
Industry Paper

Verification of Shell Script Behavior by Comparing Execution Log

Hitoshi Kiryu†, Satoshi Suda‡, Shinpei Ogata*, and Kozo Okano*

†Graduate School of Engineering, Shinshu University, Japan
21w2025g@shinshu-u.ac.jp

‡Advanced Technology R&D Center of Mitsubishi Electric
Suda.Satoshi@ay.mitsubishielectric.co.jp

*Faculty of Engineering, Shinshu University, Japan
{ogata, okano}@cs.shinshu-u.ac.jp

Abstract - Scripts written in shell languages including Bash

are widely used to automate tasks on UNIX families such as

Linux. These scripts, especially those used for automating tasks,

are often used continuously even after the operating environment

such as OS is updated. The behavior of the shell scripts may

change due to OS updates which also usually include commands’

upgrades. For this reason, developers must in advance know the

changes of the commands used in the script and also check each

script in the OS, for every time of the releases. It also produces

the cost of debugging scripts and the associated commands.

This paper proposes a method to verify if the behavior of a

script does not change between two different OS versions. It

also detects the cause of the difference. An automated tool for

the proposed method is also presented. The proposed method

embeds commands which generate execution logs into the scripts

and executes those scripts on two different OS versions. The

tool compares the generated log files from each OS, and if the

behavior is changed, it presents the commands that is cause

of differences to the developers. As a result of evaluation of

the proposed method, we confirmed that the proposed method

can verify the different behavior and detect the commands that

cause the difference for a simple example. In addition, the result

shows that it was not possible to detect the cause of commands

which behavior changes in the area that does not appear in the

standard output. In order to detect these commands as the cause,

it is necessary to collect logs from a different approach than the

standard output.

Keywords: Behavior verification, Debug, Execution log,

Shell script, Bash

1 INTRODUCTION

1.1 Background
Bash [1] is a typical shell language that runs on UNIX OSes

such as Linux. It is a POSIX-compliant Bourne Shell language

with extended history and aliasing features, and it is mainly

adopted as default login shell in many UNIX OSes. These scripts

written in shells are widely used in corporate business systems

for automating tasks. The behavior of shell scripts written in the

Bash may change due to OS updates and associated command

upgrades. For Instance, because of commands upgrades, it is

possible to lose access to environment variables, which are a set

of variables used to configure the shell and various commands. It

is explained in Section 3. Therefore, developers must understand

the commands which are executed in the scripts and the changes

in the OS specifications when the OS is upgraded. It produces a

lot of costs for debugging scripts and the associated commands.

In this paper, we propose a method to support developers in

solving problems that occur when updating the OS by verifying

whether the behavior of Bash scripts is equivalent between two

different version OSes and detecting the cause of the inequality.

Although there are many distributions of Linux, in this paper,

we focus on CentOS, which has been used for business systems

in companies.

1.2 Related Work
Various studies [2]–[5] have been conducted to localize bugs

related to these problems. These studies proposed methods

to identify statements that cause bugs by using bug reports,

trace information, visualization. These studies aim to fix and

identify bugs, while our purpose is to identify the causes of the

differences in behavior.

A similar role to Bash scripts is played by Dockerfile that

describes a series of procedures to build containers. In the field

of micro-services architecture, services based on Docker are

promising. The services are defined by Doker files, and the files

sometimes contain complex scripts. The analysis of Dockerfile

has been studied particularly from the viewpoint of developer

support. For instance, Kaisei Hanayama and his co-authors [6]

have suggested a method to create a code-completion tool for

writing Dockerfiles is proposed by using machine learning of

Dockerfiles on Github. In another study [7], a survey of Self-

Admitted Technical Debt(SATD) in Dockerfile was conducted

for an actual DockerHub project. From the survey, patterns of

SATD in Dockerfile and their proportion are revealed.

In addition, CBMC [8] and JBMC [9] which is based on

CBMC are software model checking tools for verifying the be-

55International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

Figure 1: Differences from our previous study

havior of programs. These tools take a program and assertions
as input and use bounded model checking [10] to verify that the
assertions are valid. Although it is possible in theory to verify
the behavior using these tools, they are not tools for directly
checking changes of behavior, which is the focus of this paper,
since they are for verifying whether the behavior is as specified.

The author’s group has been researching behavioral equiva-

lence verification of programs [11]–[13]. In these studies, we
verified the differences in the behavior of modified programs
as shown on the left side of Fig. 1. The problem that we will
address in this paper is the difference in the behavior in changes
in the environment, as shown on the right side of Fig. 1. There-

fore, the methods used in these studies cannot be applied to this
problem.

