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Abstract - Recently, public cameras are widely used and are 

deployed in various places. These multiple cameras can be 

used for tracking lost children or criminals. For person 

tracking, most systems transmit feature data of people such 

as feature values or person images to a server. The server 

compares the data with others and judges whether they are the 

same person. Artificial intelligence and numerical analyses 

techniques can be used for the comparison. However, in this 

conventional scheme, the computational loads of the server is 

proportional to the data amount that is transmitted to the 

server. This increases as the number of cameras increases. 

Hence, in this research, we propose a scheme for distributing 

the computational loads of the server arose in the 

conventional scheme. Moreover, we propose two methods to 

determine the timing for camera devices to transmits feature 

data to other cameras. We evaluate these proposed methods 

and compare their performances. The simulation results show 

that the average traffic for each camera device can be reduced 

significantly compared to that under the conventional scheme. 

Keywords: public cameras, feature data, processing servers, 

peer-to-peer. 

1 INTRODUCTION 

Due to the recent trend of Society 5.0 and Smart city, the 

development of comfortable cities using IT technology has 

attracted great attention. Understanding how and when 

people through the city can be useful in solving various social 

issues, such as marketing and research on human flow. 

Therefore, obtaining the travelling routes of people moving 

around the city contributes to the comfortable cities. If 

feasible to track people using many security cameras 

deployed in towns and cities, we can track many people 

widely. 

 Some schemes to detect a person in multiple images 

obtained from multiple cameras that do not share the same 

field of view have been proposed. These schemes track 

people by identifying the same person recorded in other 

cameras. The process of determining the same person from 

multiple images obtained from multiple cameras is called 

Person Re-identification and has been studied in recent years. 

These research uses deep learning or deep distance learning 

[1-4] to obtain feature values with high computational power, 

as well as using unsupervised learning [5]. 

Various research has been conducted to improve the 

accuracy of person re-identification, such as research on 

methods using unsupervised learning [5, 6]. However, when 

identifying the same person from multiple images obtained 

from multiple cameras, a wide communication bandwidth is 

required if all the images are transmitted to the server. In 

addition, if all the information obtained from the cameras are 

transmitted to the server and the person re-identification 

process is performed on the server, the load on the server 

increases as the number of cameras and persons tracked 

increases. Even in the case of using cloud video analysis 

services, the load on the analysis server increases. 

Hence, in this paper, we propose a person tracking method 

that does not concentrate the load on the server. In the 

proposed method, a camera network is built by multiple 

camera devices that can communicate with each other. When 

a person is captured in a camera's field of view, the feature 

data of the person image are calculated. The camera device 

then transmits the calculated feature data to the camera 

devices where the person is going to be captured next. The 

camera device that receives the feature data compares the 

feature data of each captured people with those received 

before and judges whether the captured person is captured 

before by other camera devices. For example, in the cases that 

a person is captured by a camera A and after that captured by 

a camera B, the person may move to the place where the 

camera B shoots after the place where the camera A shoots. 

By deploying many cameras and shooting wider area, the 

system can enable more accurate tracking. Since each camera 

device performs the process of person re-identification using 

the model in the camera, our proposed method has a large 

possibility to suppress the concentration of the load on the 

server as the number of cameras and persons increases. 

Furthermore, to evaluate the traffic of communication is 

generated when people are tracked using our proposed 

method, we develop a simulator. In the simulator, we assume 

that the camera devices are deployed at each intersection in a 

grid-shape roads. We also assume that the people through the 

rads from the left top corner to others randomly. We compare 

the average communication traffic of the server under a 

conventional method and that of our proposed method. We 

confirm that our proposed method can distribute the load. The 

organization of the paper is as follows. Section 2 inscribes 

existing research on person re-identification, a problem 
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deeply related to this research. Section 3 inscribes the 

proposed method, and the evaluation results are shown in 

Section 4. Finally, we conclude the paper in Section 5. 

2 RELATED WORK 

Person re-identification is the problem of identifying the 

same person from images of people captured by multiple 

cameras that do not share the same field of view. Given a 

query image, the person re-identification system searches for 

a person identical to the query image in the gallery images, as 

depicted in Fig.1. Numerous research improved the accuracy 

of person re-identification. Some of them consider person re-

identification as a classification problem in which each 

person in a gallery image is a different class or not and use 

the SoftMax loss function to train the model. Others use 

distance learning such as triplet loss, etc. [7-10]. 

