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Abstract -
Advances in mobile cameras such as smart glasses and ob-

ject recognition technologies have made it possible to extract
and utilize various types of information seen while working or
walking. And, when the object is small in the camera’s view,
it is necessary firstly to perform object detection to extract the
object area. Recently, object detection methods using deep
learning have been actively studied, and their applications
have spread to various fields. However, using deep learning
requires preparing training data for each object, which is chal-
lenging when various objects are targeted. In this study, in-
stead of these deep learning–based object detection methods,
a method of extracting the target area from the trajectory of a
gesture detected using You Only Look Once (YOLO) is pro-
posed. An advantage of this method is that the YOLO model
can be trained using the training data of only a specific body
part, such as a fingertip. Furthermore, the experiments show
that, contrary to the previously mentioned object detection
methods, even the target area and video frame without spe-
cial features can be extracted according to the purpose such
as extracting an arbitrary area of an image.

Keywords: YOLO, gesture detection, object recognition,
transfer learning, object detection

1 INTRODUCTION

Recently, object recognition for videos and images has been
actively studied. Its applications are expanding into various
fields, such as automatic car driving and immigration con-
trol using face recognition. And with the development of
the Internet of Things (IoT), especially edge computing that
performs computations as close to data sources as possible,
its application field is expanding to mobile cameras such as
smart glasses [15]. During object recognition, when the tar-
get in the image is small, the target area must first be extracted
using object detection. For example, face detection using the
Haar-like feature is performed during face recognition to ex-
tract the face area as a bounding box, and then face recogni-
tion is performed on this face area [20].

With the advancements in deep learning, various methods
for object detection have been actively studied [12]. For ex-
ample, You Only Look Once (YOLO) detects the target as a
bounding box and simultaneously recognizes the target [17].
Furthermore, videos can be processed in real-time by YOLO
[21]. However, these deep learning–based methods require
training data for each target, so it is difficult to apply them to

fields where various objects are targeted.
As such a field, the author has been working on the automa-

tion of inventory management in machine factories. The aim
of this research is to automatically determine the target parts
and their inventory number from the videos of smart glasses
worn by workers. However, since there are thousands of dif-
ferent parts in such factories, the above-mentioned challenge
of preparing the training data arose [4].

In this paper, a method of extracting the target area from the
trajectory of a gesture detected using YOLO is proposed. The
gesture is performed so that, for example, the target area is a
closed area surrounded by its trajectory. Hence, the target area
extracted from this trajectory can be the same as the object
detection result. Notably, since gestures can be performed by
a specific body part, such as a fingertip, this method requires
only one type of training data for various object detections.

The detected trajectory usually includes erroneously de-
tected points (subsequently called noises) and extra gesture
sections. Therefore, in this method, the noises are removed
using the median of nearby points, and the target section or
feature point is indicated by the stop motion of the gesture.
Furthermore, the experiments on actual use cases show that
the arbitrary area of an image and frame of a video can be ex-
tracted. Consequently, object recognition can be done using
simple methods, such as optical character recognition (OCR)
and template matching.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work and the aims of this study, and
Sec. 3 proposes a method for extracting the target area from a
gesture trajectory. Section 4 shows the implementation of the
proposed method and the extraction of the target area through
experiments. Section 5 shows the applications and evalua-
tions of this method, and Sec. 6 discusses the evaluation re-
sults. Finally, Sec. 6 concludes this paper.

2 RELATED WORKS AND AIM OF THIS
STUDY

In a machine factory, parts are stored in bulk containers as
shown in Fig. 1 (3). However, as can be seen from Fig. 1
(3), the number of parts cannot be visually counted, which
has been a problem in inventory management. For this prob-
lem, the authors have shown that deep learning can be used
to estimate the number from images of containers with prac-
tical accuracy and that computer graphics (CG) can be used
to efficiently prepare training data [3], [7].
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Figure 1: Inventory management of parts with smart glass

However, in such factories, there are usually several thou-
sand types of parts stored dispersedly in the inventory stor-
age areas in the factory. To manage such widespread objects,
methods combining smart glasses and object recognition such
as deep learning have been proposed and systems have been
studied to assist factory workers and the visually impaired
[14], [22].

So, I focused on the fact that the parts inventory fluctu-
ates due to replenishment and picking (i.e., taking out the
parts to be used) by workers, and attempted to automatically
extract inventory information from videos continuously cap-
tured by smart glasses worn by workers shown in Fig. 1 (1).
Concretely, object recognition with deep learning was used to
identify the worker’s entry into the inventory storage area, the
target container, and parts from the videos, as shown in Fig. 1
(2). However, since the parts are small in the camera’s view,
the accuracy of the discrimination degraded [4]. In such a
case, the target area must be extracted using object detection
prior to object recognition.