The authors did not find any research on the behavioral equiv-

alence of Bash when the environment changes. Therefore, it
would be useful for developers to create a tool to verify whether
a script behaves equally across operating systems. Bash has a de-

bugging tool [14], but these tools do not work with inter-

pipeline output and scripts called within a script.

1.3 The Approach
In the proposed method, we first embed commands which

generate execution log in script files to be verified. The log gen-

erating commands(Loggers) are programs that log standard out-

put, output between pipelines, and variable assignments. Scripts
with Loggers embedded are executed to generate and retrieve the
logs. This process is performed on each of the two target operat-

ing systems built on VirtualBox [14], and the obtained logs are
compared to detect differences in behavior. If the logs match, it
is assumed that there is no change in the behavior. If the logs
do not match, we present where the logs differ as the commands
which is cause of the difference(hereinafter called “cause com-

mand”) to the developer. The information to be presented is
executed command, execution log, and stack trace information
of the function or script.

We conducted three evaluations of the proposed method. In
the first evaluation, we intentionally created commands with
different behaviors and experimented to detect the difference in
behaviors and to identify the cause. In the second evaluation,
we experimented to see if the proposed method can detect the
difference in the behavior of a script containing the command
sudo, whose behavior was changed by updating the command

in the past and to identify the cause of the change. In the third

evaluation, we applied the proposed method to a script, which

access given URL via a proxy server imitatively downloading

files in secured network.

As a result of our evaluation experiments, we confirmed

that our proposed method is helpful for developers in verify-

ing whether behaviors changed. We also found that it is possible

to detect differences in the behavior of commands with small

side-effects, e.g. commands that only calculate and return argu-

ments. However, it is difficult to directly identify the cause of the

differences in commands with side-effects, such as commands

that affect the environment variables.

In the following sections, Section 2 describes the techniques

related to this research, such as bug localization and lexical

and syntactic analysis. In Section 3 we describe the motivating

example, and in Section 4 we describe the proposed method. In

Section 5 we present the results in the evaluation experiments and

in Section 6 we discuss the results in the experiments. Finally,

we conclude in Section 8.

2 PRELIMINARIES

2.1 Bug Localization
Various methods are being researched to identify software

bugs. In the paper [15], a method to identify statements with

bugs from the program spectrum which is execution records of

success or failure of software test cases is studied. It identifies

the statement as the most suspicious statement that includes

bugs. The suspicion of statement is calculated from program

spectrum information using newly proposed metrics. Another

research [16] proposes a method to support identifying defects

by visualizing data transitions and execution flow with dynamic

analysis from Java source code. This research targets to detect

functional defects in logic and visualizes their details the detailed

processing flow and dependencies of variables to assist users in

understanding. In evaluation experiments on the tool, it was

confirmed that the use of the tool can reduce the time required

to locate defects.

2.2 Model Checking
Model checking is a method to verify that the behavior of a

system satisfies the specification. A model checking tool judges

whether or not a specification is valid for a state transition model

that represents the behavior of a system. In many model check-

ing tools, specifications are described by temporal logic such as

CLT and LTL. There is a study [17] that applies model checking

to real system development. In this study, a model checking tool

UPPAAL [18] was used for the development of medical infu-

sion pumps to formalize the models and specifications, verify the

safety of the models and generate code from the verified models.

Also, since the description of the state transition model and the

specification is essential for model checking, the research [19]

has been conducted to support the description of the model and

56 H. Kiryu et al. / Verification of Shell Script Behavior by Comparing Execution Log

Figure 2: Outline of lexer and parser

the specification for engineers who do not have such knowledge.

Automatic generation of checking models from the state tran-

sition table of the system and the table which summarizes the

actions which occur in each state.

2.3 Lexical and Syntactic Analyzer
Lexical and syntactic analysis is a series of parsing processes

in programming languages, as shown in Fig. 2. A series of

pipelined syntactic analyzers check that the token sequence given

by the lexical analysis satisfies the defined grammar. We use

PLY (Python Lex-Yacc) [20] as a lexical and syntactic analyzer

to embed Loggers into Bash scripts given as input. PLY is

an implementation of Lex, a lexical analyzer for Python, and

Yacc which is a syntactic analyzer. In the lexical analysis part,

regular expressions are used to define the string-to-token con-

version rules, and in the syntactic analysis part, the LALR(1)

grammar [21] is used to define the syntax rules. A syntax tree is

constructed from the given rules and parsed for a given sentence.

