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Abstract - Reports of damage posted to social networking 
services (SNSs) by residents of disaster-stricken areas at the 
time of a disaster are expected to be of great use. They may 
be a valuable source of information in areas where it is dif-
ficult to install, operate, and maintain observation devices or 
where devices are missing. However, their effective use for 
damage assessment has not yet been determined. Therefore, 
a study on the complementary use of SNS data for flood anal-
ysis using data assimilation to improve damage assessment 
is urgently needed. In this paper, we report the evaluation 
results of data assimilation assuming that SNS data can be 
collected stably, and we discuss how useful SNS data are for 
flood damage assessments.

Keywords: flood estimation, state-space model, temporal-
spatial analysis, data assimilation

1 INTRODUCTION

There are concerns that the risk of floods will intensify on a 
global scale. The Fifth Assessment Report of the In-
tergovernmental Panel on Climate Change (IPCC) stated that 
global warming is gradually progressing, and it is likely that 
the frequency and intensity of rainfall will change accord-
ingly [1]. There are many areas worldwide where the fre-
quency and intensity of heavy rain and flooding are increas-
ing [2], [3]. Among the measures against flood damage, ob-
serving rainfall, rivers, and flooding and understanding the 
changing situations of rainfall and rivers as well as their in-
fluences enable people to determine what actions should be 
taken and to take effective steps to prevent or mitigate dam-
age. Many previous studies have attempted to estimate flood 
risks using area vulnerability. For example, in [4], the flood 
risk in the city was estimated with a detailed spatial resolu-
tion of approximately 2 meters. [5], [6] conducted research to 
estimate index-based flood risk using a theoretical hydraulic 
engineering model. Furthermore, a Chinese case in [7] ex-
amined recognition of risks during the 1997 Red River flood 
situation. Studies are actively conducted to correctly analyze 
risks by presenting risks to people in affected areas and rais-
ing awareness of individual flood risks, which can lead to mit-
igation behavior [8], [9].

However, these previous studies are not temporal estima-
tion methods; rather, they are static estimation approaches 
used to calculate maximum water level. A static estimation 
result is a risk estimation in which the risk value might change 
due to rainfall fluctuations. Considering evacuation behavior,

dynamic risk estimation is required because flood situations
change very rapidly with flooding phenomena over streets due
to water overflowing from small rivers and waterways spread-
ing throughout the city in a complicated manner and due to
rainwater that cannot be completely drained. Therefore, it is
necessary to calculate the high temporal-spatial flood level,
which fluctuates according to the rainfall situation, to under-
stand risk with a high temporal resolution for guiding evac-
uation behavior. Our research goal is to detect flooding as
time-series data with only a limited number of observation
devices.

This paper investigates whether SNS data can be used to
assess flooding. SNS data are effective for determining flood
levels even in places where it is difficult to install, operate,
and manage observation devices. Although there have been
many studies on flood damage detection using SNSs, their ef-
fectiveness has not been clarified, and the amount and content
of data collected are not fixed depending on the flood damage
case. This paper validates the SNS data using the following
procedure based on our state-space model (SSM), which was
used in our previous research. The purpose of SNS data val-
idation is to investigate whether SNS data can contribute to
the accuracy of flood assessment and under what conditions
SNS data can improve accuracy.

Then, we also suggest a system for an appropriate SNS use
case that could further improve the accuracy of flooding as-
sessment by adding SNS data as well as observation data and
calculating flooding conditions for the entire affected area. To
realize this system, it is necessary to validate the effectiveness
of the SNS data.

We generate quantified SNS data from flood simulations in
this paper. To generate the SNS data, we use time-series data
collected from observation devices at multiple locations. The
results of flood analysis simulation were assimilated using the
time-series data to simulate the SNS locations, the timing of
postings, and numerical flood levels. Then, we determine the
errors in the simulated SNS data. Afterward, we regenerate a
flood level at the observation location based on the simulated
SNS data with errors and examine the error accuracy against
the data assimilation accuracy.

2 RELATED WORKS

2.1 Flood Monitoring

Traditional river sensors [10], [11] have succeeded in de-
tecting disaster signs in large-scale rivers, which have the ad-
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vantage of stable monitoring and the disadvantage of instal- 

lation limitation (i.e., very large equipment, high installation 

cost of several million dollars, and complicated preconfigura- 

tion). Improvements in installation limitations enable the pos- 

sibility of a large number of sensor installations and reliable 

detection to improve monitoring sensors with higher resolu- 

tion. Flood prediction, hydrological techniques [12] or artifi- 

cial neural networks [13], [14] are proposed as high prediction 

methods. Predicting rising river levels has resulted in highly 

precise river inflow in the view of large-scale river analyses. 

However, these previous methods cannot predict the flooding 

of smaller rivers and waterways. This is because complex wa- 

ter flow prediction requires analyzing complicated relation- 

ships among a plurality of confluent rivers and factoring in 

the impact of rainfall dynamics. 

2.2 Risk Estimation with Higher Spatial 

Resolution 

Various studies have already attempted to generate infor- 

mation about places that are dangerous. In case studies, such 

as [15], [16], their research aimed to present risks on maps. 

Sinnakaudan et al. [15] developed an ArcView GIS extension 

as an efficient and interactive spatial decision support tool for 

flood risk analysis. Their extension is capable of analyzing 

computed water surface profiles and producing a related flood 

map for the Pari River in ArcView GIS. In another GIS-based 

flood risk assessment, Lyu et al. [16] studied the Guangzhou 

metro system’s vulnerability. Their results showed the vul- 

nerability of several metro stations using the flood event that 

occurred in Guangzhou on May 10, 2016. 

