
Regular Paper

Towards Resistance to Memory Inspection Attacks on Plausibly Deniable
Distributed File Systems

Ryouga Shibazaki†, Hiroshi Inamura‡, and Yoshitaka Nakamura*

†Graduate School of Systems Information Science, Future University Hakodate, Japan
‡School of Systems Information Science, Future University Hakodate, Japan

* Faculty of Engineering, Kyoto Tachibana University, Japan
{g2120017, inamura}@fun.ac.jp, nakamura-yos@tachibana-u.ac.jp

𝑨𝒃𝒔𝒕𝒓𝒂𝒄𝒕 - Data protection has become an important issue in
Internet services. In storage systems, conventional methods
such as full disk encryption are generally used, but this alone
cannot protect against forced attacks of key disclosure. PDE
(Plausibly Deniable Encryption), which enables the denial of
the existence of confidential information, has been proposed,
and by disclosing the decoy key, it has become possible to
protect the user from the force to disclosure the key. It is an
issue to be considered that the main memory is attacked at
runtime due to the use in the cloud and the spread of virtual-
ization technology. Therefore, we are proposing PTEE FS that
realizes an encrypted file system using the concept of PDE in
a trusted execution environment (TEE). To provide the resis-
tance to exploiting the knowledge from the use of disclosed
the decoy key, we introduce FID unification mechanisms. Re-
garding the performance of PTEE FS, we will evaluate the
estimated performance given by the overhead of using TEE by
using a model that imitates actual use on the cloud and using
file synchronization between the server and client as the actual
use model on the cloud.

𝑲𝒆𝒚𝒘𝒐𝒓𝒅𝒔: Plausibly Deniable Encryption, OS Security,
Trusted Execution Envirionment.

1 BACKGROUND
Leakage of confidential data related to privacy endangers

the privacy of data owners and leads to the loss of social cred-
ibility of the leaked organization, so protection of such data
has become an important issue. Traditional methods such as
full disk encryption are commonly used in storage systems,
but these methods make it difficult to maintain confidentiality
when access to computer hardware or administrator privileges
is stolen by an attacker. On the other hand, Plausibly Deniable
Encryption (PDE), which is a new concept of encryption, has
been proposed [1]. PDE protects confidential information suf-
ficiently by allowing the existence of information to be denied.
By disclosing the decoy key, PDE protects against the extor-
tion of the decryption key by an attacker. While admitting that
the encrypted file system exists in the system, the attacker is
given the decoy key to access the decoy area, but the existence
of the hidden area and its contents are kept secret. From the
perspective of storage system configuration, PDE’s existing
research primarily protects sensitive information in persistent
storage, and it is assumed that the main memory, which con-

trols the existence of confidential information at runtime, will
not be attacked. As an attack on the main memory, a memory
inspection attack is assumed in this paper. This is an attack
that illegally takes a snapshot of the main memory and obtains
confidential information.

According to the white paper of the Japanese Ministry of
Internal Affairs and Communications [2], it can be seen from
Fig. 1 that data storage and backup are performed using the
cloud. In this way, cloud services have become widespread
due to the spread of virtualization technology in recent years,
and attacks on main memory have become an issue to be
considered. There is a risk that someone who understands
the system configuration attempts to attack the main memory
with a vulnerability on the premise of using technology that
controls hardware privileges such as virtualization technology
and hypervisor used in cloud services. An example of inci-
dents involving suspected administrative compromise is the
illegal access to data for about 100 million people stored on
Amazon Web Services at Capital One, an American bank, in
2019 [3].

With the development of virtualization technology, hard-
ware support functions are being incorporated into CPUs to be
able to perform processing that guarantees data confidentiality
even when such privileged users and terminal administrators
are not credible [4].

So far, the purpose of this study is to construct an encrypted
file system that is resistant to attacks not only on the persistent
storage device but also on the main memory and that can
deny the existence using the concept of PDE. We proposed a
system using Intel SGX as a hardware-protected execution an
environment in the realization of an encrypted file system [5].

