improved accuracy
over the existing approach show a smaller percentage increase
in the number of code blocks than those with decreased accu-
racy. Existing research [11] has reported that virtual coverage
using code blocks is more accurate than a statement-based vir-
tual coverage approach. Therefore, our approach can define
code blocks at a finer granularity than existing virtual cov-
erage, but we consider that the accuracy decreases when the
granularity is too fine. In particular, if the granularity of the
code blocks defined by our approach is as fine as the state-
ment level, the accuracy is expected to decrease. Future work
is needed to determine the level of granularity that will im-
prove accuracy the most.

The results in Fig. 12 show that the proposed approach
has no difference in accuracy compared to the existing ap-
proach in the SIR project. Table 4 shows the average number
of source code divisions (average number of code blocks) for
the existing and proposed approaches in each project. In Table
4, the three Defects4;j projects (Lang, Math, and Chart) show a
difference in the number of source code divisions between the
existing and proposed approaches. On the other hand, in the
three projects of SIR (Print_tokens, Print_tokens2, Tot_info),
there is almost no difference in the number of source code di-
visions. Therefore, it is considered that the proposed virtual
coverage by itself cannot achieve higher accuracy than the

TopN % of Each Approach in Defects4j

100
90
80
70
60
50

40

% of SUT Bug Locailzed

30

20

0 10 20 30 40 50 60 70 80 90 100
TopN %

Our Code Block and Existing Model —a— Our Code Block and Our Model

Figure 13: Results in RQ2 of Defects4]

TopN % of Each Approach in SIR

% of SUT Bug Locailzed

0 10 20 30 40 50 60 70 8 90 100
TopN %

Our Code Block and Existing Model —=— Our Code Block and Our Model

Figure 14: Results in RQ2 of SIR

existing approach for programs where the number of source
code divisions is almost the same as the existing approach.

5.3 RQ2: Result

Figure 13 shows the experimental results for RQ2 of De-
fects4J. The orange plots in Fig. 13 show the fault localiza-
tion accuracy when our virtual coverage is input to an existing
DNN model. The blue plot shows the accuracy when our pro-
posed virtual coverage is input to a DNN model trained with
the execution count reports. The values shown in the two plots
are almost identical, and there is no improvement in fault lo-
calization performance using our proposed DNN model.

Figure 14 shows the experimental results for RQ2 of SIR.
The proposed approach identifies more faults than the existing
approach in SIR.

Table 5 shows the results of adapting the Wilcoxon Signed-
Rank Test to the experimental results in RQ2. The test re-
sults of Defects4] show that p = 0.421 > 0.05 = «, so
the proposed DNN model is not significantly more accurate
than the existing approach. The test results of SIR show that

Table 5: Test Results in RQ2
Subject | 1-tailed (left) | 1-tailed (right)
Defects4] 4.205E-01 5.795E-01
SIR 1.818E-03 9.982E-01

International Journal of Informatics Society, VOL.16, NO.1 (2024) 33-42

p = 0.00182 < 0.05 = «, the proposed DNN model is
significantly more accurate than the existing approach in SIR
projects.

5.4 RQ2: Discussions

In Fig. 13, our proposed DNN model did not improve the
accuracy compared to the existing DNN model. In Defects4j,
we consider that the accuracy based on our proposed virtual
coverage (orange plot) is the maximum performance of the
SFL method [8] and that the accuracy cannot be improved
any further.

Figure 14, the experimental results in SIR, shows that us-
ing our DNN model significantly improves the accuracy com-
pared to the existing DNN model. In addition, Table 5 shows
that accuracy is significantly improved by using our DNN
model. Our proposed virtual coverage is created based on
the number of executions of each statement. We consider that
training the DNN model with the information used to create
our virtual coverage contributed to the improvement in accu-
racy shown in Fig. 14.

Defects4j showed no improvement in accuracy with our
DNN model, while SIR showed a significant improvement
(Table 5). It is a future challenge to investigate for which pro-
grams our DNN model is effective.