3 THE MOTIVATION EXAMPLE

Listing 1: foo.bash

1 VAR=’baz ’
2 export VAR
3 sudo bash bar.bash

Listing 2: bar.bash

1 echo ${VAR}

The two Bash scripts in the Listings 1 and 2, foo.bash and

bar.bash, are example scripts whose behavior changes depend-

ing on OS versions. In CentOS5 and later versions, the behavior

of the sudo command in foo.bash has changed due to the upgrade

of the command. Versions that are older than CentOS5 output

the string “baz,” while in CentOS5 and later versions not output

a blank line. This is because, in 1.6 and earlier versions of the

sudo, the command was able to preserve environment variables

when executed by sudo, however, in 1.7 and later versions, it

is necessary to specify the ‘-E’ option to preserve environment

variables. The environment variable is not referred due to the

change of the command specification of the newer version. This

change causes the difference in behavior between versions older

than CentOS5 using version 1.6 bash and later versions of Cen-

tOS.

Figure 3: Outline of the proposed method

4 THE PROPOSED MOTHOD
The proposed method generates execution logs of Bash scripts

and judges the difference in behavior by comparing the logs. The

execution log contains the standard output, the output between

pipelines, and the variable assignments along with the executed

commands. The stack trace information of the command is also

stored to make it easier to identify the cause.

4.1 Outline of the Proposed Method
The schematic diagram of the proposed method is shown in

Fig. 3. The input and output of the proposed method are shown

below.

• Input : Script file to be verified

• Output: verification results (the behavior is different and

which command behaves differently)

The procedure of the proposed method is as follows.

(1) It embeds the Logger into the Bash script given as input.

The Logger refers to a program that logs the standard output,

output between pipelines, and variable assignment. The details

of each program are described below.

(2) It executes script embedded commands on each of the two

operating systems.

(3) It compares the obtained logs and judges whether the

behavior is different. If the behavior is different, the command

that causes the difference and its log information is presented.

We have created a tool that automatically executes the above

procedure.

4.2 Execution Log
The format of the execution log is shown in Listing 3.

Listing 3: Abstraction of the log

1 <log identifier >:< commands >, line: <
lineno >, stack: <stack trace >

2 <output log >
3 :<log identifier >

1. <log identifier> : “assignment” if the log is an assignment,

“command” if the log is a command execution

57International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

2. <commands> : Executed commands

3. <line> : line number of executed command

4. <stack trace> : Stack trace information of the script and

function when the command is executed.

5. <output log> : Assignment log and standard output log.

4.3 Log Generating Command(Logger)
The following four Loggers are embedded in the script. The

behavior of each is shown below.

• Standard output log command : Generate standard output

log

• Assignment Log command : Generate Variable Assign-

ment Log

• Stack push command : Record Stack trace information

• Stack pop command : Record Stack trace information

4.3.1 Standard Output Log Command

This command logs the standard output and the output between

pipelines. It also takes two arguments, a command to be ex-

ecuted and its line and logs the string to be executed. The

standard output log command is “stdout_logger” in Listing 5.

This logging command can generate the standard output log by

pipelining this command to a line that does the normal standard

output as shown in the examples in Listings 4 and 5.　

Listing 4: Before embedding example for standard output

1 echo hello

Listing 5: After embedding example for standard output

1 echo hello | stdout_logger ’echo
hello ’ 1

The log shown in Listing 6 is generated by executing the script

shown in Listing 5.

Listing 6: Log example for standard output

1 command :echo hello , line: 1, stack:
2 hello
3 : command

Also, the output between pipelines can be logged like the

standard output by embedding it as Listings 7 and 8.

Listing 7: Before embedding commands for pipeline

1 commandA | commandB

Listing 8: After embedding commands for pipeline

1 commandA | stdout_logger ’commandA ’ |
commandB

4.3.2 Assignment Log Command

In this step, we generate log of assignments to variables. The as-

signment log command is “assign_logger” in Listing 10. It takes

the assignment command to be executed, the variable name, and

the value of the variable as arguments and records them in the

execution log. When the assignment command is taken as an

argument, single quotes are escaped to avoid the expansion of

variables. The Listings 9 and 10 show an example of before and

after embedding the log.

Listing 9: Before embedding commands

1 VAR=’baz ’

Listing 10: After embedding commands

1 VAR=’baz ’
2 assign_logger ’var=’\’’baz ’\’’’ VAR "

$VAR" 1

Running the script ex.bash that executes Listing 10 will gen-

erate the log shown in Listing 11.

Listing 11: Log example for assignment

1 assignment :VAR=’baz ’, line: 1, stack :
2 VAR=baz
3 : assignment

4.3.3 Stack Push, Stack Pop Command

In order to identify the execution path of commands, command

to stack push and pop records stack trace information into a text

file. At the start of the script or function, their name is pushed.

