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Abstract - Microclimates, the climate measurements near
the ground, are helpful for agriculture, town management, etc.
To measure microclimates such as temperature and humidity,
it is necessary to locate sensors at all the observation points
on the ground. However, its high cost makes it unfeasible to
keep sensors installed at many points. Hence, although some
studies use machine learning techniques to learn the effects
of topography to predict microclimate, it is difficult to obtain
sufficient data to predict microclimate measurement because
of various factors that affect microclimate. In this paper, we
extended the conventional method that used the differences
in measurements between the nearby meteorological obser-
vatory and the observation point, and proposed two ways to
predict microclimate more accurately; One is using weather
classification, and the other is using the meteorological mea-
surements such as sunlight strength and wind direction.

Keywords: IoT, microclimate prediction, town manage-
ment, meteorology

1 INTRODUCTION

Microclimate is the climate observed in a small area near
the ground. Microclimate data is useful in several applica-
tions. For example, cultivation management using the ob-
served microclimate in farm field contribute to automation
and increases agricultural crops. Also, urban microclimate
data is useful to avoid the bad effect on our health such as
heatstroke. Consequently, to grasp microclimate is important.
Microclimate depends on the surrounding environment and it
depends on locations [1]. Hence, although it is necessary to
locate sensors at all the observation points on the ground in
order to measure microclimate such as temperature and hu-
midity, keeping sensors installed at many points is unfeasible
due to its large cost. Therefore, some studies proposed meth-
ods to predict microclimate.

Ueyama proposed a method that uses machine learning tech-
nique to learn the effects of topography, and predict microcli-
mate based on topographical map [2]. However, it is diffi-
cult to obtain sufficient amount of data to predict microcli-
mate measurement because of a wide variety of factors such
as shape, materials and colors of buildings that effect on mi-
croclimate as well as anthropogenic heat and plants effect on
microclimate.

To solve the problem, Kumagai et al. proposed a method
that predicts microclimate measurement at an observed point

based on the difference between the observation values at the 
observed point and those of the nearby meteorological obser-
vatory [3]. However, this method has a problem. This method 
simply adds the average of the differences between the ob-
served values at the same time of prediction time in past days 
to the observed values of the meteorological observatory, and 
thus the prediction accuracy is low.

In this study, we focus on the observation that the differ-
ence depends on weather. For example, difference between 
temperature observed on a road paved with asphalt and the 
temperature observed at meteorological observatory surroun-
ded by lawn will depend on the amount of sunlight. In this 
paper, we focus on weather as an important factor that inc-
rease the prediction accuracy. Therefore, we propose weather-
aware microclimate prediction methods that use weather cla-
ssification and meteorological observation.

The remainder of the paper is organized as follows. In sec-
tion 2, we describe related work. Section 3 describes our 
method and materials. Section 4 presents the evaluation meth-
ods and results with our method. In section 5, we provide 
conclusions.

2 RELATED WORK

2.1 Prediction Based on Machine Learning
Suzui at el. proposed a method that predicts microclimate 

with RNN (Recurrent Neural Network) based on the observed 
values at the prediction places and nearby meteorological ob-
servatory [4]. The method reflects the effect of surronding en-
vironment on the predicted values because it is based on the 
relation between the measurements at the prediction places 
and the nearby meteorological observatory. However, we need 
a large volume of learning data to use machine learning tech-
niques, and observing micloclimate measurements at the pre-
diction places for a long time is practically unfeasible.

2.2 Prediction Based on Topography Effects
Ueyama at el. proposed a method that predicts microcli-

mate by learning the effects of topography [2]. The method is 
mainly for farm fields including mountain areas, and predicts 
the highest and the lowest, and the average temperature of 
each day based on topography for each square area of the 10 
meter grid of a map. In this study, they assume to install envi-
ronmental sensors at several square cells, and utilize the dif-
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ferences between the observation values of the cells and that
from the nearby meteorological observatory. The study com-
putes the difference in temperature according to several fea-
tures in topography as the explanatory variables to estimate
the effects of topography on temperature by means of step-
wise regression. Then, they predict temperature for all cells
based on the difference. In their evaluation, they installed
sensors at 22 places, and predicted the highest and the low-
est temperature, and the average of each day in each cell. As
a result, the RMSE (Root Mean Square Error) values of the
daily average temperature at the observed places was 0.8 ◦C,
that of the highest temperature was 1.4 ◦C, that of the lowest
temperature was 1.2 ◦C, respectively. Their RMSE might be
considered a little large because the RMSE value of the pin-
point prediction provided by Japan Meteorological Agency is
1.5 ◦C.

2.3 Predicting Based on Meteorological
Observatory

Kumagai at el. proposed a method that first observes micro-
climate at several prediction places, and predicts the micro-
climate measurements using the difference between the ob-
served values at the prediction places and that of the nearby
meteorological observatory at each predefined time segment
[3]. In this study, their method predicts microclimate of each
time segment by adding the differences of each time seg-
ment to the observed values of the meteorological observa-
tory. Consequently, if we install a sensor at a prediction place
for a certain period of time, we can predict the microclimate
measurements at the place even after the sensor is removed.
However, although the difference depends on weather and
surrounding environment, this study do not take it into ac-
count. Hence, there is room for improvement.

3 PROPOSED METHOD

3.1 Overview
In this study, we propose a method that predicts micro-

climate with higher accuracy than the existing methods by
extending the method of Kumagai et al. [3]. The conven-
tional method predicts the differences between the observa-
tion values of the meteorological observatory and the micro-
climate measurements at each prediction time by calculating
the average of the differences at the same time in the past
days. Then, this method adds the differences to the obser-
vation values of the meteorological observatory for each pre-
diction time to predict the microclimate measurements. We
propose a method that predicts the differences with higher ac-
curacy than the conventional method to improve the micro-
climate prediction accuracy. We observed the measured data
and found that the difference between the observation values
at the prediction places and that of the nearby meteorological
observatory have different trends depending on weather. Ac-
cordingly, our method predicts the differences of the obser-
vation values between the prediction places and the nearest
meteorological observatory at each prediction time by utiliz-
ing the trend of differences.

In Japan, meteorological measurements should generally
be made in accordance with the Japan Meteorological Agency’s
guidebook [6] in order to avoid environmental influences. How-
ever, microclimate measurements are inevitably affected by
the environment, equipment, installation methods, and other
factors. In other words, the prediction of microclimate mea-
surements must take all of these influences into account. There-
fore, in this study, we predict the measurements when the
same equipment is installed in the same location in the same
manner as during the period of the learning data. This as-
sumption, which is common to both our method and [3], is
valid and appropriate because all those effects are included in
the past observation data to be learned.