Some studies have proposed modeling methods that collect 

data strictly as input data [4], [17], [18]. Ernst et al. [4] pre- 

sented a microscale flood risk analysis procedure as a 2-meter 

grid, relying on detailed 2D inundation modeling and on a 

high-resolution topographic and land-use database. However, 

detailed risk estimation requires detailed data measurements, 

such as laser altimeter data, and it is not realistic to measure 

these data in all areas. 

2.3 Flood Detection through Social 

Networking Services 

Another way to learn about flooded areas is through social 

networking services (SNSs). Kim et al. [19] stated that so- 

cial networking is the fourth most popular information source 

for accessing emergency information. Then they applied so- 

cial network analysis to convert emergency social network 

data into knowledge for the 2016 flood in Louisiana. Their 

objective was to support emergency agencies in developing 

their social media operation strategies for a disaster mitiga- 

tion plan. This study explored patterns of interaction between 

online users and disaster responses. 

Sufi et al. [20] designed a disaster monitoring system on 

social media feeds related to disasters through AI- and NLP- 

based sentiment analysis. Their system has a mean accuracy 

of 0.05. They report that their system shows potential disaster 

locations with an average accuracy of 0.93. Teodorescu [21] 

designed a method to analyze SNSs for forecasting and relief 

and mitigation measures. His method analyzes SNS-related 

time series with the aim of establishing correlations between 

the disaster characteristics and the SNS response. Although 

studies using SNS have been applied in many flood damage 

cases, SNS data are not always posted as expected, and the 

accuracy may not be achieved as reported in these studies. 

2.4 Issues and Approaches 

To find safe evacuation routes, it is important to determine 

the situation regarding the roads in urban areas. Currently, 

flood damage assessment is based on two methods: numeri- 

cal simulation (e.g., flood analysis) and monitoring using low- 

resolution ground observation data (precipitation and river wa- 

ter levels). 

Numerical simulations are based on differential equations 

for flood flow in urban areas for a given amount of precipi- 

tation, and the maximum flood level in a detailed given area 

(e.g., a 10-m grid) is calculated. Based on the calculated re- 

sults, areas that are anticipated to be hazardous during heavy 

rainfall are published. However, the analysis uses an ideal 

model that assumes fixed parameters, such as the amount of 

precipitation, its runoff coefficient, and the outflow conditions 

of drainage channels. Therefore, in urban areas with complex 

rainfall distributions and land uses, the analytical results and 

actual flood levels will differ. As a result, flooding of roads 

occurs prior to the announcement of warnings and evacuation 

information, leading to damage. 

On the other hand, monitoring establishes thresholds for 

dangerous water levels at specific locations where there is 

concern about road underpasses and river breaches. This 

method involves situation monitoring to detect the 

occurrence of flooding based on observation data. This 

method easily assesses   the actual damage but has limited 

observation points. 

SNS data are expected to solve these monitoring limita- 

tions. As indicated in the previous section,  the importance 

of SNSs in flood damage detection has long been known and 

has been applied in many flood damage cases. However, there 

is a fundamental problem with water damage detection using 

SNS. That is, SNS data are not necessarily posted in every 

case. While it may work effectively in floods with a high 

number of postings, it is highly likely that it will not be as 

accurate as reported in floods with a low number of postings. 

In particular, it may be difficult to post while ensuring safety 

in heavily damaged areas, and communication problems may 

prevent posting. We are convinced that these problems are 

obstacles to the effective use of SNSs for flood damage detec- 

tion. Therefore, in this paper, we investigate how much SNS 

data regarding the number of postings, their contents, and the 

timing of postings would be effective for damage assessment. 

We intend to develop a system for improving the accuracy 

of flood level estimation through data assimilation using het- 

erogeneous data for investigation in this paper. We have previ- 

ously proposed a method for estimating the expansion process 

of flooding by applying data assimilation using heterogeneous 

observation time-series data to simulate flood analyses. Our 

estimation method showed a significant improvement, with an 

error of less than 9 cm. We are planning to add SNS data to 

this estimation method to further improve its accuracy and to 
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the time of the flood as simulated measurement values. Based
on simulated measurement values, 3⃝an SNS generator gener-
ates simulated SNS data. Using simulated SNS data collected
in this phase, we perform 4⃝data assimilation that combines
flood analysis simulations and observed data, and calculate
under what conditions the SNS data should be collected to
improve flood estimation accuracy. The process of generat-
ing simulated SNS data here involves data analysis in a cyber-
physical system. By feeding the analytical results back to the
data assimilation process, that is, the physical space, we ex-
pect to improve the accuracy of data assimilation and dissem-
inate contributions by the SNS Promotor. The purpose of this
research is to verify the accuracy of flood estimation using
simulated SNS data and to determine the accuracy, precision,
and timing of postings on SNSs that can be used in times of
disaster.

3.3 Main Objective of This Paper

Of the three phases required to develop our system, this
paper focuses on Phase 1: SNS Data Validation. This phase
is shown in the blue box in Fig. 1. The objective is to in-
vestigate whether SNS data containing various errors (some-
times the errors are considered to have a significant impact)
are effective in improving the accuracy of data assimilation
and flood estimation. The 3⃝′validation data are simulated as
expected data that would be posted based on the characteris-
tics of the SNS data. We use Twitter as the SNS data source.
These SNS data contain various errors in location, timing of
postings, and flood water levels. However, these data are gen-
erated by a simple simulation and are not fully replicated in
the SNS data.

