International Journal of Informatics Society, VOL.15, NO.1 (2023) 15-22

Regular Paper

Improve Measuring Suspiciousness of Bugs in Spectrum-Based Fault Localization
With Deep Learning

Hitoshi Kiryu', Nobutoshi Todoroki*, Satoshi Suda?, Shinpei Ogata*, and Kozo Okano*

fGraduate School of Engineering, Shinshu University, Japan
21w2025g @shinshu-u.ac.jp
t Advanced Technology R&D Center of Mitsubishi Electric
{Suda.Satoshi @ay, Todoroki.Nobutoshi @dn }.mitsubishielectric.co.jp
*Faculty of Engineering, Shinshu University, Japan
{ogata, okano} @cs.shinshu-u.ac.jp

Abstract - Localizing Faults is integral for debugging in de-
veloping software. Spectrum-Based Fault Localization (SBFL)
is a technique to localize faults. SBFL calculates the suspi-
ciousness scores for each line in a source code using execution
coverages of tests that represent which lines are executed in
which tests. Some studies apply a deep learning techniques to
SBFL. In these studies, the suspiciousness scores are calcu-
lated by giving a virtual coverage to a trained model. This pa-
per proposes a method to calculate the suspiciousness scores
of lines in source code from the execution coverages, and
evaluate an effectiveness of a bootstrapping sampling method.
The proposed method introduces the virtual coverage that ac-
tivates consecutive lines whose execution is the same in any
execution coverage. The method provides a ranking based on
the score. As a result of the evaluation, it is confirmed that
the proposed virtual coverage is better than a virtual coverage
in previous researches and the sampling method effectively
works in training model.

Keywords: SBFL, Fault Localization, Deep Learning

1 INTRODUCTION

When a problem caused by code is found in software de-
velopment or maintenance, it is necessary to localize and fix
bugs. Generally, such a debugging needs a lot of time and
human works. Many techniques to localize faults and fix bugs
have been studied to support developers in debugging.

One example of a bug-fixing technique is GenProg [1],
which outputs code that passes all the test suites with a genetic
algorithm. In techniques for localizing bugs, Various studies
[2]-[5] have been conducted. These studies propose methods
to identify statements that cause bugs by using information
such as bug reports, trace information, and visualization.

Another technique for localizing the fault is Spectrum-
Based Fault Localization (SBFL). SBFL localizes faults in
the source code based on the execution coverage and test re-
sults of each test. The technique calculates the suspiciousness
of each statement and provides a ranking based on the suspi-
ciousness. The basic idea of SBFL is that a line executed in a
failed test is more likely to contain a bug, while a line executed
in a successful test is less likely to contain a bug.

As for difficulty of Fault Localization with machine learn-
ing, One survey [6] mentions that the lack of large labeled data
sets and imbalance of training data makes the fault localization
using deep learning more difficult. Especially, the problem of
the imbalance of data often appears in fault localization using
test cases. This is because a quantity of failed test cases are
generally less than that of a quantity of passed test cases. In
learning with imbalanced data, minority class can be ignored
in prediction. For example, If A class occupies 99 percent
of data, a neural network can get more than 99 percent of
precision by just classifying inputs to the class.

In this paper, we propose a method based on SBFL tech-
niques and deep learning techniques to support developers in
debugging fault in source code. The method we propose also
address handling imbalanced data. The proposed method shall
localize a single fault in source code.

1.1 Related Work

Deep learning is a technology that has been showing results
in a wide variety of fields, including image recognition and
natural language processing. The field of fault localization
is no exception either. Ikeda et al. [7] proposed the method
that localizes a fault with a neural network. They trained the
network to predict test results from execution traces and used
ablated traces to localize a fault method.

Deep learning technique for NLP is utilized for fault lo-
calization. Guo et al. [8] proposed GraphCodeBERT that is
a pre-trained model for programming language that consid-
ers the inherent structure of code. The model is based on
BERT [9], and pre-trained in some tasks including Masked
Language Modeling. Source code, text data including com-
ments and data flow graph that represents variable relation are
used as explanatory variables.