Figure 1 shows the common process of both our methods
and the existing method [3] that predicts the microclimate
measurement by using the predicted differences at each pre-
diction time. Specifically, Fig. 1 shows an example of the mi-
croclimate prediction process for a day at a prediction place in
a farm. We predict the microclimate measurements of the day
at the prediction place from the observation data of the near-
est meteorological observatory and the past measurements at
the prediction place. The upper charts on the left of this figure
show the time series microclimate observations at the predic-
tion place in the past k days, and the lower charts show the
time series observations of the meteorological observatory in
the past k days. Our method predicts the differences using
those observation values of the k-day learning period. The
lower chart on the right of this figure shows the predicted dif-
ferences of the prediction day, and the middle chart shows the
observation values of the meteorological observatory of the
prediction day. Our method and [3] add them together at each
time of day to obtain the microclimate prediction, resulting in
the graph on the upper right.

As written above, our method predicts microclimate mea-
surements at a prediction place from the observation data of
the nearby meteorological observatory and the past observa-
tion data at the prediction place. This is useful because we can
predict microclimate measurements at the prediction place
even after we remove the sensor at the prediction place. Note
that it takes costs to maintain sensors long time. The pro-
posed method enables us to obtain measurements for a long
time by placing a sensor at the prediction place for a limited
time period.

In this study, we propose two methods to predict the dif-
ferences of the observation values to improve the prediction
accuracy. The first method predicts the differences by using
the weather classification obtained from the website. The sec-
ond method predicts the differences by using the meteorolog-
ical observation values such as sunlight strength, wind direc-
tion, and wind speed of the meteorological observatory. Note
that the first method is applicable only if some weather re-
port is available, whereas the second method requires specific
measurement values. Users can make a good prediction us-
ing only weather reports, and can make a better prediction if
specific measurement values related to sunlight and wind are
available.

Note that the prediction steps shown in Fig. 1 is common
among [3] and our proposed methods. The difference is the
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algorithm to compute the “difference” between measurements
of the meteorological observatory and of the sensor located at
the prediction place, which is shown in Fig. 1 as “predicts the
differences of the prediction day.” The specific difference is
shown in the following.

Kumagai et al. [3]: The differences are computed by aver-
aging the past differences between the meteorological
observatory and the sensor at the prediction place.

Proposed method 1: The differences are computed by tak-
ing into account weather reports to make better predic-
tion accuracy.

Proposed method 2: The differences are computed by us-
ing specific data measured by the meteorological ob-
servatory, etc., to further improve the accuracy.

The procedures of our first method are as follows. In the
first step of our first method, we install the environmental sen-
sors and observe microclimate for a certain period of time as
learning data for the prediction places. In addition, we calcu-
late the differences of the observed values between prediction
places and the nearby meteorological observatory. The sec-
ond step of this method classifies weather of each observed
time and extracts the differences if the weather is the same as
the prediction time. Finally, the method calculates the aver-
age of the extracted differences to predict the differences at
the prediction time.

The procedures of our second method are as follows. The
first step of our second method is the same as the first method.
This step observes microclimate for a certain period of time
as learning data for the prediction places and calculates the
differences of the observed values between prediction places
and the nearby meteorological observatory. The second step
of this method obtains 5 kinds of meteorological observation
values, i.e., sunlight strength, wind direction, wind speed, rel-
ative humidity and air pressure measured at the prediction
place or the nearest meteorological observatory. Here, we
define the distance between observation time point and pre-
diction time point as the euclid distance in the 5-dimensional
space. Finally, the method predicts the difference for the pre-
diction time by using the differences computed from the time
points whose distance in the 5-dimentional space is relatively
low.

3.2 Microclimate Prediction Method
We assume to install the environmental sensors and observe

microclimate for a certain period of time at the place for pre-
diction. Then, we remove the sensors to observe the microcli-
mate and predicts the microclimate measurements from this
time on. We represent an observation time by t and a predic-
tion place by p. Additionally, we represent the microclimate
measurement at the prediction place p at the time t by vt and
the observation value at the nearest meteorological observa-
tory at time t by V t. Let the time to predict the measurement
be t′. Our method predicts the difference St′

p between vt
′

and
V t′ by using the differences St

p, where t is included in the
period of learning data, to predict the unknown microclimate

measurement at time t′. In this study, we propose two meth-
ods to predict St′

p by utilizing the trend of St
p depending on

the weather on the microclimate measuremenrs in the period 
of learning data.

The first method predicts the differences based on the weat-
her classification obtained from such as weather forecast. The 
second method predicts the differences by using the meteo-
rological observation values such as sunlight strength, wind 
direction, and wind speed. Note that the observation values 
are more detailed than the weather classification. According to 
the conventional study [3], it is effective to predict the mi-
croclimate from the differences of almost the same time in the 
past days. Hence, our methods uses the differences of almost 
the same time in the past days. In this study, we use the dif-
ferences computed for the time in between before 30 minutes 
and after 30 minutes of prediction time t′ in the each past ob-
servation day. We specifically describe the methods to predict
the difference St′

p at time t′ in subsection 3.2 and 3.3.
We predict the microclimate measurements by using the

differences St
p depending on the two methods. If we obtain

the observation values of the meteorological observatory V t′ ,
we obtain the prediction value et

′

p for the prediction time t′

and the prediction place p from the following equation (1).

et
′

p = V t′ + St′

p . (1)

3.3 Calculating Differences Based on Weather
In this subsection, we describe a method to predict St′

based on the weather classification, which we can obtain from
such as weather forecast. This method predicts the differ-
ences based on the weather classification that we can com-
monly available. Since the difference has different trends de-
pending on weather, our method extracts the differences at
the time points when the weather is similar to the prediction
time t′ and also the time in a day is close to t′, in the past
observation days. Our method calculates the average values
of the extracted differences and uses the average values as the
predicted difference of prediction time t′.

Specifically, this method predicts the difference St′ in equa-
tion (1) shown in Section 3.2 by using the weather classifica-
tion. This method predicts the difference at time t′ based on
the differences computed for each time in between before 30
minutes and after 30 minutes of prediction time t′ in each past
observation day. More specifically, we denote the time t of
day d by t(d), the number of past observation days by k, and
the time we extracted from by t ∈ [t(d) − 30, t(d) + 30], d =
1, 2, . . . , k, where the unit of time is a minute. Our method
classifies the weather of each of the time t and prediction time
t′ into the 3 classes, i.e., sunny, cloudy, and rainy based on the
weather forecast. We denote the weather of time t by w(t) and
the set of time t included in the same weather class as the pre-
diction time t′ by X . Let the difference of the measurements
between the prediction place p and the nearest meteorological
observatory at time t by D(p, t). We obtain the St′

p from the
following equation (2).