When using SNS data for analysis, we need a process to
convert text- and image-based posts into numerical values.
The quantification of SNS data does not ensure an accurate
calculation of flood levels, since the data representation of
text-based SNSs is ambiguous; thus, it affects the quantifica-
tion of flood levels. SNS data reporting water levels during
flooding could include measurement of water levels (e.g., 30
cm) or be expressed in comparison to a body (e.g., up to his
or her knee). Not only water levels but also location and tim-
ing contain errors in quantification, depending on the type of
data representation. We investigate the SNS data impact con-
sidering this error on statistical flood analysis, such as data
assimilation.

3.4 SNS Data Validation for Data Assimilation

The basic idea of Phase 1 is described as follows: SNS
Data Validation for Data Assimilation in this paper is illus-
trated in Fig. 2(a), state-space model (SSM) using SNS Data.
The purpose of SNS data validation is to investigate whether
SNS data can contribute to the precise estimation of flood as-
sessment and under what conditions SNS data can improve
accuracy. Since we are unable to determine the error rate
contained in the SNS data collected at the time of flooding, we
generate alternative quantified SNS data from simulations. To
generate the SNS data, we use time-series data collected from
observation devices at multiple locations. The results of flood

(a) SSM: Observation Data

(b) SSM: SNS Data

Figure 2: SNS Data Validation for Data Assimilation
(st1,...,i:observation location, mdk:SNS data posting

location)

analysis simulation are assimilated with the time-series data
to simulate the SNS locations, the timing of postings, and nu-
merical flood levels (Fig. 2(b)( i )). For this data assimilation,
we used the spatial-temporal SSM proposed in our previous
study [22](Fig. 2(a) SSM using Observation Data). Note that,
a spatial-temporal state-space model in this paper, is applied
without using the waterway and sewer data used in the pre-
vious study [22], because these data are generally limited in
availability.

Then, we determined the errors in the simulated SNS data
(Fig. 2(b)(ii)). This process assumes the errors in location,
time, and water level value that are present in the textual data
of the actual SNS data. Afterward, we regenerate a flood level
on the observation location based on the simulated SNS data
with errors and examine the accuracy of the errors on the data
assimilation accuracy (Fig. 2(b)(iii)). This regeneration uses
a state-space model that applies the state-space model of the
previous study [22] toward the spatial direction. Here, if there
is a small difference between the time-series data and the data
assimilation results at the observation location, the SNS data
are applicable to flood assessment by data assimilation. In
contrast, if the data assimilation accuracy is low despite the
small error appended to the simulated SNS data, then there
are problems using the SNS data.

3.4.1 Process( i ) Simulated SNS data for Flood Analysis
Simulation

The process flow is shown in Fig. 3. In process( i ), the results
of the flood analysis simulation are assimilated with time-
series data collected from observation locations to simulate
the locations, timing of posting, and flood water level values.
This section outlines the spatial-temporal state-space model
used in our data assimilation. The basic flood analysis is
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state-space model 
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rainfall data [sti]
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Figure 3: SNS Data Process Flow (st1,...,i:observation
location, mdk:SNS data posting location)

based on a conventional simulation that uses a surface flood-
ing model. This method calculates the amount of runoff at
each grid location by expressing the flooding flow as a con-
tinuous equation and motion equations.

A continuous equation is defined as follows.

∂h

∂t
+

∂M

∂x
+

∂N

∂y
= 0 (1)

The motion equations are given as follows:

∂M

∂t
+

∂UM

∂x
+

∂VM

∂y
+ gh

∂H

∂x
+

1

ρ
τx(b) = 0 (2)

∂N

∂t
+

∂UN

∂x
+

∂V N

∂y
+ gh

∂H

∂y
+

1

ρ
τy(b) = 0 (3)

Each parameter is defined as t: time, H: water level, h:
flood level, U : flow velocity (X direction), V : flow velocity
(Y direction), g: gravity acceleration, ρ: water density, M :
flux (X direction), and N : flux (Y direction) (M = uh, N =
vh).

Here, the shear force in the x direction τx(b) and the shear
force in the y direction τy(b) are defined as follows.

τx(b) =
ρgn2U

√
U2 + V 2

h
1
3

(4)

τy(b) =
ρgn2V

√
U2 + V 2

h
1
3

(5)

The roughness coefficient n (the resistance value of river
water to touch obstacles) can be expressed as follows, consid-
ering the influence of a building.

n2 = n2
0 + 0.020× θ

100− θ
× h

4
3 (6)

（n:bottom roughness coefficient, no:composition equivalent
roughness coefficient,and θ:building occupancy rate)

Equation (1)-(3) calculates flood level h for each grid, ac-
counting for the runoff from the inside of the sewer line to the
ground surface and the flooding to the ground surface due to
rainwater. For the above equations, the inflow into each grid
represents the flux into each grid from adjacent grids and the
effect of buildings on the inflow in each grid.

We define D as the two-dimensional space corresponding
to the region of interest and divide D into m grids of d meters
each. Let si ∈ D denote the location coordinates of each
grid (si is denoted by i). Using equation (1)-(3), we calculate
ht(i) for the flood level of each grid at time t.