In this paper, we examine countermeasures against attacks
that are established on the premise that the attacker knows the
existence of the decoy key and decoy data for PTEE FS (PDE
with Trusted Execution Environment File System). In Chapter
4, we describe the problems of an attack using knowledge from
the use of disclosed decoy key. First, introduce a PDE system
and threat analysis as assumptions for our previous proposal.
Then, we explain an attack using knowledge from the use of
disclosed decoy key, which is a threat to be solved in this pa-
per. Chapter 5 we propose FID (file ID) unification, which is
a method for solving attacks using knowledge from the use of
disclosed decoy key explained in Chapter 4. The basic con-
cept, procedures, and integrated structure of the hidden and

41

ISSN1883-4566 © 2022 - Informatics Society and the authors. All rights reserved.

41International Journal of Informatics Society, VOL.14, NO.1 (2022) 41-52

Figure 1: Breakdown of cloud service usage in enterprises

decoy file will be presented. In Chapter 6 and 7, as an eval-
uation of the processing time in normal access of PTEE FS,
a model that imitates the actual use on the cloud is used, and
the performance is evaluated in consideration of the overhead
due to the use of TEE. In addition, as the processing time of
the program started on-demand, the performance is evaluated
in consideration of the additional latency due to calling the
FID merge processing described in Chapter 5. In the evalua-
tion of processing time in normal access, file synchronization
between server and client is used as an actual usage model
on the cloud. In the evaluation of the processing time of the
program started on-demand, the local file created by referring
to the existing research [6] by Leung et al. is used.

2 RELATED RESEARCH AND RELATED
TECHNOLOGY

This section describes the concept of Plausibly Deniable
Encryption, its application to file systems, and Intel SGX,
which is being examined for application to the realization of
attack resistance to main memory.

2.1 Plausibly Deniable Encryption
Plausibly Deniable Encryption (PDE) was proposed by

Canetti et al. [1] as one of the encryption methods. Tradi-
tional disk encryption methods including full disk encryption
have the problem that they cannot be protected if the owner is
forced to disclose the decryption key by an attacker. Therefore,
PDE, which was proposed as one of the methods to protect
the owner from the key disclosure extortion attack, enables
the protection attack by using the decoy key. PDE is a char-
acteristic of using a decoy key, which enables protection from
key disclosure extortion attacks. As shown in Fig. 2, PDE
applies special encryption to confidential information that can
be decrypted with both a decoy key and a private key, unlike
conventional encryption. Decryption with the decoy key gives
the decoy plaintext, and decryption with the private key gives
the original plaintext. When the legitimate user is attacked by

Figure 2: Overview of PDE

an attacker forcing key disclosure, the user can give the decoy
key to the attacker. Since the attacker thinks that the decoy key
is the original private key, it allows the original confidential
information unnoticed and be kept secret.

On the other hand, the disadvantage is that the size of the
ciphertext becomes extremely large, which may make the at-
tacker suspicious of applying a special cipher. Furthermore,
traces of confidential information may be obtained from the
file system and the physical storage medium layer, etc., and
considering these, it cannot be said to be a practical method.
However, the idea of PDE is that the decoy key gives decoy
information and the private key gives the confidential infor-
mation that can be used.

2.2 Applications of the PDE Concept
Using the idea of PDE, a method was proposed to bring con-

fidentiality using two types of techniques, steganography and
hidden volume, instead of using simple encryption. First, a
PDE method using the concept of steganography was proposed
by Anderson et al. [7] and Chang et al. [8]. The basic idea is
to hide confidential information in ordinary information. For
example, confidential information is embedded and saved in
a part of a large file such as an image file. In steganography,
there is a risk that the confidential information will be over-
written when the file in which such confidential information is
embedded is changed. To avoid overwriting confidential infor-
mation, the risk is alleviated by copying and saving multiple
confidential information, but it has the disadvantage that the
usage efficiency of the storage device deteriorates and a large
amount of confidential information cannot be retained. PDE
using hidden volume technology has been proposed by Jia et
al. [9] and Zuck et al. [10]. File system using hidden volume
technology creates a decoy volume on a storage device with a
decoy key and a hidden volume with a private key. The decoy
volume is placed throughout the storage device, and the hid-
den volume is usually placed from the hidden offset, which is
the initial position of the hidden volume on the storage device,
toward the end of the storage device. When using the PDE
file system using hidden volume technology, the user logs in
public mode or PDE mode and uses the file system. In public
mode, the user only operates decoy volumes and in PDE mode,
the user can operate hidden volumes. When forced to disclose
the key, the owner discloses the login password of the public
volume and the decoy key, to protect the hidden volume and