Person re-identification is expected to have a wide range of 

applications in computer vision, such as surveillance, 

behavior analysis, and person tracking. But on the other hand, 

it has a major problem. When using multiple person images 

captured by multiple cameras that do not share the same field 

of view to perform person re-identification, the following 

inter-camera gaps are unavoidable due to the nature that the 

person images used were captured by different cameras [8].  

• Variety of perspectives

• Variety of lighting

• Variety of resolutions for captured people

The variety of perspectives refers to the fact that the

characteristics of postures and the characteristics of looks 

change due to the different angles at which the people are 

captured in each camera. Variety of lighting refers to the 

changes in the lighting conditions in cameras’ field of views 

depending on the camera positions and the times when people 

are captured. The appearances of people captured change 

under another lighting, such as the appearance of colors, etc. 

Variety of resolutions for captured people refers to the 

changes in the size of the bounding boxes for captured people. 

This changes the resolution of the resulting person image. 

The variety of resolutions also makes person re-identification 

difficult in that the resolution of a person captured in faraway 

positions is relatively low. Therefore, person re-identification 

systems that can give a higher accuracy even when the 

influences of these varieties are large. 

Numerous research efforts have endeavored to mitigate 

these challenges. In [7], an adversarial network is used to 

obtain a more accurate feature representation that eliminates 

gaps between cameras as much as possible. The method 

proposed in [9] uses StarGAN to transform the styles of 

people in images. The method transforms the images of the 

people captured by a camera device to the images that 

consider the shooting conditions (background, lighting, etc.) 

of other cameras, then it uses these images as training data to 

reduce the influence of gaps between cameras. Also, there is 

a study that investigate how the variety of viewpoints affects 

the accuracy of person re-identification, as in [8].  

Although numerous research has been conducted to reduce 

the influence of above differences in conditions between 

cameras, the following problems still exist. 

•Generating pedestrian images using GAN is too time

consuming. 

• Performance is significantly degraded when multiple

people are captured in the field of view. 

•Because model learning relies on external features of

clothes, which occupies a large area of the human body, 

performance deteriorates significantly when a human's cloth 

changes during the process or when there are multiple people 

wearing the same clothes. 

For the case where the camera images overlap, [11] 

performs partial figure re-identification using local features. 

Systematically investigating the impact of clothing changes 

on the accuracy of existing re-identification models, [12] 

generates pedestrian images with different attire to address 

this challenge. In [13], a method that person re-identification 

with removing the external information of clothes and 

focuses on body shape information is proposed. 

However, the systems that adopt these existing methods 

need to collect all camera images to a computational server. 

This causes a large communication and processing loads on 

the server. Even in the traditional approach, wherein cameras 

solely transmit feature data of identified individuals to the 

server, the computational loads concentrated on the server. 

We aim to relief this loads for person re-identification in the 

paper. 

3 PROPOSED METHOD 

In this section, we first provide an overview of the proposed 

person tracking method. After that, we explain the detail. 

3.1 Summary 

Authors considered the idea of tracking a person through 

surveillance cameras in a city or facility using a conventional 

re-identification method, as explained in Section 2. In this 

case, the method involves transferring images captured by 

cameras to a server via a computer network. The subsequent 

processing of person re-identification on the server requires a 

large amount of communication traffic for image 

transmission. Moreover, the methods in which information 

obtained from the video is transferred to the server and the 

person re-identification process is performed on the server 

increases the load on the server as the number. In this case, 

the method of transferring the images captured by the 

cameras to a server via a computer network and processing 

the person re-identification on the server requires a large 

communication traffic for the transmission of the images. 

Figure 1: Overview of person re-identification 
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Moreover, the methods in which information obtained from 

the video is transferred to the server and the person re-

identification process is performed on the server increases the 

load on the server as the number. 

The communication and the processing loads of the server 

increase in proportional to the number of the cameras. 

Therefore, the server's load becomes excessively high to track 

people in wide area. The authors propose a person tracking 

scheme to solve these problems in which features are 

transmitted among cameras. In our proposed method, a 

camera network is built using multiple camera devices that 

can communicate with each other, and the travelling paths of 

people in the target area are tracked by repeatedly 

transmitting and receiving feature data between camera 

devices and re-identifying people. The load on the server 

itself can be distributed to the clients while the sum of the 

load is almost the same as the load in the centralized case. 

If re-identification fails, the system cannot track the person. 

Thus, the tracking performance can deteriorate compared 

with the system that a server manages all the cameras. 

However, our proposed system can distribute the 

communication and processing loads arose on the server in 

the above system. 