At the end of that, the pushed name is popped. In addition, the

call command string is pushed just before the script or function

call, and the pushed string is popped after the calling. Listings 14

and 15 shows the result of embedding for ex.bash and test.bash

shown in Listings 12 and 13.

Listing 12: ex.bash before embedding commands

1 test.bash ’test ’

Listing 13: test.bash before embedding commands

1 echo ${1}

Listing 14: ex.bash after embedding commands

1 push_stack ex.bash
2 push_stack ’test.bash ’\’’test ’\’’’
3 test.bash ’test ’
4 pop_stack
5 pop_stack

58 H. Kiryu et al. / Verification of Shell Script Behavior by Comparing Execution Log

Listing 15: test.bash after embedding commands

1 push_stack test.bash
2 echo ${1} | stdout_logger ’echo ${1}’

1
3 pop_stack

Listing 14 generate the log shown in Listing 16.

Listing 16: Log example for stack and push command

1 command :echo ${1}, line: 1, stack: ex
.bash ->test.bash ’test ’->test.bash

2 test
3 : command

The log “ex.bash->test.bash ’test’->test.bash” which is the

stack trace information following “stack:” in the log, indicates

that the log was generated in test.bash called by test.bash ‘test’

from within ex.bash.

4.4 Embedding Commands
Embed Loggers into scripts given as input. The tool embeds

each command in the following cases.

• Start of the script or function : Stack Push Command

• End of the script or function : Stack Pop Command

• The line just before the call of script or function : Stack

Push Command

• The line just after the call of script or function : Stack Pop

Command

• Pipeline : Standard Output Log Command

• Variable Assignment : Assignment Log command

4.5 Executing Scripts
Scripts which is embedded Loggers are executed. In run-

ning the script, copy it to OS built using VirtualBox and run.

Verification can be done within a single machine.

4.6 Comparing Logs
The tool compare 2 execution logs generated by running.

Execution log contains following information.

• Executed command

• Stack trace information

• Log identifier of standard output or assignment

• Log of standard output or assignment

In case that no difference between the logs is detected, the tool

judge that behavior is consistent. If not so, the tool judge that

behavior is changed and display different logs as causes.

4.7 Implementation
We create the tool based on the proposed method. The tool

gets scripts as input, embed commands, run embedded scripts,

compare logs, and display results automatically.

The Loggers were embedded using a lexical and syntactic

analyzer written in Python Lex-Yacc. It embeds Loggers if the

script matches defined grammars. For example, if assignment

operator “=” appears in a single command, it is recognized as an

assignment and the assignment log command is embedded. The

four Loggers and the log comparison program were implemented

using C++.

Target OSes of verification are built on VirtualBox on Win-

dows. Scripts given as input are embedded Loggers on Windows

and copied to target OSes, then the execution logs are provided

by running the scripts on each OS. The logs are copied to the

Host OS and verified. By executing the script on target OSes

using SSH from the Host OS, this method is executed automat-

ically.

5 EVALUATION EXPERIMENT
In order to evaluate the proposed method, we conducted eval-

uation experiments for the following three scripts to see if it is

possible to detect and identify the cause of different behaviors.

1. A script that executes commands created to behave differ-

ently between operating systems.

2. A script containing the sudo command described in Sec-

tion 3

3. A script that imitates a situation of building environments

via proxy

The environment and OS used for these evaluation experiments

are as follows.

• Host OS : Windows10 Pro

• VirtualBox ver 5.2.18 r124319

• Guest OS 1: CentOS 4.6

• Guest OS 2: CentOS 8.2.2004

Both experiments followed steps below.

1. Embed commands into scripts given as input on the Host

OS.

2. Copy the Scripts which is embedded commands to the

target OSes.

3. Execute the scripts on each target OSes and copy generated

logs to the Host OS.

4. Compare the obtained logs and get verification results.

59International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

5.1 Experiment 1
We prepared a command “sample” and a simple script to ex-

ecute the command for each OS. The command “sample” takes

two integer arguments and outputs the result of addition on Cen-

tOS4.6 and multiplication on CentOS8.2. The proposed method

is applied to the scripts we created and conducted experiments

to evaluate whether the tool can detect a difference in behavior

between scripts with a different function, and whether “sample”

can be identified as the causative command.

The script used for the experiment, “ex.bash,” is shown in

Listing 17.

Listing 17: ex.bash

1 result =$(sample 2 3)
2 echo ${ result }

Script after embedding the commands into ex.bash is shown in

Listing 18.