424242 R. Shibazaki et al. / Towards Resistance to Memory Inspection Attacks on Plausibly Deniable Distributed File Systems

Figure 3: Overview of Intel SGX

the confidential data from the attacker. In the hidden volume
technology, the existence of the hidden volume and the hid-
den offset are unknown in the system that operates the decoy
volume, so the data stored in the decoy volume may overwrite
the hidden volume.

2.3 Intel Software Guard Extensions
Intel Software Guard Extensions (Intel SGX) [11] is a CPU

extension architecture provided by Intel Corporation. Intel
SGX can perform processing that guarantees the confidential-
ity of data even if the privileged user or terminal administrator
is not credible. As shown in Fig. 3, Intel SGX creates an
encrypted area called Enclave on memory. Enclave provides
a trusted execution environment (TEE) to enable program ex-
ecution while maintaining data confidentiality provided at the
hardware level. Intel SGX can protect the programs and data in
the enclave from memory inspection attacks. Enclave is called
using ECall from untrusted areas. Then, the result processed
in the enclave is passed to the untrusted area using OCall.
Enclave is executed by the CPU in a special mode which deny
cannot be inspected and tampered with by a program outside
Enclave. ECall and OCall can achieve confidentiality by deny-
ing access from cached addresses to Enclave’s private memory
by a program outside Enclave. Intel Corporation provides the
Intel Software Guard Extensions SDK [12] as an environment
for using Intel SGX technologies.

However, Enclave has a limited size that included both pro-
gram and data, the size is about 100MB. Therefore, the content
to be processed by the enclave must be minimized. For exam-
ple, In the existing research [13] using Intel SGX by Ahemed
et al., The policy is to keep only the private key and perform
only the related processing in the enclave. A study measuring
the performance of Intel SGX by Gjerdrum et al. [14] has
shown that the overhead increases when the size of the buffer
sent to the enclave exceed 64 kB.

2.4 Measured Traffic for File Server on the
Cloud

In the evaluation, we need to assume a usage model of
file sharing on the cloud. Leung et al. [6] measured traffic
for two file-sharing servers used in NetApp data centers for
three months. One of the servers was used by the marketing,
sales, and finance departments, and the other was used by the

engineering department. This time, we referred to the statisti-
cal data of the servers used in each department of marketing,
sales, and finance. This server received 364.3GB Read and
177.7GB Write access in 3 months. The ratio of Read, Write,
and Delete requests was 540: 170: 1 in this order. The request
size when accessing the file was about 70 % for less than 1kB,
about 10 % for 1kB or more and less than 100kB, and about
20 % for those over 100kB.

2.5 TCG Storage Security Subsystem Class:
Opal

MBR Shadow, one of the functions of “TCG Storage Secu-
rity Subsystem Class: Opal” [15], allows users to create and
switch between the two areas such as decoy and hidden, real-
ized by PDE in the boot process. The area division and access
control functions provided by MBR Shadow will solve the is-
sues in overwriting confidential data by decoy data, discussed
in Jia et al. [9] and Zuck et al. [10]. However, MBR Shadow
configures LBA (Logical Block Addressing) mapping at the
time of authentication in the boot process. Therefore, if we
configure a storage system with this device to the proposed
system, the following usage scenarios required for this system
cannot be realized. When a legitimate user and an attacker use
the system at the same time, it is required that simultaneous
and parallel access needs to be allowed to each of the hidden
and decoy areas.

3 PLAUSIBLY DENIABLE DISTRIBUTED
FILE SYSTEMS

The purpose of this research is to realize a plausibly deni-
able distributed file system that is resistant to key disclosure
attacks and also resists memory inspection attacks in virtual
environments.