St′

p =
1

|X|
∑
t∈X

D(p, t) (2)

International Journal of Informatics Society, VOL.15, NO.1  (2023) 33-42 35



Figure 1: Overview of Predicting Microclimate

Figure 2: Predicting the Difference of Sunny Days

We show an example of predicting the difference in Fig. 2.
Figure 2 shows the process to predict the difference at time t′

in a sunny day based on the measured differences between the
predicting place p and the nearest meteorological observatory
in the past k days. The back ground colors of the charts in
this figure show the weather classes of each time, i.e., sunny,
cloudy, and rainy weather obtained by the weather forecast.
Each of the orange, gray, and blue parts shows the sunny,
cloudy, or rainy weather. Three charts in the left-hand side
show the time series of the measured differences in the time
in between before 30 minutes and after 30 minutes of time t′

in each of the past k observation days. This method extracts
the differences of the time where weather is the same as that
of prediction time t′. The time of which we extract the dif-
ferences are shown by the green square in this figure. This
method predicts the difference at the prediction time t′ shown
in the right-hand side based on the extracted differences.

3.4 Calculating Differences Based on
Meteorological Measurements

In this subsection, we describe the method to predict the
difference St′

p by using the meteorological observation values
such as sunlight strength, wind direction, and wind speed. In
this study, we focus on the meteorological observation values
in addition to the weather as important factors that effect on
the differences. We observed the differences and the meteoro-
logical observation values, and found that the difference has
different trends depending on the observation values. There-
fore, we propose a method that predicts the differences by us-
ing the meteorological observation values. That is, if the ob-
servation values are available, more accurate prediction will
be possible.

Specifically, the prediction method in this section predicts
St′

p for prediction time t′ based on the differences computed
for the time in between before 30 minutes and after 30 min-
utes in prediction time t′ in each of the k past observation
days. More specifically, we denote the time t of day d by t(d),
the number of past observation days by k, and the time we
extracted from by t ∈ [t(d) − 30, t(d) + 30], d = 1, 2, . . . , k,
where the time unit is a minute. In addition to the differences,
this method uses the meteorological observation values, i.e.,
sunlight strength, wind direction, wind speed, relative humid-
ity, and air pressure, observed in the area that contains both
the prediction place and the meteorological observatory at the
same time t. Since the differences between two time points
tend to be small if those five meteorological observation val-
ues take similar values, this method extracts the differences of
the n-nearest neighbor time points in the 5-dimensional space
in which all time points in the k days are plotted. From those
n-nearest time points, we predict the difference of time t′.

In this paper, the meteorological observation values that we
used are sunlight strength [lx], wind direction [16−Directions],
wind speed [m/s], relative humidity [%], and air pressure [hPa],
observed by the meteorological observatory. We plot the ob-
servation values at time t and prediction time t′ in the 5-
dimensional space. Here, we define the distance between
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time t and prediction time t′ as the Euclid distance in the 5-
dimensional space.

Assuming that those five meteorological observation val-
ues follows the normal distributions, we normalize the obser-
vation values to so that they are comparable among different
dimensions. Specifically, we transform the observation values
into the values whose standard deviation α is 0.5 and mean
value is 0. This transformation standardizes the observation
values, and multiplies the standardized values by 0.5 in or-
der to adjust the interval [−2α, 2α], namely, 95% confidence
interval, to the interval [−1, 1].

However, the wind direction values do not follow the nor-
mal distribution because the values are angles. Hence, we
transform the wind direction values into the values between
−1 and 1 by min-max normalization. Since d wind direc-
tion is a plane angle, the direction is represented in range
[r−π ≤ θ < r+π] where r is the given reference angle. In or-
der to extract the neighborhood points of the prediction time
point in the 5-dimensional space, we set r is the wind angle of
the prediction point. Thus, we transform the wind direction
value at prediction time into 0, and normalize the values of the
other time points between −1 and 1 by the min-max normal-
ization. Using those normalized meteorological observation
values, this method calculates the distance between each time
point t and prediction time point t′ as the Euclid distance of
their normalized values in the 5-dimensional space.

Figure 3 shows an example to extract n-neighborhoods where
we consider 3-dimensional space for conciseness. We obtain
the learning data for time t′ by extracting the n time points t in
the ascending order of the distance from the prediction time
t′. Plotted points in this figure shows meteorological mea-
surement, and the colors of those points shows the variety of
the measurements. The red point shows the measurement at
prediction time t′, the purple points show the neighbor mea-
surements of the red one, and the black points show the mea-
surements in the learning data. The light yellow circle shows
the neighborhood area of the prediction time t′.

Specifically, the obtained n neighborhoods in the afore-
mentioned 5-dimensional space are n time points of the me-
teorological observatory measurements. Note that we assume
those five dimensions, i.e., sunlight strength, wind direction,
wind speed, relative humidity, and air pressure, are all ob-
served at the meteorological observatory. (Note that, in our
evaluation in Sec. 5, sunlight strength occasionally is not avail-
able at the nearest meteorological observatory, and we used
the values observed at the prediction area.) We denote this set
of time points by Y = {t1, t2, . . . , tn}. This method calcu-
lates the difference for the prediction time t′ based on Y from
the following equation,

St′

p =
1

|Y |
∑
t∈Y

D(p, t), (3)

where, we denote the differences between the meteorological
observatory and the prediction place p at time t by D(p, t).

Figure 3: Data Extraction in 3D Space

4 EVALUATION

4.1 Evaluation Method

We installed sensors 2JCIE-BL [5] made by OMRON and
observed microclimate at the seven prediction places around a
building in Wakayama University for 234 days from February
4 to August 25, 2021. Afterwards, we predicted the temper-
ature as a microclimate measurement to compare RMSE and
MAE(Mean Absolute Error) of errors among our two meth-
ods and the conventional method [3]. Hereafter, we refer to
our methods described in the section 3.3 and 3.4 as “Pro-
posed1” and “Proposed2.” Proposed1 estimates the differ-
ences of the observation values between prediction places and
the nearest meteorological observatory by using the weather
classification. Proposed2 estimates the differences by using
five kinds of meteorological observation values, i.e., sunlight
strength, wind direction, wind speed, relative humidity, and
air pressure. Figure 4 shows the seven prediction places in
the map around the building of Wakayama University. The
nearby meteorological observatory is Wakayama Local Mete-
orological Observatory. Accordingly, we use the five kinds of
meteorological observation values of the local meteorological
observatory. We put the sensors in the solar radiation shields
to shelter the sensors from the direct effect of sunlight, wind,
and rain as shown in Fig. 5. According to the Japan Mete-
orological Agency’s guidebook [6], in meteorological obser-
vation, we installed the sensors 1.5 m above the ground to
avoid the direct effect from the ground to the sensors. The
guidebook is not for microclimate; however, we installed the
sensors 1.5 m above the ground with a tripod because the ef-
fect of the ground is too strong in temperature measurement.
We attached weights to the tripod to prevent it from tipping
over or moving. The condition of the tripod was checked fre-
quently, particularly during strong winds. If it tips over or
moves, we exclude the anomalous measurement data and re-
turn it to its original location. In this way, we maintained the
correctness of the data.

The measurement time interval of the sensors was 1 minute.
The measured values fluctuate with time as random measure-
ment errors. Hence, we took the moving average with the
10-minutes window, as the 10-minute duration is the mea-
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Figure 4: Observed Points ( Source: Google Earth )

surement time interval of the meteorological observatory to
remove the fluctuations.