In the field of SBFL, the study [10] has been conducted
to compute the suspiciousness using deep learning. In this
study, three architectures, RNN (Recurrent Neural Network),
CNN (Convolutional Neural Network), and MLP (MultiLayer
Perceptron), are utilized to compute the suspiciousness of
bugs, and CNN shows the best results. In another study [11],
which calculates the suspiciousness using RBF networks (Ra-
dial Basis Function Network), concluded that RBF networks
are more effective than existing methods such as Ochiai in

ISSN1883-4566 © 2023 - Informatics Society and the authors. All rights reserved.



16 H. Kiryu et al. / Improve Measuring Suspiciousness of Bugs in Spectrum-Based Fault Localization With Deep Learning

fault localization. SBFL techniques with deep learning use
execution coverage data that often consist of few failed tests
and a lot of passed tests as explanatory variables to predict
test results. Such an imbalanced data occurs deterioration of
a performance of the deep learning model. This is because
the model have to predict failed test, namely, the minority of
data. Zhang et al. [12] proposes a SBFL method using deep
learning technique to deal with data imbalance. The SBFL
method applies upsampling technique that increase quantity
of minority data in neural network training. The experiment
shows the method performed best with an upsampled data that
consist of failed and passed tests in the same ratio. These
studies that address SBFL using deep learning train a neu-
ral network model to predict test results, and utilize a virtual
coverage that is one certain line is executed to calculate the
suspiciousness scores from the trained model.

1.2 The Approach

This paper proposes a method to compute the suspicious-
ness of lines in the source code from the program spectrum
with deep learning. Using a trained model to predict test re-
sults from the execution coverages, suspiciousness scores are
measured for each line. In training model process, a bootstrap-
ping sampling method is utilized to deal with imbalanced data
that composed with a lot of passed tests and a few failed tests.
We propose a virtual coverage that differs to a virtual coverage
in previous researches about SBFL with deep learning tech-
niques. In the proposed virtual coverage, one certain block of
lines that are commonly executed across coverage is executed
rather than one certain line. The proposed virtual coverage is
input to the trained model in order to measure the impact of
each line on bug prediction in the trained model. We treat the
impact as suspiciousness scores. A ranking of lines that are
likely to cause bugs based on the suspiciousness scores are
provided.

In evaluation experiment, the results indicates the proposed
virtual coverage is better than the virtual coverage in previous
researches, and bootstrapping sampling method contributes
improving performance of fault localization. From the exper-
iment, We conclude that the proposed virtual coverage and the
sampling method effectively work in fault localization.

In the following sections, Section 2 describes the related
techniques for this research. Section 3, explain about the pro-
posed method. Section 4 shows the results in the evaluation
experiments and Section 5 discuss the results in the experi-
ments. Finally, we conclude in Section 6.

2 PRELIMINARIES

This section explains techniques, which compose the pro-
posed method.

2.1 Spectrum-Based Fault Localization
(SBFL)

SBFL is a technique to localize faults in source code by
calculating suspiciousness scores that represent probability of
causing bugs for every statement. Generally, a ranking based

def fizzbuzz(i):
S;| if 1 % 15 = 0:
S, return "FizzBuzz"
S;| elif 1 % 3 = 0:
S, return "Fizz"
S| elif 1 % 4 = 0:

# correct condition is “i %5 = 0"
Se return "Buzz"
S,| return i

i S1 S, S3 S4 Ss Se S, [test result]

testt| 15 [ 1 [ 1| o | o | o[ o] o0 0
test2| 3 1o 1]|1|ofo]o 0
test3| 4 1o 1]o|1]|1]0 1
testd | 5 1o 1]o|1]|0]1 1

Ochiai 0.707( 0.0 |0.816( 0.0 | 1.0 (0.707|0.707

Figure 1: Example of SBFL

Table 1: Four Values for Calculation of Suspiciousness

ey  Number of failed tests that execute
the program element.

ep  Number of passed tests that execute
the program element.

ny  Number of failed tests that do not execute
the program element.

n, Number of passed tests that do not execute
the program element.

on the scores are built to support developers to find the faults
out.