3.1 Base Design
In our research so far [5], we have designed a prototype of

a distributed file system for key disclosure attacks as follows.
The basic idea of PDE is that using a decoy key or passphrase

will give you information that is allowed to be disclosed and
using the original private key or passphrase will give you
highly confidential information. To realize the basic idea of
PDE, the proposed system provides a mechanism to switch the
contents of the file handled based on the key and passphrase
used for logging in to the file system.

PTEE FS server operates only the encrypted file and does
not operate the plaintext file, but the PTEE FS client encrypts
and decrypts the data and operates plaintext files. The server
manages the decoy space and the hidden space. In the hid-
den area, highly confidential data such as access keys and
passphrases for other systems that should not be leaked are
stored. The decoy area does not include the data to be saved
in the hidden area, and the data with low risk even if leakage
occurs to the outside is saved. PTEE FS sever has the autho-
rization control unit that determines whether the key sent from
the client is a decoy or authentic and switches the operation
to protect it using TEE (Trusted Execution Environment) and

4343International Journal of Informatics Society, VOL.14, NO.1 (2022) 41-52

performs processing. We use the NFS (Network File System)
protocol with necessary modifications.

In the proposed configuration, it is necessary to switch the
access destination into the decoy area and the hidden area by
the key presented by the client and switch the structure of the
file system. Code of the structure operation executes in TEE
to prevent leakage and inspection by a snapshot of the main
memory.

Since Intel SGX is used as the TEE, the confidentiality of
the code for these structural operations can be maintained even
when the attacker is a privileged user or terminal administrator.
Therefore, this configuration can be resistant to infringement
from snapshots of the main memory when accessing the file
system. However, with the TEE built using Intel SGX, there is
a limit to the size of the enclave that can be used, and there are
some that cannot be used for kernel functions such as standard
input/output in the enclave. In this research, we consider the
security of the parts that are not protected by TEE and propose
the system configuration that protects them.

It is possible to obtain resistance to infringement from snap-
shots of persistent storage devices by performing processing
such as filling empty areas on the file system with random
bits as by Jia et al. [9]. This is because NAND flash devices
such as SSD have the characteristic that the entire block is
filled with “ 1” bit when the block is deleted. Therefore, it
is possible to judge whether the area is free or used from the
snapshot of persistent storage. If the block is not filled with
“ 1” bit even though it is a free area on the file system that
handles the decoy area, the attacker can suspects the existence
of confidential data. Therefore, processing such as filling the
free area on the file system with random bits is performed.

3.2 Key Authorization

In this configuration, decryption is performed by the client,
so the key or password between server and client send for ac-
cess authentication and authorization at the time of mounting.
A key used for encryption/decryption, a key, and a passphrase
used for authorization with the PTEE FS server is not the
same. The key for encryption/decryption is handled only on
the client terminal. The authorization control unit determines
whether the key sent from the client is a decoy or authentic
and switches the operation to protect it using TEE and per-
forms processing. The system configuration at this time is as
shown in Fig. 4. Figure 4 shows the data flow when the client
access the persistent storage device mounted by the Read call.
The system that decrypts and encrypts at the client terminal
is called PTEE FS Client, and the system that determines the
key and switches the operation at the server is called PTEE FS
Sever. The user who uses the client terminal receives the en-
crypted data as shown in Fig. 4 at the client terminal, decrypts
it with the PTEE FS Client, and uses it. A legitimate user who
uses the proposed system usually uses the private key, and
when the attacker forces the decryption key to be disclosed,
the decoy key is disclosed to protect the confidential data.

Figure 4: Data flow using TEE in the proposed system

4 PROBLEM
We give a design to resist attacks using knowledge from

the disclosure of the decoy key and obtain a practical prospect
from the performance estimation when applied to cloud ser-
vices. In addition to the attack methods we have examined so
far, we describe attacks that use knowledge from the disclosure
of decoy keys that have not been examined so far.