Then, using the state-space model, we estimate the flood
level of grid sk from the observations y(i)t collected at the ob-
servation location at time t. Grid sk(k = 1, 2, 3....,m) is the
location indicated by the SNS data. The state-space model is
represented by two types of observation equations; the flood
analysis simulation result ht(i) at grid si, and the difference
between the flood analysis simulation and the observed value
at the observation location. This state-space model is defined
by the equations (7)(8)(9).

y
(i)
t = Str

(i)
t +G

(i)
t x

(i)
t + e

(i)
t (7)

r
(i)
t = r

(i)
t−1 + v

(i)
t (8)

x
(i)
t = x

(i)
t−1 + u

(i)
t (9)

The r
(i)
t denotes the state at time t and v

(i)
t denotes noise.

The term G
(i)
t x

(i)
t represents the total inflow/outflow, and

x
(i)
t is the difference between the flood analysis simulation

results and the observed values. The u
(i)
t denotes the noise

at time t. G
(i)
t is the adjacency matrix indicating the spatial

component.

3.4.2 Process(ii) Appending Errors to Simulated SNS 
Data

Now, in process(ii), we append the error component to the 
simulated SNS data. Actual SNS data show a variety of rep-
resentations of water levels. For example, “It is flooded up to 
my knees,” “The car is flooded,” or pictures are posted with 
comments such as “It is raining so hard.” This paper consid-
ers SNS data that express water levels in words or show flood 
condition. The flood level ht(k) indicated by the SNS data is 
assumed to contain an error component e. The represen-tation 
type of the SNS data is considered to be a factor that causes 
errors due to the quantification of the SNS data (Table 1). We 
assume that the type of data representation occurs for each of 
the posted location, time, and water level values. For water 
level values, SNS data can be expressed in the form of 
measurement, comparison with an object, or description of 
the situation. In the case of measurement, it is considered to 
be measured by a guess, which results in a difference from 
the actual water level.

When compared with objects, water levels are explained 
based on objects such as knee height or up to the ankles, but
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the sizes of these objects vary from each user, so even if quan-
tified, they differ from the actual water level. Although this
is only an assumption, the average length below the knee for
Japanese people is 46.7 cm for males and 42.9 cm for females,
a difference of approximately 4 cm even in the average value.
In the describing the situation, the data mostly describe the
flooding aspect, with little mention of water levels; conse-
quently, it is expected that quantification itself is often dif-
ficult. In cases of pictures showing flood conditions, errors
could be contained during the estimation process of convert-
ing the images to numerical data.

For information representation of location, the following
information can be considered: GPS, address, road/river, land-
mark, and city/town name. When GPS data are attached to
SNS data, the exact location at the time of posting can be re-
flected in the quantified SNS data. However, if the location
indicated by the posted message differs from the location at
the time of posting, there is an error compared with the posted
location. The same error occurs for other types of data rep-
resentations. In some cases, addresses of flooded areas are
posted for rescue in flooding situations. Although there may
be an error of a few meters, the location information would be
approximately correct. If a road/river is described as a loca-
tion, it is considered difficult to determine the exact location
from the text content itself. In the case of landmarks, the data
may indicate the location in front of the landmark, whereas
it is also possible that the data indicate the location where
the landmark is visible, in which case a large error of ap-
proximately 100 meters or more would occur. For city/town
names, we consider a significant error of several kilometers
when identifying the location due to the wide range of areas
indicated by the data.

For the time information, the following three forms are
considered: timestamp, comparison, and date/time range. The
timestamp shows the exact date and time in the simulated
SNS data. For comparison, it is considered to be a popu-
lar form of time; nevertheless, representations, such as ”just
now” are likely to include an error of several tens of minutes,
as the sense of time differs among individuals. Additionally,
it is assumed that there are many cases describing a range of
dates/times, such as ”approximately 21:00” or ”this evening”.
While errors are expected to be small for numerical time rep-
resentation, in the case of ”night” and other representations,
errors are likely to be on the order of several hours. Further-
more, as with location, there are cases in which the time of
posting also differs from the time of flooding. This difference
may result in a significant error in the time representation.

We define the error components at location sk, resulting
from the quantification, as the error in the representation type
e∆v,∆l,∆t(k), the error relative to the posting location/time
ζ∆l′(k), and the error from the time of posting ζ∆t′(k).

3.4.3 Process(iii) Flood Level Estimation and its Valida-
tion

Process(iii) regenerates the time-series data for the observa-
tion location to investigate the error impact on the data assim-
ilation accuracy based on the simulated SNS data with error
ht(k) + e∆v,∆l,∆t(k) + ζ∆l′,∆t′(k). Here, we employee a

Table 1: SNS Data Representation Types

Data Types Example
Level measurement 30 cm

comparison knee height
description looks like river

Location GPS 34.9104, 135.8002
address 1-1 Gokasho,Uji-city,

road/river Route 24
landmark In fromt of Kyoto Station

city/town name Uji city
Time timestamp 2022/7/8/21:00

comparison just now
range approximately 21:00

state-space model that utilizes the model detailed in 3.4.1 in
the spatial direction. For equation (7)(8)(9), at time t, the
simulated SNS data ht(k) + e∆v,∆l,∆t(k) + ζ∆l′,∆t′(k) is
substituted into y

(i)
t to estimate the flood level h′(k′) of the

target location sk′ . Simulated SNS data on a particular loca-
tion is not continuous time-series data. Thus, there is only
one t in the simulated SNS data, and the state-space model in
process(iii) is applied only applied spatially.

The difference between the restored water level h′(k′) and
the actual water level h(k′) is shown as the effect of the error
component e∆v,∆l,∆t(k) + ζ∆l′,∆t′(k) on the data assimila-
tion method. This paper validates the SNS data effectiveness
by comparing flood level h′(i) regenerated from the simu-
lated SNS data at location k with the actual observed water
level h(i).