For example, Ochiai [13] and Dstar [14] are metrics to
calculate the suspiciousness scores. Here, ‘N’ is the exponent
variable of ef. The score tends to be higher if a line is executed
more frequently when the test fails or less frequently when the
test succeeds.

. ey .
Ochiai = (Ochiai)
Vies +ng)(es +ep)
efN
Dstar(+* = N) = ———— (Dstar)
ep +ny

The metrics for calculating the suspiciousness of a bug are
based on four values described in Table 1.

Figure 1 shows an example of SBFL. The source code in
the figure is a function that returns the result of FizzBuzz
for a given number ¢ as input. The fifth line of the function
contains a bug. This is because the conditional statement is
incorrect. The suspiciousness scores of each line is calculated
by Ochiai based on the results and the coverage of the tests.
The suspiciousness is the highest on lines fifth, which are
executed only when the test fails. This indicates that the
suspiciousness of the buggy lines is calculated properly. Thus,



International Journal of Informatics Society, VOL.15, NO.1 (2023) 15-22

Virtual Coverage Suspiciousness

Ti @2 .. TN Trained Network Scores
w1 0 ... 0 S
ta o 1 ... 0 .
w [0 0 .1 SN

Figure 2: Overview of Score Calculation in The Previous Re-
searches

from the test results and the coverage, it is possible to identify
the location of bugs. Note that in the example shown in the
figure, the score of S7 will get closer to that of S5 when the
test cases which input is a multiple of 5 and not a multiple of
3 increase. Furthermore, the score of S3 will decrease when
test cases which execute S3 and result pass increase. SBFL
focuses on the frequency of test failure in execution of line.

2.2 SBFL using Deep Learning Techniques

Some studies [10]-[12] focus on SBFL that utilize deep
learning techniques. In SBFL using deep learning, a virtual
coverage is input to a trained neural network model to calculate
suspiciousness scores. The model is trained to predict test
results from execution coverages. Figure 2 shows overview
of a virtual coverage. The virtual coverage in the figure is a
execution coverage based on a scenario that only one certain
line is executed in a virtual test. In order to measure the
contribution that the execution of statement affect to the result
prediction, the virtual coverage is input to the trained model.
Itis considered that the output of the virtual coverage indicates
the impact of the statement on the test results. Therefore, the
output of virtual coverage is treated as suspiciousness scores.

3 PROPOSED METHOD

This section describes the methodology of SBFL using a
Neural Network in detail.

In the proposed method, first, a neural network model learns
about a relation between the execution coverage of lines in the
source code for each test and the test result. The model takes
the coverage as input, and output respectively probability of
a test result, pass and fail. In order to measure the impact
on decision-making about test results in the trained model,
a virtual coverage is input to trained model. The impact on
decision-making is considered as the suspiciousness of bugs.
The trained model cannot be applied to other source code.
This is because the model learns only the relation between a
execution of lines in a certain source code and test results.

3.1 Training Network

Figure 3 shows the overview of the training step. The neural
network model learns implicit relations between the execution
coverages and test results to predict test results.

Generally, the execution coverages collected by tests are
composed with a lot of passed test and a few failed tests,
namely imbalanced data. A model trained with such imbal-
anced data tend to ignore the minority data. In SBFL, the
model have to emphasize minority data that is a few failed

Execution Coverage_.  Test Result
[x1, X2, X3, ..., Xy [e]

Result  Target
— [v] <> [€]

Figure 3: Overview of Training Model

tests. Therefore, the model have to deal with imbalanced data
in learning.

In order to handle the imbalanced data, we utilize the boot-
strapping sampling method [15] that Yan et al. proposed.
In the bootstrapping sampling method, the ratio of minority
to majority is set to 1:1 for each mini-batch. Data of the
majority group is divided into N pieces and create tentative
mini-batches. For each tentative mini-batches, the same quan-
tity of the mini-batch is randomly extracted from the minority
group and joined with the tentative mini-batch as a mini-batch.