3.2 Tracking Method 

In this section, we describe the process flow of person 

tracking using camera device network. The proposed method 

is based on the following four assumptions.  

•All camera devices that are connected to the camera device

network can communicate with each other and transmit 

feature data.  

•All camera devices have a neural network model that

calculate the feature values of a captured person. The input of 

the model is him/her image. Each camera device gets the 

images from their connected cameras. 

•The locations and the angles of the cameras are fixed, and

the positioning of all cameras is assumed to be known in 

advance.  

• All camera devices can estimate the direction of

movement of a person using the coordinate and the interframe 

information. 

Under the above assumptions, the camera devices 

connected to the computer network track the travelling path 

of a person by repeatedly transmitting feature data and 

judging whether the person is the same person. The following 

is an overview of the process flow when a person is 

successfully tracked between Camera A and B.  

1. Camera A captures a new person X.

2. Camera A detects a person, acquires a person image,

and computes the feature of the person X using a neural

network model.

3. The destination camera device is determined by the

destination determination method (detailed in Section

3.4) and the feature X is transmitted.

4. Camera B adds the feature X to the gallery.

5. A person moves and is captured by Camera B.

6. Camera B computes the feature values and compares

them with the feature values X in the gallery to

determine that they are the same person or not.

7. The fact that the person captured by Camera A was also

captured by Camera B indicates that the person moved

from A to B.

Figure 2 shows an image of a person re-identification 

process. In Fig. 2, there are two separate images of people on 

the left side, and they are input to the same neural network 

model (NN model). The distance between the output features 

is calculated. The distance is between the features is used to 

judge whether the persons in the images are the same person 

or not.  

3.3 Processes for Each Camera 

The flow of processes executed by each camera device is 

shown below.  

1. A person is captured by the camera.

2. Obtain bounding boxes and calculate features with NN

models.

3. Person identification by comparing the calculated

features with those in the gallery.

4. If these match, go to 7.

5. If these do not match, the feature data are transmitted

to a camera device that is determined using the

destination determination method (see Section 3.4)

because the person is a newly detected person. The

received camera device adds the feature data to the

gallery.

6. Return to 1.

7. Notifies the server that a person has been detected.

8. The feature data of the person are again transmitted to

the camera device determined using the destination

determination method. The received camera device

adds the feature data to the gallery.

9. Return to 1.

3.4 Destination Determination Method 

In this section, we describe a method for determining the 

destination camera device for transmitting feature data to 

another camera. When a person is captured by one camera, it 

is assumed that its feature data needs to be transmitted to 

neighboring camera devices to track the person. This is 

because the cameras neighboring to the camera device that a 

Figure 2: An image of a person re-identification process 
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person captured is likely to be captured in the next. However, 

in the method where the feature data are transmitted only to 

the neighboring cameras, there is a possibility that the 

tracking of a person fails if the neighboring cameras fail to 

detect the person. One of the solutions for avoiding the 

failures is transmitting the feature data to further neighboring 

camera devices (the neighboring camera devices of the 

neighboring camera devices, etc.). Therefore, in the proposed 

method, we introduce a parameter N that indicates the number 

of the communication hops from the source camera device to 

transmit the feature data. 

As described in Section 3.2, camera devices can predict the 

direction of moving people, and therefore, it is possible to 

limit the transmission destinations by using the direction. 

That is, the direction of movement can be used to limit the 

transmission destination. The transmitted feature data are 

deleted after a certain time has elapsed, preventing feature 

data that are not used for tracking from remaining in the 

gallery.  

Based on the above approach, we propose two types of 

methods for determining the transmission destination. The 

image of each method is shown in Fig.3. The first one is to 

transmit feature data to all the neighboring cameras within N 

hops when a person is captured by a camera device. The value 

of the parameter N influences the success rate of the person 

tracking. However, it is difficult to get the success rate by 

mathematical analysis from the value of N. Therefore, N 

should be determined so that the success rate satisfies the 

application requirement by the trial and error. The 

transmission timing is when the moving direction of the 

person is predicted. After the reception, the camera devices 

that are not likely to capture the person need to delete the 

feature data from the gallery (the proactive method). The 

other one does not transmit feature data when a person is 

captured by a camera device but transmits feature data to the 

camera devices that exist in the destination direction when the 

direction of the person is predicted (the reactive method). 