We introduce the PDE system and threat analysis as as-
sumptions for our previous proposal in Section 4.1. We have
provided improvements to these threats in our previous pro-
posals. Then, we explain an attack using knowledge from
disclosed decoy key in Section 4.2. We present the design of
this system and estimate the performance given by TEE when
operating with the access pattern of the file synchronization
service that is often seen in cloud storage services. In addi-
tion, we evaluate the performance of the system proposed in
Chapter 5 when it is used in a typical workload when using
cloud storage based on the existing research by Leung et al.
[6].

4.1 Threat Analysis
Make some assumptions for threat analysis. First, a legit-

imate user who accesses the server on which the proposed
system is running always mounts the server and handles the
data. Next, the attacker has the same access rights to the
cloud server as the cloud provider, and the attacker can take
snapshots of the main memory and persistent storage at any
time. Finally, the attacker does not have access to the le-
gitimate user’s client terminal. Based on these assumptions,
the vulnerable points of the system configuration will be de-
scribed. Figure 5 shows the server’s basic configuration of the
file system which is the conventional method using the PDE
concept and the places where the denial of the existence of
the hidden area may be lost. In Fig. 5, it is assumed that the
persistent storage device is encrypted by the hidden volume
and the main memory does not use a protection mechanism
such as TEE. In Fig. 5, the location is indicated by a red circle
and labeled with the number written on the speech balloon.
In the following, in Fig. 5, the part with label 1 is referred
to as “vulnerable point 1”, and the part with labels 2 and 3 is
referred to as “vulnerable point 2” and “vulnerable point 3”.
The attack model for each vulnerable point is as follows.

vulnerable point 1： Infringement from a running applica-

444444 R. Shibazaki et al. / Towards Resistance to Memory Inspection Attacks on Plausibly Deniable Distributed File Systems

Figure 5: Vulnerable points in the basic configuration of a
hidden volume file system

tion for user use

vulnerable point 2： Infringement when accessing the file
system

vulnerable point 3： Infringement from persistent storage
snapshots

These attacks were given resistance by the base design de-
scribed in Section 3.1. For infringement from a running ap-
plication for user use, the proposed system has a server/client
configuration., and resistance is given by using the data only
on the client terminal that cannot be observed by the attacker.
For infringement when accessing the file system, resistance to
attacks is given by executing a program related to hidden areas
such as code that handles the file structure, on the TEE of the
server. For Infringement from persistent storage snapshots,
resistance is given by filling the free space with random bits
as shown in Section 3.1. However, in the prototype design,
there is no discussion about attacks using knowledge from the
use of disclosed the decoy key.

4.2 Exploiting Knowledge from the Use of
Disclosed Decoy Key

We explain an attack that uses knowledge from the disclo-
sure of the decoy key. When an attacker whose decoy key
is disclosed can acquire the time series of attacker’s access
information to the decoy area by network traffic or a memory
inspection attack on the server, the time series of access infor-
mation to the hidden area by the private key by the legitimate
user can be obtained, and the existence of the hidden area is
revealed by comparing and collating these.

Regarding attacks using the knowledge of decoy key dis-
closure in PTEE FS, we will consider how the attacks are
possible by monitoring the data exchange at the interface of
TEE, and how to protect them. Figure 6 shows the data flow in
the TEE interface. There are two interfaces, one between the
network and TEE and the other between the persistent storage
device and TEE. The information that can be observed in each
interface is defined as follows.

TS1: (TimeSeries1) In the operation time series between the
network and TEE, the exchange of the modified NFS
protocol is observed.

Figure 6: Data flow in TEE interface

Table 1: Example of TS1 and TS2

TS1 Send Recieve
getattr File (OK, Error) Result
getattr Dir (OK, Error) Result

readdirplus Dir (OK, Error) Result
write File data (OK, Error) Result

read File (OK, Error) Result data
TS2 Send Recieve

fetch ObjectID data Result ObjectID (OK, Error)
store ObjectID data Result ObjectID (OK, Error)

TS2: (TimeSeries2) In the operation time series between the
persistent storage device and TEE, operation sequences
such as fetch and store to the persistent storage device
are observed.

Table 1 below shows examples of the contents observed by
TS1 and TS2.