In this paper, we used the sunlight measured by the sen-
sors at the prediction places around Wakayama University
because, unfortunately, Wakayama Local Meteorological Ob-
servatory does not measure the sunlight. Since the relative
sunlight strength is similar if the locations are close to each
other, the sunlight strength measured at Wakayama University
will be applicable. Although the sensors were in the solar ra-
diation shields, the solar radiation shields cannot completely
shelter the sensors from sunlight, and our sensors measure in-
directly the strength of sunlight. Hence, we can obtain the rel-
ative sunlight strength by measuring the sunlight strength at
Place 6, which always is not in the shade even when the sun is
at its lowest elevation in a day. Note that cloud has a large ef-
fect on the sunlight strength, and the effect is fluctuated if the
cloud is devided into small pieces. Additionally, sunlight be-
latedly affects the microclimate because the effect is indirect
through the ground warmed by the sunlight energy. There-
fore, we use the average of the last 1-hour sunlight strength as
the sunlight strength at that time, instead of using the instant
value at the time.

We used leave-one-out cross-validation in which we predict
microclimate measurements in each of the prediction days
based on the dataset excluding the measurements in the pre-
diction day. We used the data of 1 month before and after
each prediction day because our methods and the conven-
tional method do not take seasonal variations into account.
Specifically, we predicted the temperature measured at each
prediction place and each time in each day of our observation
period from the observation data of 1 month before and after
each prediction day.

4.2 Preliminary Analysis

Prior to the evaluation of our method, we observed the rela-
tionship between the differences and the five kinds of meteo-
rological measurement to evaluate the predictability. Specif-
ically, we observed scatter plots whose vertical axis shows
the differences, and horizontal axis shows each meteorologi-
cal measurement, for each prediction places. As a result, we
found that the differences have different trends depending on
the meteorological measurements. Figures 7 (a)-(c) show the

Figure 5: Observation Device

Figure 6: 7 Places Average of RMSE

scatter plots for Place 4 which notably show the result. Their
vertical axes show the differences. The horizontal axes of the
chart (a), (b), and (c) in the Fig. 7 show the sunlight strength,
the wind direction, and the wind speed. Figure 8 shows a
boxplot of the observation values for reference.

Figure 7 (a) shows the differences with the sunlight strength.
We see that the differences correlate with the levels of the sun-
light strength. Figure 7 (b) shows that the differences are in
a large range between -2 and 4 ◦C when the wind direction
is east-northeast or west-southwest and in a small range be-
tween -2 and 0 ◦C when the wind direction is approximately
south. Figure 7 (c) shows the differences are approximately
-1 ◦C only when the wind speed is 7.5 m/s or over. The differ-
ences of all places also have different trend depending on the
meteorological measurements, which are similar to the case
as the Place 4.

As the result, we concluded that the trends of the differ-
ences are similar when the meteorological measurements such
as the sunlight strength, the wind direction, and the wind
speed takes similar values. Therefore, we expect to improve
the prediction accuracy by using the differences of the time
points that have similar meteorological measurements to the
prediction time points.

The parameter n in Proposed2 is the number of differences
used to predict each microclimate measurement. Although
the parameter n is an important factor to determine the ac-

G. Nishikawa et al. / Predicting Microclimate Based on Difference from Meteorological Observatory38



(a) Difference with Illuminance

(b) Difference with Wind Direction

(c) Difference with Wind Speed

Figure 7: Scatter Charts of Difference and Observations

curacy, to determine n logically is difficult. Therefore, in
this study, we predicted the microclimate measurements us-
ing each natural number of n and used the value that mini-
mizes the average of RMSE. Figure 6 shows the average of
RMSE values when n is in between 1 to 40, which shows that
the average of RMSE values decreases when 30 ≤ n and in-
creases when n > 30. Hence, we use the value n = 30 in our
evaluation.

4.3 Evaluation Results

Figure 9 shows the prediction errors of the conventional
method and our two methods. Figure 9 (a) shows the errors
in RMSE at each prediction places and their average. Fig-
ure 9 (b) shows those errors in MAE. Although the errors
have fluctuations depending on places, the errors of the Pro-
posed1 are totally smaller than that of the existing method at

Figure 8: Boxplot of Observation Values

all places, and the errors of the Proposed2 are smaller than
the Proposed1. Remember that the conventional method pre-
dicts the microclimate only based on the differences, but Pro-
posed1 predicts it by using the weather classification, and
Proposed2 predicts by using the meteorological observation
values. As the results, if the weather classification is avail-
able, Proposed1 is the better prediction than the conventional
method, and, if the meteorological observation values are avail-
able, Proposed2 is the better prediction than Proposed1.

Figure 10 shows those RMSE values at each prediction
time segment from 0:10 to 24:00. Figure 10 (a), (b) and
(c) show the RMSE values at each prediction place with the
conventional method, Proposed1 and Proposed2 respectively.
Figure 11 shows the relative RMSE of our methods based on
the RMSE of the conventional method, namely, if the RMSE
of the proposed method is the same as the conventional one,
the value is 1.0. We found that the prediction errors at night
time varies little among methods and places, but the errors
during the daytime vary greatly regardless of methods and
places. Additionally, at Places 1 and 5, the prediction error
of Proposed1 is similar to that of the conventional method,
meaning that weather classification is not effective for those
places. Both of those places are under tree branches or build-
ings and are concluded to be less affected by sunlight. There-
fore, Proposed1 predicts microclimate with higher accuracy
than the conventional method mainly for the places where the
sunlight has large effect.

Contrary to those places, at Places 3 and 6, Proposed1has
much smaller errors than the conventional method. Although
most of the prediction places are located between two build-
ings and thus tend to be windy, Place 3 and 6 is less windy
because those locations are at the front porch or not in be-
tween buildings. Therefore, we conclude that the errors are
relatively small because the places are less affected by the
wind and have small temperature fluctuations.

Comparing Figures 11 (a) and (b), we found that the Pro-
posed1 improves the accuracy only during the daytime, while
the Proposed2 improves it even during the nighttime. Espe-
cially, we improve the prediction accuracy by about 40% in
the daytime at the prediction place. At any time point, includ-
ing nighttime, Proposed2 improves the prediction accuracy
by about 10-30%. From these results, we concluded that Pro-
posed2 can improve the prediction accuracy including night-
time by using the meteorological observations, i.e., sunlight
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(a) RMSE

(b) MAE

Figure 9: Prediction Accuracy of each Place

(a) Conventional Method

(b) Proposed Method 1

(c) Proposed Method 2

Figure 10: RMSE in time Series

(a) Proposed Method 1

(b) Proposed Method 2

Figure 11: Relative RMSE in time Series

(a) Conventional Method

(b) Proposed Method 1

(c) Proposed Method 2

Figure 12: MAE in Time Series
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(a) Proposed Method 1

(b) Proposed Method 2

Figure 13: Relative MAE in Time Series

Figure 14: Relative Frequency Distribution

strength, wind direction, wind speed, relative humidity, and
air pressure.