Various methods for joint object detection and recognition
have been proposed. Faster R-CNN performed them in a lump
through collective end-to-end training of both models [18],
and YOLO executed them with a single neural network to im-
prove efficiency [17]. Regarding differently scaled objects,
SSD could process them collectively [11]. RetinaNet im-
proved the efficiency by introducing the Feature Pyramid Net-
work (FPN) and improving the loss function [9], [10]. Subse-
quently, M2Det further improved accuracy and efficiency by
introducing the new FPN and loss function [23].

Among these methods, YOLO has been improved repeat-
edly through version upgrades, with several models currently
available [2]. YOLO has a high detection efficiency and ac-
curacy and can be applied to real-time object detection and
recognition [21].

However, since the above methods use deep learning, train-
ing data (i.e., ground truth) comprising images and the cor-
rect labels for model training must be prepared. For exam-
ple, YOLO requires ground truth comprising the images and
their corresponding labels of bounding box positions and ob-
ject classification for each target. Here, object classification
indicates the object type to be recognized. Therefore, this
creates a significant burden in preparing training data when
various objects are to be detected.

In the above-mentioned machine factory, since there are

Figure 2: Object detection result using YOLO

thousands of types of parts, it is not practical to apply ob-
ject detection using deep learning. So, I focused on the fact
that the operator picks up the parts when working, and tried
a method of using optical flow for parts detection. However,
it was found that the detection accuracy degraded when the
background was complex [5]. In addition, using Cycle-GAN,
which is a kind of generative adversarial network, I showed
that the contour of a container can be detected [6]. However,
this method did not cover the detection of parts in containers.

The motivation for this study is the idea that the target area
of an arbitrary object can be extracted by detecting the trajec-
tory of a specific object, such as the tip of a hand indicated by
a gesture in a video. Using this idea, I expected that randomly
stored parts in containers shown in Fig. 1 (3) can be detected.

By the way, trained models and training data for YOLO for
various objects, such as the coco dataset, are available on the
Internet [1], [2], [8]. Therefore, YOLO can be easily used for
real-time object detection and recognition from videos when
targeting specific objects. That is, this trajectory detection
can be performed in real-time by YOLO targeting only one
object, and training the model is easy.

Furthermore, several applications have been proposed for
hand gesture recognition using deep learning, such as con-
versation and device control [13], [16], [19]. However, ap-
plication studies on extracting the target area, such as object
detection, could not be obtained.

Figure 2 shows the resulting image of object detection for
the right hand by YOLO from a video frame. The detected
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objects are indicated by bounding boxes, and the target type
and estimation accuracy of the object is indicated above the
upper side of each box. For the detected boxes, my left hand
(myleft) was detected with an accuracy of 53% (0.53) on the
upper side. However, there is falsely detected noise on its
lower side, and its accuracy is 44%.

The aims of this study are stated below. The first is to de-
velop a method that accurately extracts the target area from
the trajectory of gestures detected using YOLO. To achieve
this, the noise shown in Fig. 2 and the extra gesture section
should be removed to improve the accuracy of the detected
trajectory. The second is to demonstrate the effectiveness of
this method. For example, this method requires an extra ac-
tion (a gesture) compared to object detection using YOLO di-
rectly. On the other hand, in this method, only a single body
part is required for model training, regardless of the number
of target object types; this method has the advantage of ex-
tracting arbitrary areas for the purposes, such as areas without
special features. Hence, to clarify what application fields are
effective based on actual business use cases.

3 TARGET AREA EXTRACTION
METHOD FROM GESTURE
TRAJECTORY

Two steps are used to extract the target area using gesture
trajectory: (1) accurate trajectory detection, for which noises
and extra gesture sections are removed, and (2) target area
extraction from the detected gesture trajectory.

3.1 Gesture Trajectory Detection Method

This method uses the trajectory of a gesture by a specific
body part. Moreover, it indicates the target gesture section
with stop motions. For example, to indicate the area of some
books shown in Fig. 2, the gesture is paused when the hand
moves to the target book; subsequently, it is moved along the
outline of the books. Finally, it is paused at the end of the
outline and moved away. The gesture section between these
two pauses is used to extract the area of the book. In the
following description, the upper left corner of the bounding
box (Fig. 2) is used as the gesture indication for the detected
point.