3.2 Virtual Coverage

We introduce a block of code for a virtual coverage. Source
code is segmented into blocks. The block is defined as: For
any execution coverage C' and consecutive lines V.5;, S;+1 €
C, S; and S;;1 are in the same block if S; = S;;1. Figure
4 shows the example of block segmentation for statements S,,
in the example coverages of the tests ¢,,. The check marks in
the Figure means the statement is executed in the test.

The matrix of Virtual Coverage shows the example virtual
coverage of the blocks shown in Fig. 4. In the matrix, 1 means
that the line is executed and 0 means not executed. Therefore,
lines contained within the block are only executed. As shown
in Fig. 2, the virtual coverage in previous research is executed
by line. The proposed virtual coverage is executed by block.

Virtual Coverage
S1 S2 S3 Sa Ss Ss St Ss S

©
0
oy
o

block: 1 0 0 O O O O o0 O o0
blocks o 1 1 0 0o O O 0 O 0
blocks o o o0 1 1 0 0 0 O 0
blocks o 0o 0o o0 o 1 1 0 0 O
blocks o 0 0o 0O O o O 1 0 O
blocke o 0 0 0O o O O 0 1 1

We apply the block segmentation for lines in source code.
In the virtual coverage, one certain block, i.e. lines in the
same block, are executed. The neural network model learns to
focus on patterns that appear in the data and predict the results.
Therefore, by inputting the patterns that appear in data as the
virtual coverage, the contribution of each pattern to the test
results can be effectively extracted. This is the reason why we
segmented the source code into the blocks.

Suspiciousness scores are given to each blocks. Hence,
lines in the same block have same suspiciousness scores each
other. Since lines in the same block have the same execution
pattern, SBFL have a limit that difficulty of distinguishing



18 H. Kiryu et al. / Improve Measuring Suspiciousness of Bugs in Spectrum-Based Fault Localization With Deep Learning

Table 2: Bugs for The Experiment

Project Description Bug Versions LOC(Lines Of Code) Tests
Chart JFreeChart 8 5798 711
Math  Apache Commons Math 24 20803 6265
Lang  Apache Commons Lang 7 13901 677
t t t3 ty Block Divisions * The fix patch has not only add changes : If the patch has
5 v v v 1 only add changes, the original buggy source code have
S, v v v v ) no lines to be fixed.
S5 v v v v ) _
s v v * Changes in the fix patch spread across multiple chunks
4 . . . .
P v v 3 : The proposed method aims localizing a single fault,
° Thus we don’t collect such bugs.
Se v v
S v v 4
7 The proposed method is applied to the coverage collected
5 prop pp &
Ss v from the above three projects. The bugs we collected are
So v v v 6 shown in Table 2. The table shows bug versions of each
S10 v v v project and entire tests and entire LOC(Lines Of Code) of the

Figure 4: Example of Block Segmentation

such lines from each other. The proposed virtual coverage
gives blocks suspiciousness scores followingly the limit.

As for granularity of block segmentation, for example, an
exception handling can interrupt the execution in middle of
a code block. The block segmentation can be more smaller
segmentation than code block. Hence, the proposed method
can localize faults with the same or smaller granularity than
that of code block.

3.3 Extract Suspiciousness of a Bug

The virtual coverage is input to the trained model to caclu-
late the suspiciousness scores. We consider the output means
impact of patterns of lines on results prediction. In other word,
the value represents probability of causing bugs. Thus, We
treat the values as suspiciousness scores.

The suspiciousness scores are ranked in descending order
and output as a result of fault localization. The ranking
presents lines and the corresponding suspiciousness scores.
As example of Fig. 4, If the second block get the highest
suspiciousness score, The ranking has two lines ranked first in
the suspiciousness score. Lines that are not executed in failed
tests are excluded from the ranking, because they are not likely
to contain bugs.

4 EVALUATION EXPERIMENT

In order to evaluate the proposed method, we applied the
proposed method to actual bugs in some OSS projects. We
collect bugs from Defects4] [16] that is a database and exten-
sible framework providing real bugs to enable reproducible
studies in software testing research. We applied the proposed
method for bugs in three projects, that is Chart, Math, and
Lang. Defects4] has real bug source code and fix patches for
each bug. We collected bugs whose fix patch satisfies the
following conditions.

versions.