Figure 12 and 13 show the errors of Fig. 10 and Fig. 11 us-
ing MAE instead of RMSE. Comparing the errors of MAE in
Fig. 13 (a), we find that the Proposed1 sometimes has a larger
error than the conventional method. Note that the smaller
RMSE with larger MAE means that the improvement in av-
erage is small, but extremely large error values are decreased.
Therefore, we see that Proposed1 reduced the extremely large
error values compared to the conventional method. In con-
trast, we find that the Proposed2 greatly improves the MAE
including nighttime in Fig. 13 (b). In other words, Proposed1
improves prediction accuracy by reducing large errors, and
Proposed2 improves the accuracy by improving the average
errors.

Figure 14 shows the relative frequency distribution of the
prediction errors. The horizontal axis shows the prediction er-
rors rounded to the second decimal place, and the vertical axis
shows the relative frequency of each rounded value. We found
that Proposed1 has the prediction errors slightly smaller than
that of the conventional method, and Proposed2 has the pre-
diction errors that is slightly smaller than that of Proposed1.

Table 1: Characteristics of 7 places
Place Description

1 Located under a small tree, with poor sunlight throughout the
day because of two high buildings. The ground is grass and
not paved.

Temperatures are similar to those of the weather station at
dawn, and lower than those of the weather station at other times
of the day. The temperature difference from the weather sta-
tion increases from morning to evening, and decreases toward
dawn.

2 Direct sunlight only when the sun’s altitude is high or the sun’s
direction is southwest. The ground is grass and not paved.
The lowest temperature among the 7 places is observed during

the daytime. Temperatures tend to be similar to those of Place
1, with a few hours of higher temperatures in the late afternoon.

3 No sunlight in the west. Wind is weak among the seven sites
because placed at the enterance of the building. The ground is
paved with stones.

The second highest temperature among the seven stations
is observed during the daytime. Temperatures are lower than
those of the weather station from evening to midnight because
of surrounded stones.

4 No sunlight from the southwest when the sun’s altitude is low.
The ground is grass and not paved.

Higher temperatures than the weather station are observed
during the daytime.

5 Under a footbridge as a roof, without daylight all day. The
ground is paved with stones.

Highest temperatures among the seven stations are observed
from late at night to early in the morning. At other times of the
day, temperatures are lower than those of the weather station.

6 No shade all day because of low buildings on the south side.
Wind is weak among the seven sites.

The highest temperatures are observed during the daytime
among the seven sites due to the influence of sunlight. The
temperature rises the fastest and drops the latest among the
seven sites.

7 The site is further away from high buildings than other sites.
The site receives only southeast exposure when the sun’s alti-
tude is low. The ground is paved with stones.

The temperatures are always around the average of all the 7
sites. Temperatures are higher than those of the weather station
in the morning and lower at other times of the day.

Table 1 shows the characteristics of these seven sites. Places
4 and 6 have high buildings to the north (about 30 m and 23
m, respectively), which provide shade in many places. On the
other hand, the buildings on the south side of places 4, 7, and
6 are all low (under 5 m), allowing sunlight to reach the site
from the south. As a result, as shown in Fig. 9, 10, etc., places
3, 4, and 6 have relatively long sunlight hours, resulting in
large prediction errors. The proposed method is particularly
suited to reduce the error due to such sunlight effects.

5 CONCLUSIONS

We proposed two weather-aware microclimate prediction
methods that predict microclimate measurements based on
the differences between the past measurements at the predic-
tion place and that of the nearby meteorological observatory.
One of our methods utilizes weather classification to predict
microclimate measurements, and the other utilizes multiple
meteorological measurement values.

We evaluated our methods using a data set measured nearby
Wakayama University. Specifically, we measured microcli-
mates at seven prediction places around a building of Wakayama

International Journal of Informatics Society, VOL.15, NO.1  (2023) 33-42 41



University for 234 days. As a result, we showed that both of
our methods outperform the conventional method, and among
the two proposals, the method based on meteorological mea-
surements has higher performance than that based on simple
weather classification. It means that, if detailed data is avail-
able, better prediction of microclimate is possible.

In future work, it would be important to analyze the sea-
sonal effect in order to reduce the amount of data for micro-
climate prediction. Knowing the relationship among different
microclimate measurements also will contribute to data re-
duction and performance improvements.
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Abstract - Autonomous mobility in mixed traffic environ-

ments with pedestrians need functions to avoid contact with 

pedestrians. In this study, path planning method adapted to 

pedestrian face direction was developed. For pedestrians who 

are aware of mobility (forward facing walking), small avoid-

ance path is generated. For pedestrians who are unaware of 

mobility (downward facing walking), such as those who are 

walking on their smartphones, large avoidance path is gener-

ated. Subjective evaluation experiments were conducted on 

four items: distance, speed, smoothness of avoidance, and re-

liability. The subjective evaluation results showed that the 

evaluations improved for all items except speed, both for for-

ward and downward walking. In particular, for downward 

facing pedestrians the evaluation of the distance was consid-

erably improved. In addition, objective evaluation indicators 

corresponding to the subjective evaluations were examined. 

Keywords: Autonomous Mobility, Pedestrian behavior pre-

diction, Yolo 

1 INTRODUCTION 

In recent years, the practical application of autonomous mo-

bility has been progressing worldwide in areas such as office 

building security and package delivery. Autonomous mobil-

ity moves in mixed traffic environments with pedestrians 

need a path planning function that avoids contact with pedes-

trians. When humans pass each other, they unconsciously 

make eye contact with each other and anticipate the other's 

movements to ensure smooth movement. Therefore, we are 

working on the realization of autonomous mobility that ena-

bles this type of behavior. 

DWA (Dynamic Window Approach) [1] and RRT (Rapidly 

exploring random tree) [2] have been widely used as static 

obstacle avoidance methods for mobile mobility. The prob-

lem with these previous studies was that dynamic obstacles 

such as pedestrians could not be avoided because they were 

not considered. 

For dynamic obstacle avoidance, pedestrian prediction us-

ing the Kalman filter [3], pedestrian prediction and avoidance 

using the potential method [4], and the application of ORCA 

(Optimal Reciprocal Collision Avoidance) to the prediction 

and avoidance of multiple pedestrians [5] have been studied.  

One of the problems for previous studies is avoidance for 

pedestrians walking on their smartphones. It is difficult for 

mobility to avoid pedestrians walking while gazing at their 

smartphones. This is because their walking path is unstable 

and behavior prediction is difficult. Also, pedestrians walking 

on their smartphones may be surprised when mobility sud-

denly appears in their field of vision when they pass by at 

close range while they are gazing at their smartphones. To 

solve the problem, a method of warning by sound can be con-

sidered. Although pedestrians may notice mobility with 

sound warnings, this method causes mobility to impede pe-

destrians' walking, and frequent warning sounds can make pe-

destrians uncomfortable. Especially when autonomous mo-

bility increases in the future, it is unlikely that autonomous 

mobility will always be prioritized over pedestrians. As an-

other means, a method of large avoidance can be considered. 