Listing 18: ex.bash after embedding command

1 push_stack ex.bash
2 result =$(sample 2 3 | stdout_logger

’sample 2 3’ 1)
3 assign_logger ’result =$(sample 2 3

)’ result " $result " 1
4 echo ${ result } | stdout_logger ’echo

${ result }’ 2
5 pop_stack

Obtained logs by executing the above script on each target OSes

are shown in Listings 19 and 20.

Listing 19: Log on CentOS4.6 in Experiment 1

1 command : sample 2 3, line: 1, stack:
ex.bash

2 5
3 : command
4

5 assignment : result =$(sample 2 3),
line: 1, stack: ex.bash

6 result =5
7 : assignment
8

9 command : echo ${ result }, line: 2,
stack: ex.bash

10 5
11 : command

Listing 20: Log on CentOS8.2 in Experiment 1

1 command : sample 2 3, line: 1, stack:
ex.bash

2 6
3 : command

Figure 4: Result of Experiment 1

4

5 assignment : result =$(sample 2 3),
line: 1, stack: ex.bash

6 result =6
7 : assignment
8

9 command : echo ${ result }, line: 2,
stack: ex.bash

10 6
11 : command

The results of the comparison of the two logs are shown in

Fig. 4.

Different logs are suggested. According to the results in Fig.

4, differences in the script behavior were detected. The cause

of the different behavior of the script “ex.bash” is the command

“sample,” and the first presented log shows the command “sam-

ple 2 3.” Therefore, the difference in behavior was detected and

the command that caused the difference was identified.

5.2 Experiment 2
The proposed method is applied to scripts shown in Listings

1 and 2, which are indicated in Section 3 and conducted experi-

ments to evaluate whether the tool can detect differences in the

behavior of the scripts and identify the command “sudo” as the

cause of the difference.

The Bash scripts after embedding the commands into the

scripts are shown in Listings 21 and 22.

Listing 21: foo.bash after embedding command

1 push_stack foo.bash
2 VAR=’baz ’
3 assign_logger ’VAR=’\’’baz ’\’’’ VAR "

$VAR" 1

60 H. Kiryu et al. / Verification of Shell Script Behavior by Comparing Execution Log

4 export VAR | stdout_logger ’export
VAR ’ 2

5 push_stack ’sudo bash ./ bar.bash ’
6 sudo bash ./ bar.bash
7 pop_stack
8 pop_stack

Listing 22: bar.bash after embedding command

1 push_stack bar.bash
2 echo ${VAR} | stdout_logger ’echo ${

VAR}’ 1
3 pop_stack

logs generated by executing the scripts shown in Listings 21

and 22 on each target OSes are shown in Listings 23 and 24.

Listing 23: Log on CentOS4.6 in Experiment 2

1 assignment :VAR=’baz ’, line: 1, stack:
foo.bash

2 VAR=baz
3 : assignment
4

5 command : export VAR , line: 2, stack:
foo.bash

6 : command
7

8 command :echo ${VAR}, line: 1, stack:
foo.bash ->sudo bash ./ bar.bash ->
bar.bash

9 baz
10 : command

Listing 24: Log on CentOS8.2 in Experiment 2

1 assignment :VAR=’baz ’, line: 1, stack:
foo.bash

2 VAR=baz
3 : assignment
4

5 command : export VAR , line: 2, stack:
foo.bash

6 : command
7

8 command :echo ${VAR}, line: 1, stack:
foo.bash ->sudo bash ./ bar.bash ->
bar.bash

9

10 : command

There is a difference in the 9th line of each log: CentOS4.6

outputs “baz,” but CentOS8.2 outputs an empty string. This is

the same as the result mentioned in Section 3.

The results of the comparison of the logs are shown in Fig. 6.

From the results in Fig. 6, the difference in behavior is detected

Figure 5: Result of Experiment 2

by comparison of the execution logs. However, the command

“echo $VAR” suggested as a cause is not true cause as described

in Section 3. The true cause command “sudo” wasn’t identified

as a cause of the difference in the behavior of the script.

5.3 Experiment 3
The following script shown in Listing 25 updates packages

with package managing command “yum” via a proxy server,

which is described by environment variables including “http_proxy.”

Some enterprises and institutions often create proxy servers to

protect internal networks from cyberattacks, and users in orga-

nizations access external networks via proxy servers. A tool

to manage packages like “yum” in the script is necessary com-

mand for building server environment. This script imitates such

a situation.