3.5 Evaluation and Discussion
3.5.1 Evaluation Purpose and Flood Case

This evaluation investigates the data representation effect that
text-based SNSs have on flood level quantification. SNS data
reporting water levels during floods often include the mea-
surement of water levels or are expressed in comparison to a
body of water. In addition to water levels, location and time
also contain errors in quantification, depending on the type
of representation. We investigate the SNS data impact with
these errors on statistical flood analysis, including data as-
similation. Based on the results, we will discuss what SNS
data form would contribute to flood assessments.

Our evaluation is based on SNS data simulated by a state-
space model with observed flood data. We append errors to
the simulated SNS data and observe the effects of the errors.
Then, we determine errors that could occur due to the quan-
tification of the SNS data, as shown in Fig. 4. This paper
uses flood observations collected in Tsushima city, Aichi Pre-
fecture, Japan, from October 22 to 23, 2017, due to rainfall
caused by Typhoon 23. A rainfall amount of 32 mm/h was ob-
served at 23:00 at the precipitation gauge nearest to our target
area (Aisai Observatory, Aichi Prefecture). Using these rain-
fall data as input values, we calculated a flood analysis sim-
ulation with the flood analysis simulation NILIM 2.0. With
the results of the simulated flood analysis, we apply the flood
estimation method using the state-space model. To generate
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Figure 4: Appending Errors to Simulated SNS Data

simulated SNS data, the state-spatial model with observation
data uses water level observation data at waterways collected
every 5 minutes from pressure-type sensors installed at four
locations in the target area.

Detailed information about the observation locations is pre-
sented as follows. Observation locations 1 and 2, and 3 and
4 are on the same waterway. The distance between observa-
tion locations 1 and 2 is approximately 500 meters, and the
distance between locations 3 and 4 is approximately 600 me-
ters. Observation location 4 is connected to the sewer. Two
waterways are approximately 500 meters apart. There are no
floodgates between the observation locations. The difference
in elevation in this area is within 0.30 meters, and the ele-
vation values (elevation model by the Geospatial Information
Authority of Japan) are equal at all four observation locations.
The heights from the bottom of the waterway to the road are
1.01, 1.14, 0.72, and 1.28 meters, and the usual water lev-
els are 0.06, 0.07, 0.16, and 0.31 meters. On the day of the
flood, the installed sensor devices showed, water overflowing
the waterways and flood levels of up to 0.26, 0.25, 0.63, and
0.48 meters above the road.

3.5.2 Evaluation Procedure

The evaluation randomly extracts simulated SNS data accord-
ing to the number of SNS data from the posted area size in
Table 2. Errors appending to the simulated SNS data are pa-
rameterized to indicate fluctuations. The parameters that in-
dicate the fluctuation of each error are shown in Table 2. We
begin by using the number of SNS data posted and the area
size where SNS data were posted as two common parameters.
Subsequently, we adopt four different parameters to generate
the errors as in (1)-(4). We repeat the above procedure five
times and compute the mean value of the estimation. A total
number of 489,637 simulated SNSs appended with the fol-
lowing errors are applied to the state-space model to calculate
the estimated water levels for the four observation sites with
time-series data.

Evaluation (1) There are two types of time information er-
rors originating from the representation of time information:
fluctuations in the estimation of time information from posted

Table 2: Parameters related to Error Fluctuations

Parameters Fluctuations
Number of SNS data 8,24,48,80,120,435

Posted area size (Radius)
10,20,30,40,50,

100[meters]
(1)Posting time lags 10,20,30,40[minites]

(2)Posting location (Radius)
10,20,30,40,50,

100[meters]
(3)Water level value error 0,10,20,30[cm]

(4)Number of fake data (Ratio)
10,20,30,40,50,
60,70,80,90[%]

SNS data, and fluctuations due to the gap between the posted
time and the flooding conditions indicated by the posting mes-
sages. We append these two fluctuations of time information,
e∆t(k) and ζ∆t′(k), to the simulated SNS data as posting
time lags behind flood conditions. The value of the param-
eter: posting time lags in Table 2 adds a delay to the time of
the simulated SNS data.

Evaluation (2) Location errors originating from the repre-
sentation of location information can be considered as fluc-
tuations in location information when location information is
estimated from posted SNS data, and fluctuations due to the
gap between the location indicated by the posted messages
and posting location. These two location fluctuations e∆l(k)
and ζ∆l′(k) are appended to the simulated SNS data as post-
ing location gaps. We randomly swap the location informa-
tion of the simulated SNS data within the radius area indicated
by the parameter: posting location gaps in Table 2.

Evaluation (3) The error, resulting from the information
representation of the water level value, could be the fluctu-
ation of the value when the water level is estimated from the
posted SNS data. Although this fluctuation can have a range
of different values, this paper assumes a fixed parameter for
the error in order to verify the effect of the SNS data. We add
the value indicated by the parameter: water level value error
in Table 2 to the water level in the simulated SNS data.