Although the method could avoid the pedestrian safely, such 

large avoidance would be excessive for pedestrians walking 

forward. If excessive avoidance is always performed, there is 

a high possibility that it will take a long time to arrive at the 

destination or the route cannot be generated and the mobility 

cannot move. Pedestrians appear to avoid other pedestrians 

according to their characteristics. 

Therefore, in this study, a method to adjust the amount of 

avoidance according to the face direction was attempted. Af-

ter predicting the pedestrian's behavior, the risk of collision is 

reduced by avoiding a small amount when the pedestrian's 

face is in front of the vehicle and a large amount when the 

face is facing downwards. Despite avoiding pedestrians using 

this method, if a collision is unavoidable, the mobility stops. 

This avoidance strategy is similar to that used by humans 

every day. 

2 PEDESTRIAN BEHAVIOUR EXPERI-

MENTS 

Pedestrian trajectory measurement experiments were con-

ducted to see how pedestrians avoid each other.  

The experiment was conducted on 12 subjects. Each sub-

jects were asked to walk at a natural speed and pass opposite 

pedestrians. The starting position was completely face each 

other and the walking distance was 10 m.  

An example of pedestrian trajectory against a forward-fac-

ing pedestrian is shown in Fig. 1. And an example of pedes-

trian trajectory against a downward-facing pedestrian is 

shown in Fig. 2. 
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Figure 1: An example of pedestrian trajectory against a 

forward-facing pedestrian. 

Figure 2: An example of pedestrian trajectory against a 

downward-facing pedestrian. 

Figure 3: The avoidance distance result. 

The amount of avoidance against forward-facing pedestri-

ans and the amount of avoidance against downward-facing 

pedestrians were compared. The amount of avoidance is 

shown in Fig. 3. 

Significant difference tests were conducted paired t-test 

with a significance level of 0.01 and a null hypothesis of ‘no 

difference in mean values between the two groups. The two 

groups are the amount of avoidance against forward-facing 

pedestrians and the amount of avoidance against downward-

facing pedestrians. The results of the significance difference 

test showed a p-value of 0.0077, with a significance level of 

1%.  This shows that pedestrians, on average, largely avoid 

other pedestrians who are downward-facing pedestrian. 

Therefore, in this research, an attempt was made to realize 

such human behavior in autonomous mobility. 

3 METHOD 

To safely avoid a downward-facing pedestrian, the face di-

rection of the pedestrian is recognized by face direction 

recognition. Next, if the result of the face direction is a down-

ward-facing pedestrian, a large avoidance path is generated. 

We considered these two requirements for pedestrian avoid-

ance. 

The method is based on the following procedure. 

Step1 Measurement of pedestrian position using 3D LiDAR, 

pedestrian detection, tracking, and pedestrian behav-

ior prediction. 

Step2 Pedestrian face direction detection by image recogni-

tion . 

Step3 Collision risk area calculation based on the pedestrian 

behavior prediction and pedestrian face direction de-

tection results. 

Step4 Pedestrian avoidance route generation. 

A schematic diagram of the proposed algorithm is shown 

below (Fig. 4). 

As in previous studies [3], 3D LiDAR information and a 

Kalman filter were used for pedestrian recognition and pedes-

trian behavior prediction. 

3.1 System Configuration 

The autonomous mobility used in this experiment is shown 

in Fig. 5. It was equipped with a camera for face direction 

detection of pedestrians and an omnidirectional laser sensor 

for self-localization and obstacle detection. Data obtained 

from these onboard devices is processed and controlled by a 

compact computer DH310 (Shuttle) and a Jetson Xavier NX 

(NVIDIA) (Table. 1). 

Figure 4: Method of pedestrian cooperative path planning. 

Figure 5: Mobility. 
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Table 1: System Configuration. 

Camera C920n web camera (Logicool) 

LiDAR VLP-16 (Velodyne) 

Computers DH310 (Shutlle) 

Jetson Xavier NX (NVIDIA) 

3.2 Face Recognition 

  To estimate whether pedestrians are aware of autonomous 

mobility or not, this study assumes that pedestrians whose 

faces are forward-facing are aware of autonomous mobility 

and those whose faces are downward-facing are not aware. 

Pedestrian face direction recognition was performed using 

deep learning with Yolo [6]. An example of recognition is 

shown in Fig. 6. First, 300 images were taken of each pedes-

trian with a forward face and a downward face. Next, 4000 

epochs of deep learning by Yolo were performed using the 

collected images. The recognition rate of forwarding-facing 

was about 99% and that of downward-facing was about 77% 

(Table. 2).  

3.3 Path Planning 

Route generation was performed by RRT* [7] based on the 

occupancy grid map. 

Based on the results of pedestrian face direction recogni-

tion and pedestrian behavior prediction, collision risk areas 

were defined on the occupancy grid map used in route gener-

ation (Fig. 7). For pedestrian behavior prediction, the walking 

speed of the tracked pedestrian was calculated using a Kal-

man filter, and the predicted position was calculated based on 

the calculated walking speed. 

The width of the collision risk area is the same as the width 

of the body when avoiding a forward-facing pedestrian (here-

inafter referred to as 'small avoidance'), and is wider when 

avoiding a downward-facing pedestrian (hereinafter referred 

to as 'large avoidance') so that a safe distance is maintained 

between the pedestrian and the collision risk area. The colli-

sion risk area was treated like an obstacle in the route gener-

ation. 

 Figure 6: Recognized example of face direction. 

Table 2: Recognition result of face direction. 

Figure 7: Collision risk area. 

4 EXPERIMENS AND RESULTS 

Using the proposed path planning algorithm, a subjective 

evaluation experiment on pedestrian avoidance was con-

ducted in a laboratory. A course was created as shown in Fig. 

8, and the autonomous mobility was moved at a translational 

velocity of 0.5 m/s. Pedestrians were instructed to walk at 

their natural walking speed and evaluate whether the autono-

mous mobility could avoid pedestrians. 

4.1 Path Planning Results 

The path planning results are shown below. For compari-

son, similar experiments were conducted under path planning 

without behavior prediction. Three types of path planning 

were used: without behavior prediction (Fig. 9), small avoid-

ance (Fig. 10), and large avoidance (Fig. 11). The bold lines 

are the selected paths and the branches are the candidate paths. 

It was confirmed that the system generated a largely avoida-

ble path for downward-facing pedestrians compared to for-

ward-facing pedestrians. 

Figure 8: Layout of pedestrian avoidance experiment. 

Figure 9: Path planning example of without behavior pre-

diction path planning. The bold line represents the se-

lected path and the branch line represent candidate path. 