The following procedure detects gesture trajectory: (1) val-
id points are selected from the detected points using YOLO,
(2) noise is removed using the medians of nearby points, and
(3) the target section is extracted as described above.

3.1.1 Valid Point Selection

In this method, there is a maximum of one valid point in each
frame. To select this valid point from the detected points, the
following condition is adopted. Its accuracy is the highest in
the frame and greater than the threshold (i.e., the specified
value). If each pair of the detected point coordinates and ac-
curacies of the i-th frame is indicated by cij and aij , the valid

Figure 3: Noise elimination using median coordinates

point with a coordinate si in Eq. (1) is selected.

si =

{
cik (∃k(aik ≥ V ∧ aik = max({aij}))
∅ (∀k(aik < V ))

(1)

Here, ∅ indicates that the frame does not have a valid point;
V indicates the threshold; {aij} indicates the set of aij .

In Fig. 2, if V = 0.4, then the upper-left coordinate of
the upper bounding box is selected because its accuracy is
the highest in the two boxes and greater than the threshold.
However, if V = 0.6, this frame is ignored.

3.1.2 Noise Elimination Using Median Coordinates

For each frame, the median coordinates are calculated with
the valid points of the nearby frames to eliminate noises. Let
pj(j = 1, 2, 3, · · · ) be the ordered set of coordinates with
eliminating si if si = ∅ from {si}, namely the set of si in Eq.
(1). Figure 3 (1) shows an example where pg is a noise.

The median of pg is constructed using the section before
and after the index g. Let Rg indicate the set of indices of this
section, and let pRx and pRy indicate the set of x-coordinates
and y-coordinates, respectively. The median of this section is
defined as follows:

mg = (median(pRx),median(pRx))

Here, median is the function to get the median value of the
coordinates. In Fig. 3, the coordinate mg with the median of
each of the x–y coordinates is selected.

The noises are eliminated using these median coordinates.
The median coordinate m̃g of the frame g is defined as fol-
lows:

m̃g = {ph|∃h(dist(ph,mg) = min(dist(pn,mg))

∧∀n ∈ Rg)}
(2)

dist(pn,mg) indicates the distance between pn and mg . Con-
versely, m̃g denotes the coordinate pr(∃r ∈ Rg) of the closest
point to the median coordinate mg . Hence, the median trajec-
tory is defined as the set of points p̃g shown in Eq. (3).

p̃g =

{
pg (m̃g = pg)

∅ (m̃g ̸= pg)
(3)

That is, if pg is not the closest coordinate to mg in Rg , then
it is converted to ∅, that is, it is eliminated; otherwise, pg is
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Figure 4: Target gesture section extraction way

adopted for p̃g . Thus, noises are eliminated from the median
trajectory.

In Fig. 3, the closest coordinate to the median m̃g is pg−1,
so the coordinate p̃g is set to ∅ and eliminated. The other
coordinates are set as p̃n = pn(r ∈ Rg). Consequently, a
trajectory is corrected using the median coordinate, as shown
in Fig. 3 (2).

3.1.3 Extraction of Target Section Using Stop Points

Let q(q = 1, 2, 3, · · · ) be the coordinates of the q-th point
in the set of p̃g denoted in Eq. (3), namely points other than
noises. To extract the target section of a gesture, two stop mo-
tions are detected. The stop section is defined as the section
where the distance between p̃q and p̃q+1 is below or equal to a
specified threshold H . This is the section in which the gesture
is almost stopped and is shown as A0 and A1 in Fig. 4.
k-th stop section is expressed as follows:

Ak = {p̃q|(dist(p̃q+1 − p̃q) < H) ∧ (p̃q /∈ Al), l < k} (4)

Here, dist is the same as in Eq. (2). Note that the thresh-
old H is used because actual fingertip gestures cause slight
fluctuations, even when the fingertip is stopped.

For the stop section Ak, stop point sk is defined as the point
whose coordinates are the simple average of the coordinates
of all points in Ak. Figure 4 shows that the point p̃q ∈ Ak

in the stop section is replaced with the stop point sk, and
the points before and after the stop section indicated by the
dashed lines are eliminated.

Consequently, the target section of the gesture trajectory
(subsequently called the detected trajectory) is extracted. This
is indicated by the solid and double lines in Fig. 4.

3.2 Target Area Extraction Method Using
Gesture Trajectories

In this section, the target area extraction method from the
detected trajectories is shown. First, the basic target area ex-
traction method, which extracts a specific area from the image
same as object detection, is shown. Second, the following ap-
plication methods are shown. The first is extracting frames
for which gestures cannot be used, such as close-up photog-
raphy; the second is extracting as a bounding box, which can
also be used for tilt correction.