6 CONCLUSION

In this paper, we propose a new virtual coverage to be used
for existing DNN-based SFL approaches. Our proposed vir-
tual coverage is created based on the number of executions
and is able to divide the source code with finer granularity
than the existing virtual coverage. In order to improve the
accuracy of fault localization using the proposed virtual cov-
erage, we also proposed a DNN model using execution count
reports as training data. Since the proposed virtual coverage
is created based on the execution count reports, we consider
that training a DNN model with the execution count reports
enhances the effectiveness of our proposed virtual coverage.

Our approach is evaluated with six different projects avail-
able on Defects4j and SIR. Experimental results show that
our proposed virtual coverage is more accurate than existing
virtual coverage. We also obtained the prospect of further im-
proving the accuracy by using our proposed DNN model.

Further evaluation of our approach in broader and larger
SUTs is needed and is a topic for future work. In the future,
we intend to improve a DNN model in our approach to iden-
tify faults that cannot be addressed (e.g., faults for which the
only bug fix is to add code, performance bugs, etc.).

ACKNOWLEDGMENT

Part of this work is supported by fund from Mitsubishi
Electric Corp. The research is also being partially conducted
as Grant-in-Aid for Scientific Research C (21K11826).

REFERENCES

[1] G. Tassey, “The economic impacts of inadequate infras-
tructure for software testing,” (2002).

(2]

(3]

[4]

(5]

(6]

[10]

(11]

[12]

[13]

[14]

41

H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-
based software fault localization: A survey of tech-
niques, advances, and challenges,” (2016).

A. Perez and R. Abreu, “A qualitative reasoning ap-
proach to spectrum-based fault localization,” in Pro-
ceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings, ser. ICSE
’18. New York, NY, USA: Association for Computing
Machinery, (2018), pp. 372-373.

Q. I. Sarhan and A. Beszédes, “A survey of challenges in
spectrum-based software fault localization,” IEEE Ac-
cess, vol. 10, pp. 10618-10639, (2022).

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An
evaluation of similarity coefficients for software fault lo-
calization,” in 2006 12th Pacific Rim International Sym-
posium on Dependable Computing (PRDC’06), (2006),
pp. 39-46.

J. Jones, M. Harrold, and J. Stasko, ‘“Visualization of
test information to assist fault localization,” in Proceed-
ings of the 24th International Conference on Software
Engineering. ICSE 2002, (2002), pp. 467-477.

G. Laghari, K. Dahri, and S. Demeyer, “Comparing
spectrum based fault localisation against test-to-code
traceability links,” in 2018 International Conference on
Frontiers of Information Technology (FIT), (2018), pp.
152-157.

Z.7Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and X. Zhang,
“A study of effectiveness of deep learning in locating
real faults,” Information and Software Technology, vol.
131, p. 106486, (2021).

W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. Thu-
raisingham, “Effective software fault localization using
an rbf neural network,” IEEE Transactions on Reliabil-
ity, vol. 61, no. 1, pp. 149-169, (2012).

Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and J. Wen,
“Improving deep-learning-based fault localization with
resampling,” J. Softw. Evol. Process, vol. 33, no. 3, mar
(2021).

H. Kiryu, S. Ogata, and K. Okano, “Improve measuring
suspiciousness of bugs in spectrum-based fault localiza-
tion with deep learning,” in Proceedings of International
Workshop on Informatics, ser. IWIN *22. Kii-Katsuura,
Japan: Informatics Laboratory, (2022), pp. 3-8.

R. Just, D. Jalali, and M. D. Ermnst, “Defects4j: A
database of existing faults to enable controlled testing
studies for java programs,” in Proceedings of the 2014
International Symposium on Software Testing and Anal-
ysis, ser. ISSTA 2014. New York, NY, USA: Associa-
tion for Computing Machinery, (2014), pp. 437—440.
H. Do, S. Elbaum, and G. Rothermel, “Supporting con-
trolled experimentation with testing techniques: An in-
frastructure and its potential impact,” Empirical Soft-
ware Engineering, vol. 10, pp. 405435, 10 (2005).