3.4.1 Proactive Method 

The flow of the proactive method is shown in Fig. 4. The 

gray areas in the figure represent roads. The people walk on 

those areas. For simplicity, the roads are grid-shaped as 

shown in the figure, but the same process can be applied to 

roads that are not grid-shaped. The camera devices are 

assumed to be located at each intersection, and the locations 

of the camera devices are marked with the numbers (1 to 6). 

The parameter N is set to 2, which indicates how many 

cameras are to transmit the feature values to the next camera. 

Procedure 1 shows how the features are transmitted when a 

person is detected by Camera 1. Camera 1 transmits the 

feature data of the person to the surrounding N (= 2) camera 

devices when it detects a person. (Cameras with red numbers 

are the those hold the feature data.)  

In Procedure 2, the person moves from the area that Camera 

1 shoots to the area that Camera 2 shoots. Camera 1 judges 

that Camera 2 is the camera that may capture the person in 

the next based on its direction. 

Figure 5: Processes for each camera device in the proactive 

method 

Figure 3: Time to start communication under 

our proposed method. 

Figure 4: The flow of the proactive method 
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In Procedure 3, Cameras 4 and 6 are notified to remove the 

feature values from the gallery. This avoids the cameras that 

are unlikely to capture the person from continuing to have the 

feature values and reduces the number of candidates for the 

person re-identification.  

Figure 5 shows the processes for each camera device in the 

proactive method. In the proactive method, when a new 

person is captured in the field of view of a camera, it 

calculates the feature values of the person. Then, the camera 

device determines whether the captured person is the same 

person that other camera devices capture before, by 

calculating the distance among feature values. When it finds 

the same person, it transmits only the information that the 

person was captured to the server. In the proactive method, 

after that, the camera device transmits the feature data of the 

captured person as well as own Camera ID to N (at maximum) 

neighboring camera devices. In this case, the system can 

avoid duplicate transmissions because it is possible to find the 

camera devices to which the feature data has been transmitted 

in the past from the list of camera IDs. If the same person is 

not found, it is assumed that the person is a new person and 

the feature data is transmitted to all camera devices to N (at 

maximum) neighbors. If the direction of the person is 

predictable from the direction and the location information at 

the time of frame-out, the number of galleries for person re-

identification can be reduced by notifying the camera devices 

to delete the feature data stored that is not likely to capture 

the person. 

3.4.2 Reactive Method 

The flow of the reactive method is shown in Fig. 6. The road 

and the camera devices deployment are the same as the 

example for the proactive method in the previous subsection. 

Unlike the proactive method, the reactive method starts 

transmitting feature data after the moving direction of the 

person is found.  

Procedure 1 shows the movement of the person from the 

area that Camera 1 shoots to that of Camera 2. In Procedure 

2, the feature values are transmitted only to the camera device 

that exist in the direction of the person when Camera 1 detects 

it. We assume that the direction is predictable based on the 

travelling path of the person in the camera's field of view, 

such as the trajectory of the person and the position at which 

the person frames out.  

 The reactive method has the advantage of reducing the 

amount of communication because each camera device 

predicts the direction in which a person is moving and 

transmits the feature data only to the camera devices that exist 

in the direction. On the other hand, if the direction of the 

person cannot be predicted correctly, the feature data are not 

transmitted to the camera devices in the direction of the 

person, thus the tracking fails. If the terrain is complex, or if 

it is considered difficult to correctly predict the direction of a 

person due to the positional relationship among cameras, the 

probability of tracking failures can be high.  

Figure 7 shows the processes for each camera device in the 

reactive method. In the reactive method, as in the proactive 

method, each camera device calculates feature data and re-

identifies people when a new person is captured in the field 

of view. However, the feature data are not transmitted 

immediately, but only to the N neighboring cameras in the 

direction of their movement after predicting them based on 

their trajectories.  

4 EVALUATION 

To evaluate the amount of communication traffic generated 

when tracking a person under our proposed method, we 

created a simulator and measured the performances. This 

section inscribes the simulator specifications, evaluation 

items, and the results. Because there are no existing methods 

that transmit feature data in camera networks, we show only 

the performance of our proposed method. 

4.1 Simulation Specifications 

To systematically evaluate the performance of our proposed 

methods, we assume that the roads are grid-shape as shown 

in Fig. 8. A camera network is built with camera devices that 

can communicate with each other and are located at each 

intersection.  

Figure 6: The flow of the reactive method 
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All camera devices have a neural network model for feature 

extraction. The input data of the model is the face images of 

the humans recorded by the camera devices. The output data 

of the model is the feature values of the inputted face images. 