Evaluation (4) Furthermore, SNS data can be considered
to include the posting of fake data. To evaluate the effect
of the fake data on the assessment of flooding, we substitute
the simulated SNS data with the fake data. We prepare two
types of fake data; fake data that posts under flooding condi-
tions ”no flooding is occurring (water level: 0 m)”, and fake
data that post regardless of the current water level ”flooding
is occurring to the extent of the first floor of a building (water
level: 1.5 m)”. We parameterize the ratio of fake data among
the simulated SNS data to calculate the estimated water level.
Then we substitute 0 or 1.5 meters of simulated SNS data at
the rate indicated by the parameter number of fake data in
Table 2.
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(a) st1 Estimation Value (b) st2: Estimation Value

(c) st3: Estimation Value (d) st4: Estimation Value

Figure 5: Preliminary result: SSM with Observation Data

Table 3: RMSE: SSM with Observation Data

Location mean minimum maximun
st1 0.19 0.12 0.24
st2 0.20 0.15 0.23
st3 0.38 0.28 0.43
st4 0.28 0.18 0.33

3.5.3 Results

Preliminary result: SSM with Observation Data To com-
pare accuracies, this section shows the estimated flood level
l
(i)
tT ,k using the state-space model with observation data (Fig. 2

SSM using observation data). Of the four observation lo-
cations, we apply the observation data from three locations
(from time t = 0 to t = 50) to ”SSM using Observation
Data” to estimate the flood water level at the remaining one
location (the water level at st1 is estimated using the water
level time-series data at st2, st3, and st4). The estimation re-
sults are shown in Fig. 5. The black lines indicate the actual
observed flood water levels, and the magenta, green, blue, and
orange dots indicate the estimated water levels using the state-
space model. Root Mean Squared Error: RMSE between the
mean of the estimation results and the actual observed values
is shown in Table 3.

In Fig. 5 (a), the estimated water level at st1 was the most
accurate using the data from st3, with an average RMSE of
0.19 meters. The estimated water level for st2 in Fig. 5 (b)
was nearly the most accurate, with an average RMSE of 0.20
meters, using data from st3. Both the estimation for st3 in
Fig. 5 (c) and st4 in and Fig. 5 (d) using data from other ob-
servation locations were less accurate, with average RMSEs
of 0.38 meters and 0.28 meters, respectively. The results of
either estimation resulted in a large difference from the water
level at the flood peak. These results are due to the failure of
the ”SSM using Observation Data” to follow the rising and
falling water levels. In our previous study [22], the maximum

Table 4: RMSE: Result(1)：Posting Time Lags

Time Lags [minutes] 10 20 30 40
mean 0.09 0.10 0.12 0.14

st1 minimun 0.00 0.00 0.00 0.06
maximun 0.42 0.45 0.29 0.24

mean 0.06 0.06 0.07 0.09
st2 minimun 0.00 0.00 0.00 0.00

maximun 0.51 0.42 0.26 0.23
mean 0.16 0.16 0.16 0.12

st3 minimun 0.00 0.00 0.00 0.00
maximun 0.31 0.31 0.30 0.24

mean 0.09 0.09 0.08 0.05
st4 minimun 0.00 0.00 0.00 0.00

maximun 0.52 0.46 0.22 0.31

error was 9 cm because we included data of waterways and
sewers. However, this paper does not use those data, in order
to apply our system in areas where it is difficult to collect the
data. For all observation locations, we found that estimation
using data from distant observation locations resulted in large
errors.

Result (1)：Posting Time Lags This section describes the
results of the estimation when time lags are appended to the
simulated SNS data. The values of the time lags are gener-
ated as delays of 10, 20, 30, and 40 minutes. The RMSEs be-
tween estimated flood levels and actual observations applied
to the state-space model are shown in Table 4. For st1 and
st2, the larger the time delay is, the larger the mean value of
the RMSE is. However, for st3 and st4, the larger the time
lags are, the smaller the RMSE is. When the time delay was
10 minutes, the estimated water level difference was 0.09 me-
ters, an improvement by 10 cm from the estimated value in
3.5.3. The minimum value of RMSE was 0.00 meters for all
sti, equal to the observed value. On the other hand, the max-
imum value of RMSE was 0.52 meters, resulting in a large
error.

We found that the large time lag did not result in a very
significant effect on the estimated water level. One reason for
this may be that the actual flood levels were not large, with a
maximum of 0.6 meters, and there was no sudden water level
rise at any of the observation locations. However, it was found
that the time delay in the SNS data was allowable for a flood
of this scale.

Result (2)：Posting Location Gaps As in the Posting Lo-
cation Gaps we rewrote the location information of the simu-
lated SNS data within a specific area. We randomly changed
the values of the appended location gaps to different location
information from the true location of the area with a radius of
10, 20, 30, 40, 50, and 100 meters. Table 5 shows the RMSEs
of the flood estimation results using simulated SNS data with
location gaps. The minimum value was 0.00 meters, equal
to the actual observed value in all observation locations. For
st1 and st2, the RMSE increases with the location gap. The
mean RMSE for st3 and st4 is approximately the same re-
gardless of the location gap, whereas the maximum RMSE
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Table 5: RMSE: Result(2)：Posting Location Gaps

Location Gaps
[meter] 10 20 30 40 50 100

mean 0.08 0.08 0.08 0.08 0.09 0.09
st1 minimun 0.00 0.00 0.00 0.00 0.00 0.00

maximun 0.23 0.25 0.24 0.25 0.26 0.29
mean 0.06 0.06 0.06 0.06 0.06 0.07

st2 minimun 0.00 0.00 0.00 0.00 0.00 0.00
maximun 0.19 0.19 0.20 0.19 0.19 0.33

mean 0.15 0.15 0.14 0.14 0.14 0.16
st3 minimun 0.00 0.00 0.00 0.00 0.00 0.00

maximun 0.29 0.30 0.29 0.29 0.29 0.30
mean 0.09 0.09 0.08 0.08 0.08 0.08

st4 minimun 0.00 0.00 0.00 0.00 0.00 0.00
maximun 0.22 0.22 0.34 0.30 0.37 0.58

results in a larger RMSE as the location gap increases. Com-
paring only the mean values, the RMSE values are almost the
same for any sti. This finding can be explained by the fact
that our location gap area radius is at most 100 meters, which
is a small area. Thus, the estimation results indicate the possi-
bility of estimating the flooding situation for flooding of this
scale, even if there is a gap in the posting location within these
area sizes.