Following two types of virtual coverage are compare to
evaluate which method gives higher suspiciousness scores to
bugs:

* Block (proposed Virtual coverage) : lines in the same
block is executed.

* One-Hot (Virtual coverage in the previous researches) :
only a certain line is executed.

We collect four rankings based on the scores calculated
following four methods:

* One-Hot
* Block
* One-Hot with Bootstrapping Sampling
* Block with Bootstrapping Sampling
The average processing time in the experiment for 79 buggy
source code shown in Table 2 was 24.33 seconds. The exper-

iment is conducted with following environment:

¢ OS : Windows 11 Pro

CPU: Intel i5-9400F

* Memory: 16GB

GPU: GTX1660

The cumulative sum charts in the Fig. 5, 6, 7, 8 show the
comparison of the experiment results. The charts describe
how many y percent of faults are ranked in top x percent.
Therefore, when a chart is above another chart, the method of
the chart can rank faults more higher.



International Journal of Informatics Society, VOL.15, NO.1 (2023) 15-22

4.1 Compare of The One-Hot and The Block

Figure 5 shows the comparison of the One-Hot and the
Block. The chart of Block is always above one of the One-Hot.
In Fig. 6, The chart of Block with bootstrapping sampling is
always above one of the One-Hot with bootstrapping sampling.

From the two comparison, The curves of Block always ex-
ceed the curves of One-Hot regardless of whether bootstrap-
ping sampling is used.

4.2 Compare of The Effectiveness of
Bootstrapping Sampling

Figure 7 shows the comparison of One-Hot and One-Hot
with bootstrapping sampling. The chart of One-Hot with
bootstrapping sampling is always above or same as another.
In Fig. 8, The chart of Block with bootstrapping sampling is
mostly above or same as another except 35% of the statements.

From the two comparison, The curves of bootstrapping sam-
pling mostly exceed the curves of method without bootstrap-
ping sampling.

4.3 Statistical Hypothesis Test for TopN %o

In order to compare the result of each method, we conducted
statistical hypothesis test to TopN% values of each test. Table
3 describes p-values of the Wilcoxon signed-rank test for each
combination of the methods. Wilcoxon signed-rank test is
a non-parametric statistical hypothesis test for paired data to
compare the locations of two populations. In the test, The
null hypothesis is that the locations of two populations from
paired data are not different significantly, and the alternative
hypothesis is that the locations are different significantly. In
the right-tailed test for method A vs method B, the alternative
hypothesis is that the location of population of method A
is greater than the one of B, and in the left-tailed test, the
alternative hypothesis is that the location of population of
method A is less than the one of B.

If ap-value of a test is greater than a given significance level,
the hypothesis of the test is accepted. The hypothesis of right-
tailed test means the method A tend to give the statements
greater values as rank than the method B, in other word, the
method B gives statements higher rank than the method A.
This means the method B is more effective to localizing faults.

In order to counteract the multiple comparisons problem,
we utilize a significance level corrected by the Bonferroni
correction in each testing. the Bonferroni correction tests
each individual hypothesis at significance level -, where a
is desired overall significance level and m is the number of
hypotheses. This allows the probability of type I error of m
testings to be less than or equal to «v. In this paper, we test 4

hypotheses at o = 0.05, hence, significance level of each test
is set to 0.0125.

S DISCUSSION

As results of Section 4.1, the method using the proposed
virtual coverage always above another curve in both results.
The results say the proposed virtual coverage gave more lot of
bugs higher ranks. This means the proposed virtual coverage
can extract the impact on result prediction in trained model.
Furthermore, the top two items “One-Hot vs Block,” “One-
Hot with bootstrapping sampling vs Block with bootstrapping
sampling” in Table 3 in Section 4.3 also suggest the rank of
buggy line given by method using the block tend to be higher
than another one. These results comfirmed that the virtual
coverage based on the block segmentation works more effec-
tively in localizing fault compared with the virtual coverage
based on one-hot. The lines in the same block is the pattern
that the executions of each line are same. Therefore, the vir-
tual coverage based on the pattern can activate the pattern that
trained model learned, and enhance the suspiciousness score
of a pattern containing buggy lines.