Recognition result 

Forward Down-

ward 

Human 

behav-

ior 

Forward 99% 1% 

Downward 23% 77% 
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Figure 10: Path planning example of small avoidance co-

operative path planning. The bold line represents the se-

lected path and the branch lines represent candidate path. 

The square represents the collision risk area. 

Figure 11: Path planning example of large avoidance co-

operative path planning. The bold line represents the se-

lected path and the branch lines represent candidate path. 

The square represents the collision risk area. 

Figs 12, 13, and 14 show the trajectory examples for with-

out behavior prediction, small avoidance, and large avoidance, 

respectively. 

Figure 12: Trajectory example of without behavior pre-

diction path planning. 

Figure 13: Trajectory example of small avoidance coop-

erative path planning. 

Figure 14: Trajectory example of large avoidance cooper-

ative path planning. 

The paths also showed that large avoidance was avoided to 

a greater extent than small avoidance and that the timing of 

avoidance was delayed without the collision risk area. 

4.2 Subjective Evaluation Results 

Subjective evaluation of pedestrian avoidance performance 

was carried out on nine subjects. In the experiment with 12 

subjects in Chapter 2, it was shown that there was a signifi-

cant difference between the trajectories of avoidance against 

forward-facing pedestrians and those against downward-fac-

ing pedestrians. Therefore, a more detailed experiment on 

avoidance with mobility was conducted with nine subjects. 

Two trials of each condition were made to each subject. Ex-

periments were carried out based on the approval of the Hu-

man Ethics Review Committee of Kanagawa institute of tech-

nology. 

Subjective evaluation was performed with 4 evaluation 

items.  They are "distance from the autonomous mobility 

when passing by", "speed of the mobility when passing by", 

"smoothness of passing by (avoidance performance)", and 

"reliability when passing by". These items were evaluated in 

five levels, with the following ratings: 'good', 'a little good', 

'undecided', 'a little bad', and 'bad'. 

Subjective evaluation results are as follows (Figs. 15 and 

16). In the case of forward-facing pedestrians, the evaluation 

of all items improved in comparison without behavior predic-

tion and small avoidance. In the case of downward-facing pe-

destrians, the evaluation values of all items improved in com-

parison without behavior prediction and large avoidance. Es-

pecially, in the case of downward-facing pedestrians, the 

evaluation of distance was considerably improved. No 

change was observed in the evaluation of speed, partly be-

cause the vehicles were driven at the same speed in all three 

conditions. 

Figure 15: Subjective evaluation results for conscious pe-
destrians. 

Mobility 

Pedestrian 

Mobility 

Pedestrian 

Pedestrian 

Mobility 
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Figure 16: Subjective evaluation result. 

Significant difference tests were conducted paired t-test with 

a significance level of 0.05 and a null hypothesis of 'no dif-

ference in mean values between the two groups. In this 

study, method of successive categories was used to convert 

subjective evaluation results from ordinal scale to interval 

scales. Without behavior prediction and small avoidance 

were compared for forward-facing pedestrians, and without 

behavior prediction and large avoidance were compared for 

downward-facing pedestrians. The p-values for each item 

are shown below (Tables 3 and 4). 

5 PHYSICAL INDICATORS 

5.1 Objective Evaluation Results 

The physical quantities corresponding to the four evalua-

tion items “distance”, “speed”, “smoothness”, and “reliabil-

ity”, which were considered to be related to passing each 

other, were examined. 

First, we considered the item of "distance" when passing 

each other. In this study, the nearest neighbor distance at the 

time of passing was used as the distance perceived by the sub-

jects.  As an example, the distance was 0.83 m in the case of  

Table 3: Result of significance test for forward facing pe-

destrian (* p<0.05). 
item P-value

Distance 0.043*  

significantly different 

Speed 0.173 

Smoothness 0.057 

significantly different 

Reliability 0.025*  
significantly different 

Table 4: Result of significance test for downward facing 

pedestrian (* p<0.05, ** p<0.01). 
item P-value

Distance 0.004**  
significantly different 

Speed 0.041* 

significantly different 

Smoothness 0.017*  
significantly different 

Reliability 0.005**  
significantly different 

without behavior prediction, 1.05 m in the case of small 

avoidance and 1.45 m in the case of large avoidance.  

Next, "speed" was examined. Relative speed and absolute 

speed can be considered as index candidates. In this study, the 

speed perceived by the pedestrian is considered as the relative 

speed of the mobility. The pedestrian was asked to walk at 

natural walking speed in all three conditions and the transla-

tional velocity of the mobility was constant for all three con-

ditions. As an example, the relative velocity was 0.87 m/s in 

the case of without behavior prediction, 1.01 m/s in the case 

of small avoidance, and 0.93 m/s in the case of large avoid-

ance. 

 “Smoothness” was further considered. The turning an-

gular velocity ω during the avoidance is used as an indicator. 

The point where the angular velocity became 0.1 rad/s or big-

ger was defined as the avoidance start, and the angular veloc-

ity until it became less than 0.1 was averaged. In the case of 

without behavior prediction, no avoidance is performed, 

therefore the average value of the turning angular velocity 

reached to the nearest distance is used. As an example, the 

average value of the turning angular velocity during avoid-

ance was 0.00 rad/s is for the without behavior prediction, 

0.14 rad/s for small avoidance, and 0.29 rad/s for large avoid-

ance.   

5.2 Indicator for Reliability 

A physical quantity that correspond to the "reliability" 

when passing each other was examined. 

Time to collision (TTC) is a physical index used in the Au-

tonomous Emergency Braking (AEB) installed in vehicles. 

This indicator represents the time until collision with the lead-

ing vehicle if the current relative speed of the leading vehicle 

to the ego vehicle is maintained. Let 𝑥𝑒，𝑣𝑒， be the front end 

position and velocity of the ego vehicle and 𝑥𝑙，𝑣𝑙 be the rear 

end position and velocity of the leading vehicle in the world 

coordinate system. In this case, the relative distance 𝑑𝑥 and 

the relative velocity 𝑣𝑥 of the leading vehicle relative to the 

ego vehicle are 𝑥𝑙 − 𝑥𝑒，𝑣𝑙 − 𝑣𝑒  (Fig. 17). Therefore, if the 

value of TTC is 𝑡𝑥, the following equation is obtained (1). 

𝑡𝑥 = −
𝑑𝑥

𝑣𝑥

= −
𝑥𝑙 − 𝑥𝑒

𝑣𝑙 − 𝑣𝑒

(1) 

 In a previous study [8], it was shown that most people 

drive with a TTC of 4 seconds or longer. Therefore, TTC may 

be used as an indicator of reliability. In this study, a physical 

quantity by expanding the TTC to two dimensions (2D TTC) 

was investigated. In addition, pedestrians are assumed to be 

in constant velocity linear motion and mobility is assumed to 

have constant translational and rotational velocity. 