Accordingly, we assume that each camera device judges 

whether the persons in the images are the same person based 

of the distance values between their feature values. The 

feature values are the output data of the model. Regarding 

about the features used in the neural networks, they depend 

on the models. 

We use three different maps to simulate various map sizes, 

as shown in Fig. 8. The figure shows cameras (assuming these 

can capture both vertical and horizontal streets) arranged in a 

grid where the square of the number of streets is the number 

of intersections. One section of the grid is fixed by 10 meters. 

The map becomes larger as the number of cameras increases. 

 4.1.1 Parameters 

We change the following five parameters in the simulator. 

•The parameter to determine the number of the camera

devices that receive the feature data. When the value is

N, the feature data are transmitted to N neighboring 

camera devices. 

•The number of persons flowing into the tracking area per

a second.

•The number of camera devices deployed in the tracking

area was assumed to be either between 4 and 49.

•Since a person entering an intersection is not always

detected by the camera, the detection probability can be

changed as a parameter ranging from 0.0 to 1.0. This 

value depends on perspective, lighting, and resolutions 

in real situations, but these conditions are various and 

thus we give the probability as a parameter. 

•We establish the communication bandwidth allocated for

transmitting feature data, facilitating the calculation of

transmission delay time. 

4.1.2 Performance Indexes 

As one of the indexes of the communication load on the 

cameras, we use the amount of communication traffic. The 

communication traffic of the feature data generated when a 

person moves in a map under the conditions of set parameters. 

Our developed simulator can calculate and output the delay 

time required for transmission by setting the communication 

bandwidth. We calculate the success rate of tracking from the 

delay. If the delay is longer than the time needed to move a 

person one block, the tracking fails.  

4.1.3 Person Travelling Model 

People walk at a speed of 1 meter per a second. Since one 

section of the grid is 10 meters long, the time between one 

camera capturing the person and the next is 10 seconds. A 

person enters the map at the upper left corner and exits at the 

lower left, the upper right, and the lower right corners. The 

number of people exiting from each exit is adjusted to be the 

same. 

4.2 Evaluation Results 

We get the results under the following situations. 

4.2.1 Evaluation Items 

The change in the communication traffic under the 

condition of different number of the camera devices and 

different people inflow. 

The change in the tracking success rate in the proposed 

method changing the communication bandwidth. The 

tracking success rate is the rate that the number of the people 

that are tracked from the time to enter the tracking area to the 

time to exit divided by the number of the entered people. 

When the communication delays among the camera devices 

are all shorter than the one block travelling time of a person, 

the person is tracked in the tracking area. 

Figure 8: A map for the simulation 

(25 camera devices) 
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Comparison of the average communication traffic of the 

server in a conventional method, in which the camera devices 

transmit the feature data to the server with that under our 

proposed method.  

4.2.2 Communication Traffic for 

Transmitting Feature Data 

We evaluated how the communication traffic changes when 

the number of cameras is changed to between 4 and 49, and 

when the number of people per second is changed to 1, 2, 3, 

or 4. In this evaluation, we assume that the communication 

traffic for one set of feature values is 22.586 [Kbit] assuming 

a 50-dimensional vector of float32 as the feature data. In 

addition, three 16-bit regions are allocated to record IDs for 

identifying the person and the cameras that have passed 

through. This results in a total of 48 bits of header information 

being appended. This value is the average data size of the 

actual features in the data set. Also, this is an example setting. 

The detection probability for each camera device is set to 0.8. 

The results are shown in Fig. 9. The vertical axis represents 

the communication traffic for transmitting feature data. The 

unit is Kbps. The horizontal axis represents the number of 

crosses. From the results, it can be considered that there is a 

proportional relationship between the number of people and 

the communication traffic. In the proposed method, the 

communication traffic ranges from 15 [Kbps] to 24 [Kbps] 

when the number of the camera devices is between 4 and 49 

and the number of people per second is between 1and 4. The 

number of cameras can be calculated from the number of 

crosses, as in Fig. 8.  

Figure 10 shows a graph of the communication traffic per 

number of cameras when the number of people per second is 

set to 1. The vertical axis indicates the communication traffic, 

and the horizontal axis represents the number of crosses. 

From this graph, it can be considered that there is a 

proportional relationship between the number of cameras and 

the number of transmissions. When the number of crosses 

exceeds 4, the communication volume reaches a certain limit, 

which, according to the experimental results of proactive 

method, is 15.9 [Kbps] to 16.4 [Kbps]. In this experiment, 

camera bandwidth was constant at 4.6 [Kbps]. It is considered 

that if the number of cameras is increased, after the start of 

the simulation, the communication delay will increase, and 

the tracking will not be successful. The communication traffic 

seems to have reached a certain limit.  