Listing 25: Example script of updating command via a proxy

server

1 http_proxy =" http
://192.168.56.1:3128/"

2 https_proxy =" https
://192.168.56.1:3128/"

3 ftp_proxy =" ftp ://192.168.56.1:3128/"
4 export http_proxy https_proxy

ftp_proxy
5 sudo yum update -y

In this Experiment, We applied the method to a script that

is the essence of the script in Listing 25. The script extracts

the title of the given URL “http://example.com” with the curl

command via a given proxy server. In order to evaluate that

the tool can detect differences in behaviors and identify cause

command. This script just extracts the title of a given URL via

proxy server.

Listing 26: test.bash

1 export http_proxy =" http
://192.168.56.1:3128/"

2 echo "title is" $(sudo curl -sS "
example .com" 2>&1 | grep -Po "(? <=
title >)(.+)(?= </ title >)")

The script embedded command is shown in Listing 27.

Listing 27: test.bash after embedding command

61International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

1 push_stack test.bash
2 export http_proxy =" http

://192.168.56.1:3128/"
3 assign_logger ’http_proxy =" http

://192.168.56.1:3128/" ’ http_proxy
" $http_proxy " 1

4 echo "title is" $(sudo curl -sS "
http :// example .com" 2>&1 |
stdout_logger ’sudo curl -sS "http
:// example .com"’ 2 | grep -Po
"(? <= title >)(.+)(?= </ title >)" |
stdout_logger ’sudo curl -sS "http
:// example .com" 2>&1 | grep -Po
"(? <= title >)(.+)(?= </ title >)"’ 2)

| stdout_logger ’echo "title is "
$(sudo curl -sS " example .com"

2>&1 | grep -Po "(? <= title
>)(.+)(?= </ title >)") ’ 2

5 pop_stack

Listings 28 and 29 show generated logs on the each OSes.

Listing 28: Log on CentOS4.6 in Experiment 3

1 assignment : http_proxy =" http
://192.168.56.1:3128/" , line: 1,
stack : test.bash

2 http_proxy =http ://192.168.56.1:3128/
3 : assignment
4

5 command : sudo curl -sS "http ://
example .com", line: 2, stack: test
.bash

6 <! doctype html >
7 <html >
8 <head >
9 <title > Example Domain </ title >

10 (Omission)
11 </html >
12 : command
13

14 command : sudo curl -sS "http ://
example .com" 2>&1 | grep -Po "(? <=
title >)(.+)(?= </ title >)", line: 2,

stack: test.bash
15 Example Domain
16 : command
17

18 command : echo "title is" $(sudo curl
-sS " example .com" 2>&1 | grep -Po
"(? <= title >)(.+)(?= </ title >)") ,
line: 2, stack: test.bash

19 title is Example Domain

Listing 29: Log on CentOS8.2 in Experiment 3

Figure 6: Result of Experiment 3

1 assignment : http_proxy =" http
://192.168.56.1:3128/" , line: 1,
stack: test.bash

2 http_proxy =http ://192.168.56.1:3128/
3 : assignment
4

5 command : sudo curl -sS "http ://
example .com", line: 2, stack : test
.bash

6 curl : (6) Could not resolve host:
example .com

7 : command
8

9 command : sudo curl -sS "http ://
example .com" 2>&1 | grep -Po "(? <=
title >)(.+)(?= </ title >)", line: 2,

stack : test.bash
10 : command
11

12 command : echo "title is" $(sudo curl
-sS " example .com" 2 >&1 | grep -Po
"(? <= title >)(.+)(?= </ title >)") ,
line: 2, stack: test.bash

13 title is
14 : command

The result is shown in Fig. 6.

The result shows that the tool detect changes in logs and the

commands “sudo curl -sS "http://example"” are suggested as

cause commands.

6 DISCUSSION
In the all Experiments, the difference in behavior between

the script which executes commands with different behaviors is

detected.

The cause command of the difference is identified in evalua-

tion Experiment 1. In the experiment, differences in execution

logs were detected in command substitution and assignment be-

fore they appear on standard output. Shell scripts that have

complicated processing will almost certainly use such opera-

tors. Therefore, It is helpful for developers to find the difference

before it comes out as standard output. This is also true for the

pipeline which our method supports.

62 H. Kiryu et al. / Verification of Shell Script Behavior by Comparing Execution Log

While, in the Experiment 2, the wrong command was sug-

gested as the cause command. The reason is that the environment

variables are not referred in the script called by the “sudo” com-

mand in CentOS8.2, and the difference in behavior is surfaced

at the stage of “echo $VAR” which performs standard output. In

the case of change in the behavior of such a command which has

no standard output, differences in behavior are detected in stan-

dard output or assignment. This is because the proposed method

generates execution logs which focus on standard output and as-

signment. Therefore, it will be difficult to directly identify such

commands as the cause command. Similarly, it will be difficult

to precisely identify the cause commands in case of commands

like “sudo,” which has a function to affect shared resources such

as environment variables changed, i.e. a command with a strong

side effect.