About results of bootstrapping sampling in Section 4.2,
the methods using bootstrapping sampling is mostly same or
above to the others that don’t use the sampling method. In
another result in Section 4.3, the bottom two items “One-Hot
vs One-Hot with bootstrapping sampling,” “Block vs Block
with bootstrapping sampling” in Table 3 also suggest the sam-
pling method contribute training of model. The bootstrapping
sampling is originally proposed to deal with imbalanced data
for classification of movies. These results say the sampling
method can prevent the model to excessively emphasize the
minority in imbalanced data. Therefore, the results indicate
the bootstrapping sampling method is effective in Spectrum-
Based Fault Localization.

In order to verify difference of the localization among three
projects in the evaluation experiment, Kruskal-Wallis test is
conducted. Kruskal-Wallis test is a non-parametric statisti-
cal hypothesis test to verify the significant difference between
the medians of more than three data. As a result of the test,
p-value is 0.788. The value exceeds 0.05, generally used as
the significance level, by a wide margin, and the alternative
hypothesis is rejected. In other words, no significant differ-
ence among the projects. In addition, no significant structual
features in source code (e.g., wrong variable reference, wrong
if statement) in higher ranked faults are found. Since the exe-
cution coverages don’t have context of the source code, such
features seem to hardly give a feature to execution coverages.

As for the conditions for the proposeed method, there are
several points to be considered. First, on the premise that The

Table 3: P-Value of Wilcoxon Signed-Rank Test in Each Combination

Combination One-Tailed(Left) Two-Tailed One-Tailed(Right)

One-Hot vs Block 1 1.711E-5 8.556E-6

One-Hot with bootstrapping sampling vs Block with bootstrapping sampling 9.91E-1 1.881E-2 9.403E-3
One-Hot vs One-Hot with bootstrapping sampling 9.923E-1 1.607E-2 8.037E-3

Block vs Block with bootstrapping sampling 9.537E-1 9.536E-2 4.768E-2




H. Kiryu et al. / Improve Measuring Suspiciousness of Bugs in Spectrum-Based Fault Localization With Deep Learning

100 100
90 + 90 A
80 1 80 1
701 701
n %
o 60 1 o 60
a 3
w 501 + 50
o o
Q\O 40 + o\o 40 A
301 301
201 201
104 101 . . "
| —A— one-hot | —A— one-hot with bootstrapping sampling
0 —8— block 04 @ —B8~ block with bootstrapping sampling
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
% of the statements % of the statements
Figure 5: One-Hot Versus Block Figure 6: One-Hot with Bootstrapping Sampling Versus Block
with Bootstrapping Sampling
100 1 100 A
90 + 90 A
80 1 80 1
701 704
n 0
o 60 2 60
3 3
w 50 — 504
o o
o\o 40 + O\O 40 A
301 301
201 201
101 —A— one-hot 107 —A— block
04 —B— one-hot with bootstrapping sampling 04 ¢ —& block with bootstrapping sampling
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
% of the statements % of the statements

Figure 7: One-Hot Versus One-Hot with Bootstrapping Sam- Figure 8: Block Versus Block with Bootstrapping Sampling
pling



International Journal of Informatics Society, VOL.15, NO.1 (2023) 15-22

execution coverage is line-by-line in the proposed method,
projects written in Java is used in the evaluation experiment.
It is considered that proposed method can also work in a
project written in a programming language which can mea-
sure execution coverages by line. Second, a test suite has to be
composed with sufficient test cases. The proposed method ex-
tracts suspiciousness scores from a trained model. The model
cannot learn well from insufficient test cases. Hence, a test
suite which has adequate test cases is essential for the model
training. Finally, white-box testing may be appropriate test
for the proposed in terms of a granularity of localizing faults.
The block segmentation in the proposed method divides lines
whose execution are same into same blocks. A test suit that
branch coverage is 100% makes the block segmentation min-
imum granularity, and the segmentation is similar to the code
block. Therefore, testing methods such as white-box testing,
which can cover branches in the source code, allow us to
localize faults at smaller granularity.