Figure 5: Target area extraction method
using moving averages

3.2.1 Basic Target Area Extraction Method

The detected trajectory is accompanied by fluctuations of ges-
ture motion. To compensate for these fluctuations, a moving
average of the coordinates along the angle from the center of
gravity is created. Similarly, doubles and omissions near the
start and end of the detected trajectory are also compensated.

The x–y coordinate of the center of gravity G is obtained as
an average of the x-coordinate and y-coordinate of the points
on the detected trajectory, as shown in Fig. 5 (1). Subse-
quently, the coordinate of each point is transformed into a
pair p̂a = (θa, ra) of angle and distance from G. Let Ea be
the angle section to calculate the moving average, and define
the moving average va by Eq. (5).

va = (θa, r̄a) (θa ∈ Ea) (5)

Here,
r̄a = (

∑
ra)/n

n is the number of coordinates contained in Ea, and it is five
in Fig. 5 (1).

Consequently, r̄a is the moving average of the distances
between G and points on the detected trajectory along the an-
gle. By connecting the coordinates of this moving average set
{va} along the angle, the target area is extracted, as shown in
Fig. 5 (2).

3.2.2 Close-up Target Frame Extraction Method

Since the labels, such as those attached to fixed assets and
products, are small, an enlarged image must be obtained by
close-up photography in order to use OCR. In this case, the
target area should not be specified. However, the close dis-
tance from the camera makes it difficult to indicate the target
frame with the gesture. To solve this problem, a target frame
extraction method that combines camera movement and ges-
tures is proposed.

Figure 6 shows that the camera is held still to view tar-
get (1) and zoom-in (a) for a close-up of the label (2). Sub-
sequently, zoom-out (b) is performed to indicate the target
frame by gestures (3). Consequently, the target frame where
the label was taken was between this zoom-in and zoom-out.
This operation can be performed using the mobile camera by
approaching and leaving.
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Figure 6: Target frame extraction method using differences
between frames and gesture section

Figure 7: Extraction method as a bounding box
with tilt correction

The vertical axis of Fig. 6 shows the variation of the dif-
ference dq between frames along the frame number q in this
operation. Since the field of view changes in the zoom-in and
zoom-out sections, the difference between frames increases.
Conversely, the difference is small in the other still section,
but small fluctuations remain due to camera shakes for a wear-
able camera.

Set two threshold values L1 and L2 to extract the target
frame based on the gesture section (3). L1 is the threshold for
detecting zoom-in and zoom-out; L2 is the threshold for de-
tecting still frames. The gesture section (3) is detected based
on the stop points by the procedure shown in Fig. 4. Sub-
sequently, the target section (2) is detected as the section be-
tween zoom-in and zoom-out, based on L1. Finally, for the
target section (2), the target frame is detected as the frame
with the smallest difference dq in each section where dq is
below L2, as shown in Fig. 6.

3.2.3 Bounding Box Extraction Method

A method to extract the target area as a bounding box, sim-
ilar to other object detection methods, is shown. In addi-
tion, the box’s tilt can be corrected with this method. This
tilt correction can be applied to rectangular target areas that
may be placed at an angle, such as books on a bookshelf.
Consequently, it is expected that the discrimination accuracy
through template matching and others will be improved.

This method uses stop points; the gesture is sequentially
stopped at three vertices, as shown in Fig. 7 (1). And, the

Figure 8: Indication accuracy of hand gestures

bounding box can be estimated by these stop points. When
correcting the tilt, the edge that will become the bottom edge
is specified first to indicate the direction of the rotation.

Figure 7 (2) shows that the longer of the two edges (sub-
sequently called long edge), which should be accurate ac-
cording to the tilt, is selected. Moreover, the other edge is
estimated as a line segment perpendicular to the long edge.
The remaining edges are estimated as parallels of these edges.
Hence, the bounding box is estimated with these edges.

If the number of stop areas exceeds three, the three areas
are selected based on the number of points p̃q on the detected
trajectory included in each stop area. When the box’s tilt must
be corrected, the image is rotated so that the long edge is verti-
cal or horizontal, according to the above-mentioned specified
order of the edges, as shown in Fig. 7 (3).