Result (3)：Water Level Value Error This section shows
the results of applying the state-space model with error values
appended to the simulated SNS data as Water Level Value
Error in Table 6. When no error values were added, the mean
values of st1 and st2 showed the smallest RMSE. The larger
error value resulted in a larger RMSE. On the other hand, st3
and st4 showed a large RMSE for mean value.

Figure 6 compares the time-series data of the actual ob-
servations with the mean value of the estimated values. For
st1 and st2, as the water level changes, the water level esti-
mated from the SNS data also changes and shows little dif-
ference from the actual observation. In addition, larger error
values tend to provide larger estimates of the results. More-
over, ST3 and ST4 result in a difference by approximately
0.20 meters between the estimated result (error value: 0) and
the actual water level at the peak of the flooding. We consider
that the estimated values were closer to the actual observed
value when the error value was increased since there was such
a large difference at the error value of 0. One possible reason
for this is that the values of st3 and st4 were estimated to be
lower due to the use of data from other observation locations
when generating the simulated SNS data.

Table 6 shows that the minimum value is almost 0.00 me-
ters, even when large values are added as errors. However,
the maximum value results in an extremely large value. In
st1 and st2, the mean values of RMSE do not change signif-
icantly after adding the error value, contrary to this the error
value: 0.30 meters in st4 shows an RMSE of 0.52 meters,
which is a large error. Accordingly, this would require a data
collection method and analysis process that reduces the error
in values, and a process to validate the reliability when large
water levels are estimated would be required.

Table 6: RMSE: Result(3)：Water Level Value Error

Value Error [meter] 0.00 0.10 0.20 0.30
mean 0.04 0.05 0.10 0.15

st1 minimun 0.00 0.00 0.01 0.06
maximun 0.13 0.17 0.27 0.30

mean 0.04 0.03 0.07 0.12
st2 minimun 0.00 0.00 0.00 0.03

maximun 0.26 0.15 0.25 0.39
mean 0.21 0.17 0.13 0.08

st3 minimun 0.00 0.03 0.00 0.00
maximun 0.30 0.28 0.25 0.22

mean 0.13 0.09 0.06 0.05
st4 minimun 0.00 0.00 0.00 0.00

maximun 0.22 0.18 0.37 0.52

(a) st1 Estimation Value (b) st2: Estimation Value

(c) st3: Estimation Value (d) st4: Estimation Value

Figure 6: Result(3)：Water Level Value Error (Mean Value)

Result (4)：Number of Fake Data We describe the estima-
tion results of substituting simulated SNS data for fake data.
The fake data were either 0 or 1.5 meters values at 10, 20, 30,
40, 50, 60, 70, 80, and 90% of the simulated SNS data used
in the state-space model. This evaluation did not add error
values to the water level values.

Table 7 shows an abstract of the RMSE results. Compared
to Table 6, the RMSE was larger and less accurate for the
results with the addition of the fake data. The RMSE becomes
larger as the ratio of fake data increases. When the ratio of
fake data 0 is 90%, st3 has an error of 0.69 meters. When the
fake data were set to 1.5 meters, a larger error resulted, with
a maximum error of 1.20 meters. In st2, with 0 fake data,
the maximum error was 1.5 meters. The process of averaging
offsets this error value, as the amount of fake data is as small
as 10%, resulting in a mean value of 0.15 meters.

Table 7 indicates that if the ratio of fake data is as small as
10 or 20%, the error would not be significant. Moreover, st3,
where the ratio of fake data is even 20%, shows a large error
in the mean RMSE, This arises from low estimation accuracy
even without error value st3. This evaluation did not add error
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Table 7: RMSE: Result(4)：Number of Fake Data

Ratio [%] 10 30 50 70 90
mean 0.07 0.13 0.21 0.29 0.36

0.0 minimun 0.00 0.00 0.00 0.00 0.00
st1 maximun 0.46 0.46 0.46 0.46 0.46

mean 0.15 0.36 0.57 0.81 1.02
1.5 minimun 0.00 0.00 0.00 0.00 0.00

maximun 1.20 1.20 1.20 1.20 1.20
mean 0.07 0.14 0.21 0.30 0.37

0.0 minimun 0.00 0.00 0.00 0.00 0.00
st2 maximun 1.50 0.46 0.46 0.46 0.46

mean 0.14 0.34 0.56 0.80 1.01
1.5 minimun 0.00 0.00 0.00 0.00 0.00

maximun 1.50 1.20 1.20 1.20 1.20
mean 0.26 0.34 0.42 0.51 0.58

0.0 minimun 0.01 0.01 0.01 0.07 0.07
st3 maximun 0.69 0.69 0.69 0.69 0.69

mean 0.22 0.20 0.44 0.63 0.81
1.5 minimun 0.00 0.00 0.00 0.00 0.00

maximun 1.01 1.04 1.04 1.04 1.04
mean 0.17 0.25 0.33 0.41 0.49

0.0 minimun 0.00 0.00 0.00 0.00 0.00
st4 maximun 0.59 0.59 0.59 0.59 0.59

mean 0.18 0.32 0.50 0.71 0.90
1.5 minimun 0.00 0.00 0.00 0.00 0.00

maximun 1.14 1.14 1.14 1.14 1.27

values to the simulated SNS data other than the fake data. We
also consider that adding error value, time lags, and location
gaps to the SNS data will further increase the error.