In the OSS projects on the evaluation experiment, branch
coverages are 62.33%, 82.72%, and 88.57% respectively cor-
respond to Chart, Math, and Lang. Branch coverages of Math
and Lang exceed 80%, while 62.33% of Chart is not desirable
as branch coverage. For test suites whose branch coverage is
not desirable, test generation techniques based on static code
analysis can emphasise the branch coverage.

The proposed method gives each block suspiciousness scores.
Thus, suspiciousness scores of lines in the same block are not
different to each line. This means the proposed method cannot
distinguish lines that is same pattern in the coverage. This is
similar to other SBFL technique, which calculates the proba-
bility of bugs based on the coverage. Suspiciousness scores
of lines that is identically executed tend to hardly differ each
other. This results in a problem that impacts on bugs for
such lines is determined equally. Therefore, it is necessary
to distinguish such lines that implicit information that doesn’t
appear in execution coverage such as AST of source code and
extracted semantics from documents, etc.

6 CONCLUSION

This paper proposes a Spectrum-Based Fault Localization
method with deep learning technique, and the proposed method
utilizes a virtual coverage to calculate suspiciousness scores
and bootstrapping sampling. The proposed method trains a
neural network model that predicts test results based on execu-
tion coverages, and measures the impact of each line on bugs
from the trained model as suspiciousness scores, and provides
a ranking based on the suspiciousness scores. We introduce a
block segmentation for the virtual coverage. The block con-
tains consecutive lines whose execution is the same in any
execution coverage. In the training model, the bootstrapping
sampling generates minibatches that balanced minority data
and majority data.

In the evaluation experiments, we obtained results that
shows the methods using virtual coverage, the block segmen-
tation, and bootstrapping sampling ranked buggy lines higher
rank. The authors concluded that the block segmentation and
bootstrapping sampling effectively work in fault localization.

21

In future work, we are going to utilize implicit informa-
tion that doesn’t appear in execution coverage. The proposed
method cannot distinguish lines that is same pattern in the cov-
erage. This is because a execution coverage is a form which
dispose of context of source code. Hence, the method have
to make such lines different by implicit semantics of source
code.

ACKNOWLEDGEMENT

Part of this work is supported by fund from Mitsubishi
Electric Corp.

The research is also being partially conducted as Grant-in-
Aid for Scientific Research A (18H04094) and C (21K11826).

REFERENCES

[1] C.Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer,
“A Systematic Study of Automated Program Repair: Fix-
ing 55 out of 105 Bugs for $8 Each,” ICSE, pp.3-13
(2012).

[2] J.Nam, S. Wang, Y. Xi, and L. Tan, “A bug finder refined
by a large set of open-source projects,” Information and
Software Technology, Vol.112, pp.164-175 (2019).

[3] S.Kim, T. Zimmermann, K. Pan, and E. James Jr. White-
head, “Automatic Identification of Bug-Introducing
Changes,” 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE’06), pp.81-90
(2006).

[4] S.Tsakiltsidis, A. Miranskyy, and E. Mazzawi, “Towards
Automated Performance Bug Identification in Python,”
2016 IEEE International Symposium on Software Reli-
ability Engineering Workshops (ISSREW), pp.132-139
(2016).

[5] K. Matsushita, M. Matsumoto, K. Ohno, T. Sasaki, T.
Kondo, and H. Nakashima, “A Debugging Method Based
on Comparison of Execution Trace,” Symposium on Ad-
vanced Computing Systems and Infrastructures (SAC-
SIS), Vol.2011, pp.152-159 (2011) (in Japanese).

[6] A. Elena, B. Alexander, D. Artem, K. Konstantin, K.
Anton, M. Ilya, and M. Vladimir, “A Survey on Software
Defect Prediction Using Deep Learning,” Mathematics,
Vol.9, No.11, 1180 (2021).

[7] T. Ikeda, K. Okano, S. Ogata, and S. Nakajima, “Lo-
calization of Fault Methods and Ablation of Execution
Traces Using A Machine Learning Model to Classify
Test Results,” IEICE Technical Report, Vol.121, No.416,
pp-13-18 (2022) (in Japanese).