4 IMPLEMENTATION AND
EXPERIMENTS

4.1 Implementation of Gesture Trajectory
Detection Method

An experimental system was constructed to evaluate the
proposed target area extraction method. The PC used has a
CPU of i9-10850K 3.6 GHz, 64 GB memory, and a GPU of
Geforce RTX 3090 with 24 GB memory. In addition, the Log-
itech Web camera C920n was directly connected to the laptop
computer, and videos were shot at a resolution of 1, 920 ×
1, 080 pixels and 30 fps. This system was implemented on
Windows 10, Python Ver. 3.8.13 as the program and Pytorch
Ver. 1.7.1 with CUDA Ver. 11.5 to use YOLO, OpenCV-
Python Ver. 4.5.5.64 for image and video manipulation, and
TensorBoard Ver. 2.8.0 to analyze the model training results.
YOLOv5s, a highly efficient model of YOLO, was imple-
mented by adding the necessary functions to the publicly avail-
able program [2]. Similarly, the publicly available “Egohand
Dataset” [1] was used for the training data, by which the
model to detect each of own and opponent’s left and right
hands is trained, as shown in Fig. 2. It comprised 4,800 data
taken at 48 locations, of which 3,840 were used as training
data and 960 as validation data.

As a preliminary experiment, this trained model was used
to evaluate the extraction accuracy of the target area from the
gesture trajectory of the right hand. Figure 8 shows the re-
sults, where the red line shows the median trajectory and the
yellow–green line shows the detected trajectory. Note that
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Figure 9: Training data of fingertip for transfer learning

Figure 10: Changes in validation loss in transfer learning

the extraction of the target gesture section was omitted in this
experiment.

Consequently, it was observed that the hand was too large
to indicate the target area accurately and that the indication
accuracy was insufficient.

4.2 Experiments on Improving Indication
Accuracy Using Transfer Learning

For the issue mentioned in Sec. 4.1, the training efficiency
of transfer learning utilizing this existing model was evaluated
to efficiently use an arbitrary body part or instruction tool. A
total of 75 images, 15 for each of the five different environ-
ments, were shot, as shown in Figs. 9 (1–5), and a bounding
box label was created for each fingertip, as shown in Fig. 9
(6). This box includes the fingertip, and the lower right is the
lowest position near the fingertip. In this experiment, the fin-
gertip was pointed to the upper left. The data were divided
into 60 training data and 15 validation data.

In YOLO’s transfer learning, the number of layers to be

Figure 11: Detected trajectory of gesture using hand and
transfer-learning model

Figure 12: Accuracy improvement with an increase
in transfer-learning data

fixed can be specified by the “freeze” parameter. In this ex-
periment, it was set to 10, corresponding to the “backbone”
of YOLO, where features were extracted. The number of
training data was from 10 to 60 for every 10, and the num-
ber of validation data was fixed to 15. The number of training
epochs was 300. Figure 10 shows the transition of the val-
idation loss of the bounding box position obtained through
TensorBoard. The numbers in the boxes indicate the num-
ber of training data. For 60 training data, the verification loss
converged, so training was completed before 300 epochs.

Figure 10 shows that the accuracy improves as the training
data increases, and the accuracy improvement converges at
about 50 data.

Subsequently, 20 test data were prepared for the clock used
in the preliminary experiment, as shown in Fig. 8, and eval-
uated the effectiveness of transfer learning. Figure 11 (1)
shows the connecting result of the fingertip points detected
by YOLO using the model before transfer learning, that is,
the hand model; (2) shows the result using the model after
transfer learning with 60 data.

In Fig. 11 (1), since some points are not detected, the right
side is missing. In Fig. 11 (2), though there is one point that
is far from the original position (a noise), this point can be
removed in the median trajectory.

Figure 12 shows the number of undetected points and noises
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Figure 13: Accuracy evaluation of target area extraction
using fingertip gestures

and the average error of detected coordinates in pixels for
each number of transfer-learning data. Note that “hand” indi-
cates the case where the original hand model was used. Unde-
tected points and noises were excluded from the calculation
of the average error.

While more than half of the points are not detected in the
“hand” model before transfer learning, this number is reduced
to one point after transfer learning with 10 data. This indi-
cates that transfer learning with even a small number of data
(about 10) can improve detection accuracy. As in Fig. 10, the
accuracy improved as the number of training data increased,
but in this experiment, the improvement in accuracy almost
converged at 40 data.

In this experiment, the target area was extracted using the
basic target area extraction method mentioned in Sec. 3.2.1.
The accuracy threshold V in Eq. (1) was set to 0.4; the num-
ber of points to calculate the median and the moving average
was set to five. Note that the end points of the trajectory were
omitted for the median trajectory, and the next point was cal-
culated with three points. In addition, for the stop area detec-
tion, the threshold H in Eq. (4) was set to 1% of the narrower
axis of the screen (108 pixels).