3.5.4 Discussion

The evaluation applied simulated SNS data with error data
appended to the data as fluctuations in four aspects (1)-(4), to
compare the estimated results to actual water levels. (1) time
lag and (2) location gap showed that a narrow range of fewer
than 100 meters does not significantly affect the RMSEs. For
(3) water level error and (4) fake data, we found that as long
as the error is small and the ratio of fake data is small, the esti-
mation accuracy does not reduce significantly. All evaluations
showed significant improvements compared to the state-space
model with observations. This finding shows that the observa-
tion locations are approximately 500 meters away from the es-
timated locations, whereas the simulated SNS data are within
100 meters, allowing for more accurate estimation. Unlike
time-series data, SNS data are sparse in the time direction,
although it is effective for estimation if collected at locations
that are near the estimated location.

In this evaluation, we also treated the number of SNS data
and posted area size as parameters. These two parameters
did not significantly affect the estimation results. Hence, we
found that even if the number of SNS data is small, locations
near the estimation location can be estimated with sufficient
accuracy. For st1 and st2, the smaller the parameters (1)-(4)
are, the smaller the error is. These results indicate that time
lag and location gap are allowable within the range of values

of this evaluation and that a small number of errors in water
level values and fake data prevents a large error. For st3 and
st4, the errors are large even without adding the water level
error, requiring investigation as to the cause. Since this paper
covers only four observation locations, we assume that this
is due to the effect of low water levels observed at the other
locations. The process in 3.4.1 calculated a low-accuracy es-
timation of the observed location. As a result, the simulated
SNS data based on the estimation are also to be lower than
the actual water level. Therefore, we need to improve the
state-space model itself. One idea is to apply observations
and SNS data together to the state-space model and imple-
ment a Kalman filter for locations where time-series data are
available.

The purpose of our research is to investigate the conditions
under which SNSs can contribute to flood estimation: how
SNS data, if available, can improve the accuracy of flood anal-
ysis. To achieve the system in Fig. 1 Phase 1 validated the ef-
fectiveness of SNS data in improving the accuracy of flooding
assessments as SNS data validation. The results of the assess-
ment using simulated SNS data showed that a certain degree
of error was allowable and that the accuracy was better than
the estimation using observation data collected over a longer
distance. We conclude that further processing improvements
are needed, such as removing larger errors by estimation us-
ing a combination of observed and SNS data.

4 CONCLUSION

This study investigated whether SNS data can be used to
assess flooding. We believe that SNS data can be effective in
determining flood levels even in places where it is difficult to
install, operate, and manage observation devices. Although
there have been many studies on flood damage detection us-
ing SNSs, their effectiveness has not been clarified, and the
amount and content of data collected are not fixed depend-
ing on the case of flood damage. This estimation method
could further improve the accuracy of flooding assessment by
adding SNS data as well as observation data and calculating
flooding conditions for the entire affected area. Thus, we con-
sidered it necessary to validate the effectiveness of the SNS
data. For the estimation, we utilized the method we have de-
veloped for estimating the expansion process of flooding us-
ing observation time-series data. This is a state-space model
that uses observation data to compensate for flooding analysis
simulations.

This paper validates the SNS data using the following pro-
cedure based on our state-space model. The purpose of SNS
data validation is to investigate whether SNS data can con-
tribute to the accuracy of flood assessment and under what
conditions SNS data can improve the accuracy. Since we were
unable to determine the error rate contained in the SNS data
collected at the time of flooding, we generate quantified SNS
data from simulations in this paper. To generate the SNS data,
we used time-series data collected from observation devices
at multiple locations. The results of flood analysis simulation
were assimilated using the time-series data to simulate the
SNS locations, the timing of postings, and numerical flood
levels (Fig. 2(b)( i )). Then, we appended errors to the simu-
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lated SNS data (Fig. 2(b)(ii)). Afterward, we regenerated a
flood level at the observation location based on the simulated
SNS data with errors and examined the accuracy of the errors
on the data assimilation accuracy (Fig. 2(b)(iii)).

The estimation results show that even if the posted SNS
data have a time lag and location gap, the error is small, aver-
aging approximately 0.10 meters for a small area within 100
meters, except for a certain observation location. In cases
where water levels contained errors and fake data were posted,
we found that the errors were small and that if the ratio of fake
data was small, the estimation accuracy would not be signif-
icantly reduced. All evaluations showed significant improve-
ments compared to the state-space model with observations.
Unlike time-series data, SNS data are sparse in the time di-
rection, although it is effective for estimation if collected at
locations that are near the estimated location. However, some
of the sensors show large errors in the process of calculating
simulated SNS data. These errors appeared because water-
way and sewer data were not used in the state-space model.
Since waterway and sewer data are difficult to collect, we plan
to resolve this issue statistically using a Kalman filter. In ad-
dition, while this paper evaluates a flood case from a water-
way, it is necessary to improve the accuracy by integrating
observed time series data provided by water level observation
devices so that the method can adapt to rapid water level ris-
ing, such as floods caused by large outflows from rivers. After
a further improvement in accuracy, we will develop and im-
plement Phase 2: Flood Assessment Promotion Requirement
and Phase 3: Flood Assessment.
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