 The method for calculating 2D TTC is as follows. It was 

assumed that the pedestrian would move linearly at a constant 

velocity and the mobility would move at a constant transla-

tional velocity and a constant angular velocity. The coordi-

nate transformation from the world coordinate system to the 

mobility coordinate system is performed. The positions and 

velocities of the autonomous mobility and pedestrian in the 

world coordinate system are shown in the Fig. 18. The posi-

tion and speed of the mobility are (𝑥𝑒(𝑡), 𝑦𝑒(𝑡))  and
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(𝑣𝑒𝑥(𝑡), 𝑣𝑒𝑦(𝑡)), and the predicted position and the predicted

speed of the pedestrian are  (𝑥𝑝(𝑡), 𝑦𝑝(𝑡)) 𝑎𝑛𝑑 (𝑣𝑝𝑥 , 𝑣𝑝𝑦).

The distance from the center of gravity of the vehicle to the 

front center of the vehicle is ℎ. The position and velocity of 

the pedestrian in the world coordinate system are transformed 

into the mobility coordinate system with reference to the mo-

bility's center of gravity. In this case, the relative position 
(𝑥𝑟(𝑡), 𝑦𝑟(𝑡))  and relative velocity (𝑣𝑟𝑥(𝑡), 𝑣𝑟𝑦(𝑡))  of the

pedestrian relative to the vehicle front of the mobility are 

(𝑥𝑝(𝑡) − (𝑥𝑒(𝑡) + ℎ), 𝑦𝑝(𝑡) − 𝑦𝑒(𝑡)) 𝑎𝑛𝑑 (𝑣𝑝𝑥 −

𝑣𝑒𝑥(𝑡), 𝑣𝑝𝑦 − 𝑣𝑒𝑦(𝑡)) (Fig. 19).

The path distance 𝑑𝑝 is defined as the Equation (2).  The

path distance represents the distance from the current location 

to the collision point. 𝑡𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 represents the predicted time

when the collision would occur.  

𝑑𝑝(𝑡) = ∫ √𝑣𝑟𝑥(𝑡)2 + 𝑣𝑟𝑦(𝑡)2𝑑𝑡
𝑡𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

𝑡
 (2) 

In addition, the absolute value of the relative velocity is given 

by equation(3). 

𝑣𝑟(𝑡) = √𝑣𝑟𝑥(𝑡)2 + 𝑣𝑟𝑦(𝑡)2 (3) 

Therefore, if the value of the 2D TTC is 𝑡𝑐, it follows that

equation(4). 

𝑡𝑐(𝑡) =
𝑑𝑝(𝑡)

𝑣𝑟(𝑡)
(4) 

The value of the 2D TTC in the case of no collision is defined 

as infinite. 

Figure 17:TTC outline figure. 

Figure 18:World coordinate system. 

 The 2D TTC was calculated for three conditions: without 

behavior prediction, small avoidance, and large avoidance. 

The mobility, pedestrian position and 2D TTC values during 

the calculation using MATLAB are shown (Figs 20, 21, and 

22). 

Figure 19: Mobility coordinate system. 

Figure 20: Without behavior prediction 2DTTC calcula-

tion diagram. 

Figure 21: Small avoidance 2DTTC calculation diagram. 

Figure 22: Large avoidance 2DTTC calculation diagram. 
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5.3 Example of Physical Indicators 

An example of physical indicators value during forward-fac-

ing pedestrians is shown in the figure in chronological order 

(Fig. 23). 

5.4 Relationship Between Subjective Evalua-

tion and Physical Indicators. 

The results for the subjective and objective evaluation val-

ues are shown in Figs 24, 25, 26, and 27. 

Figure 23: Example of physical indicators. 

Figure 25: Relationships between speed and subjective 

evaluation. 

Figure 26: Relationships between smoothness and subjec-

tive evaluation. 

Figure 27: Relationships between reliability and subjec-

tive evaluation. 

As for distance, the subjective evaluation value improves 

as the value of the closest neighbor distance increase. 

For speed, the subjective evaluation value improves as the 

value of the relative speed at the closest approach decrease. 

Regarding smoothness, the subjective evaluation value im-

proves as the angular velocity of the turn increase. 

 The subjective evaluation value of the reliability worsens 

when the 2D TTC value is less than one second, while the 

subjective evaluation value improves when the 2D TTC value 

is two seconds or more. 

Figure 24: Relationships between distance and 

subjective evaluation. 
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6 DISCUSSION 

6.1 The Results of the Subjective Evaluation. 

Both forward and downward-facing pedestrians improved 
the subjective evaluation results for all items except speed. 
Speed was highly rated in all three conditions, with no signif- 
icant differences observed. It is considered that this is because 
the mobility moved at a constant speed under all experimental 
conditions. 

In the subjective evaluation of forward-facing pedestrians, 
the evaluation of large avoidance was slightly worse than that 
of small avoidance. Several subjects commented on the poor 
smoothness of large avoidance, such as "I felt poor smooth- 
ness" and "If I were a human, I would feel un-comfortable as 
if I were being large avoided”. From this result, it seems that 
small avoidance is appropriate for for-ward-facing pedestri- 
ans. 
Significant differences in distance and reliability were found 

for forward-facing walking. This result is thought to be due 
to the fact that the mobility without prediction (no collision 
risk area) pass pedestrians at a close distance, while those 
with a collision risk area maintain a certain distance while 
avoiding pedestrians. 
In downward-facing walking, significant differences were 

observed in all items except speed. In forward-facing walking, 
the presence of mobility can be confirmed early on in the ef- 
fective field of view, whereas in downward-facing walking, 
the effective field of view is narrower than in forward-facing 
walking because walking is done while gazing at the 
smartphone [9], and the pedestrian only confirms the pres- 
ence of the mobility when it enters the peripheral field of view 
just before passing by. Therefore, the evaluation of distance, 
the reliability and smoothness decreased, whereas with the 
collision risk area, the reliability also improved because the 
robot maintains a maximum safe distance and makes a larger 
avoidance compared to forward-facing walking. 

6.2 The Results of the Objective Evaluation. 

With regard to the relationships graph for smoothness (Fig. 
26), the subjective evaluation value largely changes at the 
small turning angle speed value. These conditions are path 
without behavior prediction and no avoidance is performed. 
Further studies are needed on these characteristics. 

With regard to the relationships graph for the reliability (Fig. 
27), there is an outlier where the subjective evaluation wors- 
ens despite the high 2DTTC value, but this is thought to be 
influenced by one subject's opinion that he felt nothing in par- 
ticular about the reliability because he avoided the area a little 
himself. Overall, the subjective evaluation largely changes as 
the value of 2DTTC increased. 

7 CONCLUSION 

In this study, we proposed a path planning algorithm that 
adapts to the face direction of pedestrians and safely avoids 
pedestrians who are walking while on their smartphones. 

Our subjective evaluation results suggest that there are re- 
lationships between the evaluation values and the physical 
indicators. 

This method would enable the operation of advanced col- 
laboration between pedestrians and autonomous mobility on 
campus. 
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