Figure 13 shows the results. (1) shows the trajectory of
the points detected by YOLO with the highest accuracy for
each frame; (2) shows the median trajectory; (3) shows the
extracted target area based on the detected trajectory where
the outside of the target area was set to white.

Compared Fig. 13 to Fig. 8, the accuracy of the target
area is improved using the fingertip. In addition, the area un-
targeted for detection at the bottom of the clock could be re-
moved using the detected trajectory. However, the outline of
the upper part of the clock deviated from the actual outline.
Thus, I investigated the detected points and observed that the

Figure 14: Evaluation target for basic target area extraction

indicated position of the fingertip deviated, as shown in Fig.
11 (4). This was caused by the viewpoint error between the
human eye and the camera because a fixed camera was used.

5 APPLICATIONS AND EVALUATIONS OF
PROPOSED METHOS

To evaluate the effectiveness of the proposed method in ac-
tual business, object recognition accuracies were evaluated in
the three cases assumed in Sec. 3.2. In addition, the settings
are similar to the experiments shown in Fig. 13.

5.1 Evaluation of Basic Target Area
Extraction: Recognition of Bulletin
Boards

As the evaluation target of the basic target area extraction
method mentioned in Sec. 3.2.1, the poster and the nameplate
of the laboratory shown in Figs. 14 (a) and (b), respectively,
were used, and OCR on the extracted target area was per-
formed. The red line in Fig. 14 shows the median trajectory
of the gesture.

First, the same procedure shown in Fig. 13 was used to
extract the target area shown in Fig. 15 (1). Subsequently,
the area was binarized, as shown in (2), to eliminate the influ-
ence of color. In this case, the area of the poster in 14 (a) is
inverted because the text is white. This binarization was per-
formed using the threshold method of OpenCV-Python, and
the binarization threshold was set to 127 (the middle value).
Finally, character recognition was performed using OCR from
the binarized image shown in (2). OCR was implemented us-
ing Tesseract ver. 5.2.0 and OpenCV-Python’s pyocr class.
These gestures and procedures were performed twice.
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Figure 15: Procedure and results of object recognition
by OCR

Figure 16: Indication results of fixed-asset locations

Hence, Fig. 15 (3) shows that although extra characters
were included, the target characters could be recognized in
all cases.

5.2 Target Frame Extraction: Fixed-Asset
Location Management

To evaluate the target frame extraction method mentioned
in Sec. 3.2.2, the method was applied to fixed-asset location
management. The fixed-asset audit verifies the location of the
assets and the fixed-asset label attached to each asset. In ad-
dition, the fixed-asset management database, which manages
detailed information, such as fixed-asset names and adminis-
trators, can be retrieved with the fixed-asset number on the
fixed-asset label. This experiment verified the possibility of
information extraction from the video.

To record the location of the asset, a fixed camera was used,
and the target area was indicated sequentially with the ges-
tures, following the same procedure shown in Fig. 13. How-
ever, in this application, it was necessary to clarify the items’
location, so the target area in Fig. 5 (2) was not extracted, but
only the detected trajectory was drawn. In addition, the or-
der in which each asset was indicated was described, in each
trajectory.

Consequently, Fig. 16 shows that the position of each as-
set could be recorded only by gestures. Moreover, since this
method does not require precise positions such as the outline

of the targets, gesture indications were easy regardless of the
type or view of the target.

Next, the recognition accuracy of fixed-asset labels was
evaluated. Since the fixed-asset label needs to be taken by
close-up photography, the target frames were extracted fol-
lowing the method mentioned in Sec. 3.2.2, and OCR was
performed on the frames. Table 1 shows that a PC, a smart
glass (Glass), and a tablet were used. Moreover, as shown in
Fig. 17 (2), the fixed-asset number (BB170090) and registra-
tion date (20171109) in the second line were recognized.

In this experiment, the target object was taken along the
procedure as shown in Fig. 6. That is, it was taken at a wide
angle (1); then, the camera was moved closer to take the fixed
asset (2); finally, the camera was moved away again, and the
frame was indicated by gesture (3). The difference between
frames (hereinafter, difference) in Fig. 6 was calculated using
the OpenCV-Python methods. The frames were converted to
monochrome images using the cvtColor method, and each
difference image between adjacent frames using the absdiff
method. Subsequently, the difference was calculated by Eq.
(6).

di =
255∑
j=0

nij ∗ j/N (6)

Here, i is the frame number; j is the luminance; nij is the
number of pixels with luminance j in the frame number i;
N is the number of pixels in each frame. The variation di is
divided by N for normalization.