4.2.3 Tracking Success Rate 

To track a person without tracking failures due to latency, 

it is necessary to provide more bandwidth than the amount of 

communication generated. If the amount of communication 

per second generated by tracking exceeds the bandwidth 

provided, the delay in transmitting feature data will increase 

as tracking continues, and the delay will diverge to infinity.  
 For example, if the number of the camera devices is 20 and 

the number of people per second is 1, the amount of 

communication generated by the proactive method is 73.9 

[Kbps]. If the bandwidth is only 46 [Kbps], the tracking of a 

person travelling at the beginning will succeed, but the 

tracking of a person travelling after a certain time will not 

succeed because the transmission delay will be too large. 

Figure 11 shows the simulation result for this situation. The 

horizontal axis represents the number of people per second, 

and the vertical axis is the total of average communication 

traffic for successful tracking. Assuming that the 

communication protocol is LoRa, we set the bandwidth by 46 

[Kbps]. One of the merits of LoRa is low power consumption. 

LoRa can contribute to the recent trend of energy saving. 

Therefore, we assume the system environment in that such an 

energy saving communication protocols are used. These 

protocols unfortunately have a drawback that the 

communication speed is also low. The detection probability 

is set to 0.9. The success rate of the tracking becomes 0 when 

the number of people flowing into the tracking area increases 

Figure 10: Communication traffic changing the number of 

crosses (number of camera devices) 
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and the amount of communication exceeds the bandwidth. 

This indicates that if the bandwidth is not sufficient for the 

number of people through the area, the tracking will fail due 

to delay.

4.2.4 Features Data Size by Resolution 

To compare the amount of communication by features 

according to the number of pixels, the average feature data 

were calculated for each image size of 320 × 240, 640 × 480, 

1280 × 960, and 2560 × 1920, assuming face recognition 

using the OpenCV library's cascade classifier. The feature 

data sizes for each of the four resolutions are shown in Fig. 

12. The average communication traffic (amount of data

received per unit time) for the proposed method was

simulated and compared. The video bandwidth was set to 460

[Kbps], which is 10 times the roller video bandwidth. The

arrival time interval was set to 1 second. The simulation

results are shown in Fig. 13. The horizontal axis is the average

feature data size. The vertical axis is the communication

traffic, which ranged from 17.5 [Kbps] to 248.1 [Kbps]. From

this figure, it can be observed that the proposed reactive

method can communication traffic according to the feature

data size if the video bandwidth is 46.0 [Kbps], whereas the

conventional method can only perform to 58.7 [Kbps] to

183.7 [Kbps].

4.2.5 Comparison of Communication Traffic 

We simulated and compared the average communication 

traffic of the server (the amount of data received per unit of 

time) and that under the proposed method. This traffic arises 

when all the feature data of the people captured by a camera 

device are transmitted to the server or other camera devices. 

The simulation results are shown in Fig. 14. The horizontal 

axis is the person detection probability explained in Section 

4.1.1. 

The communication traffic for each camera device in our 

proposed method is reduced about 12th at most compared to 

the average communication traffic under the conventional 

method, in which the server identifies the same person on the 

server. This indicates that the load that was concentrated on 

the server in the conventional method is distributed to each 

camera device under our proposed method. 

5 CONCLUSION 

A human tracking scheme in which each camera device 

transmits the camera image to a server causes a large 

communication and processing loads on the server. This 

lengthens the delay for tracking and deteriorates the tracking 

success rate. Hence, in this research, we proposed a human 

tracking method in which each camera device transmits 

feature values of captured people among camera devices. We 

focus on the problem that the processing load of the server 

increases in proportional to the number of the cameras, not 

the absolute value of the processing load itself. We proposed 

two methods to determine the timing for camera devices to 

transmits feature data to other cameras. We developed a 

simulator for the evaluation and simulated the situation in that 

the number of the camera devices is between 4 and 49, and 

the tracking area is a grid-shape roads. From the simulation 

results, we have found a possibility that it is possible to 

significantly reduce the average traffic per camera device 

compared to the average traffic on the server. 

Our future work includes the evaluations of the recognition 

rate and the comparison between that of centralized case and 

that of the decentralized case. Moreover, we will focus on the 

processing load reduction of the cameras in the future. 
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