In Experiment 3, The tool identified cause command “sudo”.

The command “sudo curl -sS "http://example.com"” accesses

the URL via proxy server, which is described by “http_proxy”.

However, in CentOS8.2, the access to URL fails due to the com-

mand “sudo” doesn’t preserve environment variables. There are

commands that refer to environment variables when performs,

such as curl and tools to manage packages including yum and apt.

These commands are generally used in building environment on

server.

From result of the evaluations, Our proposed method can

support developers in checking behavior changes in scripts.

7 FUTURE WORK
Defined grammars on lexical and syntax analyzers are simple.

The analyzers cannot support complex grammars. Therefore, the

tool needs to expand the grammars of analyzers.

Since this method only collects logs that appear in the standard

output or assignment. If the behavior differs in areas that don’t

appear in the standard output or assignment, e.g. signal trapping,

it is not possible to verify whether the behavior changed.

The proposed method needs to evaluate the execution time and

used memory for large and complex scripts such as recursive.

Thus, addressing these issues will be the main task in the

future.

8 CONCLUSION
In this paper, we proposed a method to verify whether the

behavior of shell scripts written in Bash is changed before and

after OS upgrade and created a tool based on the method. The

tool based on the proposed method can verify the behavior and

identify the causes of the differences by comparing the execu-

tion logs of the shell scripts generated by log generating com-

mands(Loggers). From evaluation experiments, we confirmed

that our proposed method can verify differences in the behavior

in standard output and assignment, and the method can support

developers in verifying whether behaviors in scripts is changed

before and after OS update efficiently. Furthermore, we con-

clude that it is difficult to precisely identify the cause commands

in case of commands which have no standard output or strong

side effects.

ACKNOWLEDGEMENT
Part of this work is supported by fund from Mitsubish Electric

Corp.

The research is also being partially conducted as Grant-in-Aid

for Scientific Research A (19H01102) and C (21K11826).

REFERENCES
[1] “GNU Bash,” https://www.gnu.org/software/bash/ (re-

ferred May 13, 2022).

[2] J.Nam, S.Wang, Y.Xi, and L. Tan: “A bug finder refined

by a large set of open-source projects,” Information and

Software Technology, Vol.112, pp.164–175 (2019).

[3] S.Kim, T.Zimmermann, K.Pan, and E.J.Whitehead Jr.:

“Automatic Identification of Bug-Introducing Changes,”

21st IEEE/ACM International Conference on Automated

Software Engineering (ASE’06), pp.81-90 (2006).

[4] S.Tsakiltsidis, A.Miranskyy, and E.Mazzawi: “Towards

Automated Performance Bug Identification in Python,”

2016 IEEE International Symposium on Software Re-

liability Engineering Workshops (ISSREW), pp.132-139

(2016).

[5] K.Matsushita, M.Matsumoto, K.Ohno, T.Sasaki, T.Kondo,

and H.Nakashima: “A Debugging Method Based on

Comparison of Execution Trace,” Symposium on Ad-

vanced Computing Systems and Infrastructures (SACSIS),

Vol.2011, pp.152-159 (2011) (in Japanese).

[6] K.Hanayama, S.Matsumoto, and S.Kusumoto: “Hump-

back: Code Completion System for Dockerfiles Based

on Language Models,” In 1st Workshop on Natural Lan-

guage Processing Advancements for Software Engineer-

ing(NLPaSE 2020), pp. 1-4 (2020).

[7] H.Azuma, S.Matsumoto, Y.Kamei, and S.Kusumoto:

“Survey of Self-Admitted Technical Debt in Container Vir-

tualization Technology,” IEICE technical report, Vol.120,

No.193, pp.25-30 (2020) (in Japanese)

[8] E.Clarke, D.Kroening, and F.Lerda: “A tool for check-

ing ANSI-c programs,” International Conference on Tools

and Algorithms for the Construction and Analysis of Sys-

tems. TACAS 2004, Lecture Notes in Computer Science,

Vol.2988, pp.168-176 (2004).

[9] L.Cordeiro, D.Kroening, and P.Schrammel: “JBMC:

Bounded Model Checking for Java Bytecode,” Interna-

tional Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems(TACAS 2019), Lec-

ture Notes in Computer Science, Vol.11429, pp.219-223

(2019).