Thresholds L1 and L2 are set to 10 and 5, respectively.
From the gesture section (3) to backward, the section where
ten consecutive frames exceed L1 is detected as the zoom-out
section. Similarly, with this zoom-out section as the starting
point, a section where 15 consecutive frames were below L1

was detected as the target section (2). Figure 18 shows the
transition of di along the frame number and the detected re-
sults.

The frames with the minimum di for each section below
L2 in the target section were extracted to perform OCR to
recognize the fixed-asset numbers and registration dates. The
implementation of OCR was similar to Sec. 5.1. However,
binarization was also omitted, since the target area extraction
was omitted. Fixed-asset numbers began with “BB” in this
case. Hence, strings matching the following regular expres-
sion were extracted for the OCR results.

\nBB\S{6}\s ∗ \S{8}\n

That is, the target line is surrounded by newline characters
and comprises eight characters, starting with BB, one or more
spaces, and eight characters. Additionally, in order to cor-
rect OCR errors, at most one space was allowed in the strings
of each fixed-asset number (BB\S{6}) and registration date
(\S{8}), and it was removed from the OCR results.

Table 1 shows the recognition results under this condition.
In the “Result” column, “⃝” indicates the correct result, and
“NG” indicates the incorrect result. The “Target” column
shows the number of frames with the target minimum differ-
ence in the target section, and the “Ratio” column shows the
ratio of the frames that satisfy the above conditions.
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Table 1: Target object in experiment

Target Asset num. Number Result Reg. date Number Result Target Ratio
PC BB210104 9 ⃝ 20211214 9 ⃝ 20 45%
Glass BB170090 8 ⃝ 20171109 8 ⃝ 16 50%
Tablet BB15Z061 15 ⃝ 20151022 18 ⃝ 20 90%

BB152061 3 NG

Figure 17: Target object-taking procedure to indicate target frame

Figure 18: Transition of difference between frames for Glass

Consequently, while “Z” was misrecognized as “2” in 3
out of 18 fixed-asset numbers of the tablet, the others were
correctly recognized. However, the percentage of frames sat-
isfying the above conditions differed depending on the case.

5.3 Bounding Box Extraction and Tilt
Correction: Book Recognition

In order to evaluate the bounding box extraction method
with tilt correction, as shown in Sec. 3.2.3, 20 books arranged
at four different tilts were used, as shown in Fig. 19. More-
over, the effect of tilt correction on object recognition us-
ing template matching was evaluated. The matchTemplate
function of OpenCV-Python was used for template matching,
and the normalized cross−correlationmatching method
was used for the matching method.

First, to create a template image, each target book was man-
ually cut out from the image in Fig. 19 so that it was arranged

Figure 19: Evaluation target for book recognition
with tilt correction

vertically, as shown in Fig. 20 (1). Next, as shown in Figs. 20
(2) and (3), the target book was extracted as a bounding box
with and without tilt correction, as mentioned in Sec. 3.2.3,
and placed in a white image of 700×700 pixels, respectively.
The green rectangles in Figs. 20 (2) and (3) are the results of
template matching shown below.

For each image, template matching was performed between
the template image shown in Fig. 20 (1) and each of the im-
ages shown in (2) and (3) to obtain the matching position and
accuracy. Here, when the tilt was corrected, as shown in Fig.
20 (2), the template image was generally matched to the cor-
rect position. Similarly, other images were generally matched
to the correct position when the tilt was corrected. However,
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Figure 20: Book template-matching results

Figure 21: Evaluation of template-matching accuracy
improvement through tilt correction

as shown in Fig. 20 (3), there was an error in the matching
position of the template images in the case of this book.

Figure 21 shows the evaluation results of the matching ac-
curacy for all books. The numbers (1) to (4) on the horizontal
axis correspond to the numbers of the arrangement types in
Fig. 19; (5) shows each average of the cases of (1) to (4). The
accuracy of the tilt correction case was advanced for the tilted
books, as shown in (1), (2), and (4) in Fig. 21. However, the
accuracy of the no tilt correction case was advanced for the
books placed almost vertically, as shown in (3). Furthermore,
the accuracy was different for each book.