[8] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L.
Zhou, N. Duan, A. Svyatkovskiy, S. Fu, M. Tufano,
S. Kun Deng, C. Clement, D. Drain, N. Sundaresan,
J. Yin, D. Jiang, and M. Zhou, *“ GraphCodeBERT:
Pre-training Code Representations with Data Flow,”
arXiv:cs.SE/2009.08366. (2021).

[9] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “ BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding,” Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association



22

[10]

(11]

[12]

[13]

[14]

[15]

[16]

H. Kiryu et al. / Improve Measuring Suspiciousness of Bugs in Spectrum-Based Fault Localization With Deep Learning

for Computational Linguistics: Human Language Tech-
nologies, Vol.1, pp.4141-4186 (2019).

Z.7Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and X. Zhang,
“A study of effectiveness of deep learning in locating real
faults,” Information and Software Technology, Vol.131,
No.1, pp.1-16 (2021).

W. Eric Wong, V. Debroy, R. Golden, X. Xu, and B.
Thuraisingham, “Effective Software Fault Localization
Using an RBF Neural Network,” in IEEE Transactions
on Reliability, Vol.61, No.1, pp.149-169 (2012).

Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and J. Wen,
“Improving deep-learning-based fault localization with
resampling,” Journal of Software: Evolution and Pro-
cess, Vol.33, No.3 (2021).

R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On
the accuracy of spectrum-based fault localization,” Test-
ing: Academic and Industrial Conference Practice and
Research Techniques, pp.89-98 (2007).

W. Eric Wong, V. Debroy, Y. Li, and R. Gao, “The DStar
method for effective software fault localization,” IEEE
Transactions on Reliability, Vol.63, No.l, pp.290-308
(2014).

Y. Yan, M. Chen, M. Shyu, and S. Chen, “Deep Learning
for Imbalanced Multimedia Data Classification,” 2015
IEEE International Symposium on Multimedia (ISM),
pp-483-488 (2015).

R. Just, D. Jalali, and M. D. Ernst, “Defects4]: A
database of existing faults to enable controlled testing
studies for java programs,” in Proceedings of the 2014
International Symposium on Software Testing and Anal-
ysis, pp.437-440 (2014).

(Received: November 6, 2022)
(Accepted: April 5,2023)

Hitoshi Kiryu is a graduate student of Shinshu
University. His areas of interest include formal
verification.

Nobutoshi Todoroki received his M.E. degrees in
Information and Computer Sciences from Osaka
University in 2001. He joined Mitsubishi Electric
Corp. Currently he is a senior manager of Solution
Engineering Dept. at Advanced Technology R&D
Center. He is also a member of IPSJ.

Satoshi Suda received his M.S. degree in math-
ematics from Osaka University, Osaka, Japan, in
2016. He joined Mitsubishi Electric Corp.Currently
he is a researcher of Solution Engineering Dept.
at Advanced Technology R&D Center.

Shinpei Ogata is an Associate Professor at Shin-
shu University, Japan. He received his BE, ME,
and PhD from Shibaura Institute of Technology in
2007, 2009, and 2012 respectively. From 2012
to 2020, he was an Assistant Professor, and since
2020, he has been an Associate Professor, in Shin-
shu University. He is a member of IEEE, ACM,
IEICE, IPSJ, and JSSST. His current research in-
terests include model-driven engineering for infor-
mation system development.

Kozo Okano received his BE, ME, and PhD de-
grees in Information and Computer Sciences from
Osaka University in 1990, 1992, and 1995, re-
spectively. He was an Assistant Professor and an
Associate Professor of Osaka University. In 2002
and 2003, he was a visiting researcher at the De-
partment of Computer Science of the University
of Kent in Canterbury, and a visiting lecturer at
the School of Computer Science of the University
of Birmingham, respectively. Since 2020, he has
been a Professor at the Department of Electrical
and Computer Engineering, Shinshu University. Since 2023, he has been the
Director of Center for Data Science and Artificial Intelligence. His current
research interests include formal methods for software and information sys-
tem design, and applying deep learning to Software Engineering. He is a
member of IEEE, IEICE, and IPSJ.