R. Abreu, P. Zoeteweij, and A. J. van Gemund, “On
the accuracy of spectrum-based fault localization,” in
Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), (2007), pp. 89-98.

4

[15]

[16]

[17]

[18]

[19]

[20]

(21]
[22]

(23]

T.Ikeda et al. / Fault Localization with Virtual Coverage and Supervised Learning based on Execution Count Information

W. Masri, “Fault localization based on information flow
coverage,” Software Testing, Verification and Reliabil-
ity, vol. 20, no. 2, pp. 121-147, (2010).

W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar
method for effective software fault localization,” IEEE
Transactions on Reliability, vol. 63, no. 1, pp. 290-308,
(2014).

Lucia, D. Lo, and X. Xia, “Fusion fault localizers,” in
Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, ser. ASE
’14. New York, NY, USA: Association for Computing
Machinery, (2014), pp. 127-138.

S. Murtaza, N. Madhavji, M. Gittens, and A. Hamou-
Lhadj, “Identifying recurring faulty functions in field
traces of a large industrial software system,” Reliability,
IEEE Transactions on, vol. 64, pp. 269-283, 03 (2015).
J. Sohn and S. Yoo, “Fluccs: Using code and change
metrics to improve fault localization,” in Proceedings
of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2017. New
York, NY, USA: Association for Computing Machinery,
(2017), pp. 273-283.

Y. Li, S. Wang, and T. N. Nguyen, “Fault localization
with code coverage representation learning,” in Pro-
ceedings of the 43rd International Conference on Soft-
ware Engineering, ser. ICSE *21. IEEE Press, (2021),

pp- 661-673.
“OpenClover,” https://openclover.org/.
“gcov - A Test Coverage Program,”

https://gcc.gnu.org/onlinedocs/gcc/Geov.html.

D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings,
Y. Bengio and Y. LeCun, Eds., (2015).

(Received: November 15, 2023)
(Accepted: January 19, 2024)

Takuma Ikeda is a graduate student of Shinshu
University. His areas of interest include fault lo-
calization.

Hitoshi Kiryu is a graduate student of Shinshu
University. His areas of interest include formal
verification.

Satoshi Suda received his M.S. degree in
mathematics from Osaka University, Osaka,
Japan, in 2016. He joined Mitsubishi Electric
Corp.Currently he is a researcher of Solution En-
gineering Dept. at Advanced Technology R&D
Center.

Shinpei Ogata is an Associate Professor at Shin-
shu University, Japan. He received his BE, ME,
and PhD from Shibaura Institute of Technology
. in 2007, 2009, and 2012 respectively. From 2012
to 2020, he was an Assistant Professor, and since
2020, he has been an Associate Professor, in Shin-
shu University. He is a member of IEEE, ACM,
IEICE, IPSJ, and JSSST. His current research in-
terests include model-driven engineering for in-
formation system development.

Kozo Okano received his BE, ME, and PhD de-
grees in Information and Computer Sciences from
Osaka University in 1990, 1992, and 1995, re-
spectively. He was an Assistant Professor and an
Associate Professor of Osaka University. In 2002
and 2003, he was a visiting researcher at the De-
partment of Computer Science of the University
of Kent in Canterbury, and a visiting lecturer at
the School of Computer Science of the University
of Birmingham, respectively. Since 2020, he has
been a Professor at the Department of Electrical
and Computer Engineering, Shinshu University. Since 2023, he has been the
Director of Center for Data Science and Artificial Intelligence. His current
research interests include formal methods for software and information sys-
tem design, and applying deep learning to Software Engineering. He is a
member of IEEE, IEICE, and IPSJ.