To analyze this phenomenon, template-matching positions
were verified for typical cases. The maximum accuracy of
the tilt correction case (horizontal axis number: 9) is shown
in Fig. 22 (1); the minimum accuracy (also 20) is shown in
(2), and the case where the tilt correction result deteriorated
compared to the no tilt correction result (also 15) is shown
in (3). In each case, the left image was the template image,
and the right image was the extracted image. (3) was the only
case of no tilt correction. In (1), the extracted image included
the entire area of the target book, while in (2), the left side
of the book was missing. In (3), the bounding box (extracted
target area) was tilted due to an error in the gesture indication,
although the books were placed vertically. Consequently, the
accuracy deteriorated with tilt correction.

Figure 22: Influence analysis of gesture indication error on
template-matching accuracy

The results show that the target area extraction with tilt cor-
rection is effective for template matching accuracy (recogni-
tion accuracy) for the target placed diagonally. Conversely,
the gesture indication error caused an accuracy deterioration,
especially when the target was placed vertically.

6 DISCUSSION

In this study, a method to extract the target area by gesture
trajectory detection using YOLO was proposed, and its ef-
fectiveness was evaluated through several experiments. First,
since only a specific part of the body, such as the fingertip,
was used for gestures, it was easy to prepare the training data.
Second, practical accuracy was achieved with 60 training data
through transfer learning. This shows that this method can be
easily applied to any body part and indication device accord-
ing to the purpose.

However, the gesture trajectory detection was performed on
videos and noises, and extra sections were included, as shown
in Figs. 2 and 13 (1). Hence, this study showed that the noises
were removed using medians, and the target sections were
extracted using stop points. Consequently, as shown in Fig.
13 (3), it was possible to extract the target area without these
influences. Furthermore, experiments showed that the target
area could be extracted without being affected by noise, even
in actual use cases.

Though object detection using deep learning can be per-
formed automatically, this method requires the action of ges-
tures. Conversely, this method can extract the target areas
more flexibly, as shown by the actual application cases in
Secs. 5.1 and 5.3. Any part of an image with no special
features can be extracted, as shown in Figs. 14 and 15 (1).
Furthermore, the target area can be extracted as a bounding
box, and its tilt can be corrected when necessary, as shown in
Fig. 20. In addition, as shown in Table 1, Figs. 15 (3) and 21,
by extracting the target area in this method, object recognition
using simpler recognition methods, such as OCR or template
matching, is possible.

Though the experiments in this study were conducted in a
laboratory, they targeted the use case of the factory operation
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shown in Fig. 1. First, the entry of workers to the inven-
tory storage area, also the target container, can be identified
by the recognition of the bulletin boards shown in Sec. 5.1.
Second, since there are thousands of containers in the factory,
the picking process requires instructions not only for the con-
tainers to be picked but also for the optimal route. This can
be indicated by the method shown in Sec. 5.2 as shown in
Fig. 16. Similarly, images of containers or container labels
can be extracted and stored for confirmation during picking
as shown in Fig. 17. Third, the images of the parts in the fac-
tory are stored in a database. Thus, parts in containers can be
efficiently discriminated by using the tilt-corrected bounding
box and template matching described in Sec. 5.3.

With the spread of IoT and mobile cameras, long tasks and
operations are recorded through videos, and it is important to
record the data to specify the target frame and area. Section
5.2 showed the method for this, by which the area and the
target frame can be extracted. In addition, the frame can be
specified even for close-up photography using gestures and
differences between frames. For example, when inspecting a
building while constantly taking video with the smart glass
shown in Fig. 1 (1), the location of abnormalities can be
recorded by gestures without operating the camera, as shown
in Figs. 16 and 17 (2).

Conversely, when using a fixed camera, as shown in Figs.
13 (4) and 22, errors of gesture indication occur due to a view-
point error between a human and a camera. For this problem,
the use of the above-mentioned smart glass effectively per-
forms gestures while checking the position displayed on the
screen is considered. However, there is a challenge for such a
mobile camera, since it moves, as shown in Fig. 18. To con-
struct the trajectory of the target area shown in Fig. 5 (2), it
is necessary to correct the angle, position, and magnification
between frames. Therefore, applying this method to mobile
cameras is the next challenge.

7 CONCLUSIONS

When performing object recognition with mobile cameras
such as smart glasses, it is often necessary to perform object
detection beforehand. In object detection, various studies us-
ing deep learning have been actively conducted. However,
since it is necessary to prepare training data for each target,
it is difficult to prepare training data when there are various
targets.

To solve this problem, a method for extracting the target
area from the gesture trajectory detected using YOLO is pro-
posed. Furthermore, through experiments, it was shown that
practical accuracy can be achieved from less training data by
transfer learning and that targets can be extracted flexibly ac-
cording to purposes.

Future studies will focus on improvements in the accuracy
of gesture indication using mobile cameras.
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