[10] A.Biere, A.Cimatti, E.Clarke, and Y.Zhu: “Symbolic

Model Checking without BDDs,” In Proceedings of the

Workshop on Tools and Algorithms for the Construction

63International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

and Analysis of Systems(TACAS 1999), Lecture Notes in

Computer Science, Vol.1579, pp.193-207 (1999).

[11] K.Okano, R.Karashima, S.Harauchi, and S.Ogata: “Re-

gression Verification for C Functions with Recursive Data

Structure,” International Journal of Informatics Society,

Vol.11, No.2, pp.107-115 (2019).

[12] K.Okano, S.Harauchi, T.Sekizawa, S.Ogata, and

S.Nakajima: “Consistency Checking between Java Equals

and hashCode Methods Using Software Analysis Work-

bench,” IEICE Transactions on Information and Systems,

Vol.E102, No.8, pp.1419-1422 (2019).

[13] R.Karashima, S.Harauchi, S.Ogata, and K.Okano: “Pro-

posal and evaluation for property verification for Java

functions with recursive data structures by SAW,” Pro-

ceedings of International Workshop on Informatics 2019

(IWIN2019), pp.155-162 (2019).

[14] “BASH Debugger,” http://bashdb.sourceforge.net/

[15] “Oracle VM VirtualBox,” https://www.virtualbox.org/ (re-

ferred May 13, 2022).

[16] C.Oo and H.Min Oo: “Spectrum-Based Bug Localization

of Real-World Java Bugs,” International Conference on

Software Engineering Research, Management and Appli-

cations, pp.75-89 (2019)

[17] T.Sato, T.Katayama, Y.Kita, H.Yamaba, K.Aburada, and

Naonobu Okazaki: “Development of TFVIS (Transitions

and Flow VISalization) for Java Programs,” Journal of

Information Processing (JIP), Vol.59, No.4, pp.1137-1149

(2018) (in Japanese).

[18] B.Kim, A.Ayoub, O.Sokolsky, I.Lee, P.Jones, Y.Zhang,

and R.Jetley: “Safety-assured development of the GPCA

infusion pump software,” 2011 Proceedings of the Ninth

ACM International Conference on Embedded Software

(EMSOFT), pp. 155-164, (2011).

[19] G.Behrmann, A.David, and K.G.Larsen: “A Tutorial on

Uppaal,” In Formal Methods for the Design of Real-Time

Systems, Vol.3185, pp.200-237 (2004).

[20] T.Koike: “Model Checking Support Environment based

on State Transition Matrix,” SIGEMB, Vol.2008, No.116

pp.91-96 (2008) (in Japanese).

[21] “PLY (Python Lex-Yacc) ― ply 4.0 documentation,”

https://ply.readthedocs.io/en/latest/ (referred May 13,

2022).

[22] F.DeRemer and T.Pennello: “Efficient Computation of

LALR(1) Look-Ahead Sets,” ACM Transactions on

Programming Languages and Systems, Vol.4, No.4,

pp.615–649 (1982).

Hitoshi Kiryu is a graduate student of Shinshu Uni-

versity. His areas of interest include formal verifica-

tion.

Satoshi Suda Suda Satoshi received his M.E. de-

gree in mathematical from Osaka University, Osaka,

Japan, in 2016. He joined Mitsubishi Electric Corp.

Currently he is a researcher of Solution Engineer-

ing Dept. at Advanced Technology R&D Center and

mainly engaging in research on software development

efficiency.

Shinpei Ogata is an Associate Professor at Shinshu

University, Japan. He received his BE, ME, and PhD

from Shibaura Institute of Technology in 2007, 2009,

and 2012 respectively. From 2012 to 2020, he was

an Assistant Professor, and since 2020, he has been

an Associate Professor, in Shinshu University. He is

a member of IEEE, ACM, IEICE, IPSJ, and JSSST.

His current research interests include model-driven

engineering for information system development.

Kozo Okano received his BE, ME, and PhD de-

grees in Information and Computer Sciences from

Osaka University in 1990, 1992, and 1995, respec-

tively. From 2002 to 2015, he was an Associate

Professor at the Graduate School of Information Sci-

ence and Technology of Osaka University. In 2002

and 2003, he was a visiting researcher at the Depart-

ment of Computer Science of the University of Kent

in Canterbury, and a visiting lecturer at the School of

Computer Science of the University of Birmingham,

respectively. Since 2020, he has been a Professor

at the Department of Electrical and Computer Engineering, Shinshu Univer-

sity. His current research interests include formal methods for software and

information system design. He is a member of IEEE, IEICE, and IPSJ.

(Received: October 30, 2021)

(Accepted: February 23, 2022)