TS1 is represented by the blue line in Fig. 6, and TS2 is
represented by the orange line. TS1 and TS2 are arbitrarily
generated by an attacker as TS1 m and TS2 m (m: malicious),
and those generated by legitimate user operations are TS1 l
and TS2 l (l:legitimate). At this time, the following two at-
tacks can be considered from the information observable on
the TEE interface.

Attack Possibility 1: Because of the attacker observing the
difference between TS1 m and TS1 l, the existence of
the hidden area is revealed

Attack Possibility 2: When TS2 m is externally observable
as an operation result of TS1 m, it is possible to judge
the match between TS1s from the unification of the pair
of TS2 m and TS2 l, and the hidden area Existence is
exposed

We place two assumptions are made as conditions for es-
tablishing “attack possibility 2”.

4545International Journal of Informatics Society, VOL.14, NO.1 (2022) 41-52

Attacker Assumption 1: Correspondence between TS1 and
TS2
𝑇𝑆2 = 𝑇𝐸𝐸 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑓 𝑢𝑛𝑐(𝑇𝑆1)
can be estimated. This means that it is possible to asso-
ciate the operation series from the NFS RPC time series
with the operations for the persistent storage device.

Attacker Assumption 2: It is possible to judge the match
between the elements of TS2. In other words, it means
that the operations on the persistent storage device can
be identified and the unification can be observed.

Therefore, the following two are required to protect confi-
dential information from attackers using the proposed method.

1. “Attack Possibility 1” is not established

2. Defend “Attack potential 2” by disabling either “At-
tacker Assumption 1” or “Attacker Assumption 2”.

4.2.1 Eliminating Attack Possibility 1

By encrypting the payload part of the RPC of the packet, which
is a component of TS1, the difference other than the data
size becomes unobservable, and the occurrence of “Attacker
Possibility 1” can be prevented.

4.2.2 Eliminating Attack Possibility 2

For “Attack Possibility 2”, the following system configuration
is adopted to prevent the “Attacker Assumption 1” from being
established. As with the countermeasure for “Attack Possi-
bility 1”, the part related to RPC of the packet is encrypted.
Regarding TS2, the data itself stored in the persistent storage
device will be encrypted. In this configuration, the persistent
storage device side assumes a general disk or a normal file
system, so the object ID used when specifying the target in
the persistent storage device is not protected from memory
inspection attacks. The information obtained by the attacker
at this time is the operation and object ID, the input/output
timing to TEE, and the size of the encrypted part. The ap-
pearance pattern of the object ID in the IO traffic at the TEE
mustn’t provide any clue for the attacker tracks hidden volume
using TS2.

5 DESIGN OF PTEE FS
FID is the object ID used by the attacker to specify in the

persistent storage device. To solve the problem of attacks using
the knowledge from the use of disclosed decoy key, the file
ID (FID) observed by the attacker in TS2 should be the same
in the decoy and hidden area. We propose FID unification
to achieve and maintain this. This way, even when accessing
sensitive data, only FID known to the attacker in the decoy
area is observed. Specifically, the file block specified by one
FID has a structure that holds decoy data and confidential
data inside. Figure 7 shows the structure of a file block with
the same file ID. Place sensitive metadata immediately after
decoy metadata, then write decoy data, then sensitive data.
Confidential metadata and confidential data are encrypted with
the private key, and for users who only know the decoy key,

Figure 7: About File block that decoy and hidden FID
become same

these data look like a random bit. The state where the FID is
the same in the decoy and the hidden area may be destroyed by
the file operation by the user. For example, when a decoy file
is deleted, a file block that holds only confidential data occurs.
After that, by accessing that confidential data, the deleted
FID is observed. Section 5.2 defines the procedure for FID
unification to maintain the FID unification during operation
and to perform FID unification for the entire file system by
initialization and so on.

5.1 Discussion about FID Unification
When considering an attack using knowledge from the use

of disclosed decoy key, the worst case is when the attacker
obtains all the information of the files existing in the decoy
area, and the amount of knowledge about the storage area is
maximized. This situation is realized when the decoy key is
disclosed to only one attacker, there is no access by a legit-
imate user, and there is no use other than this attacker who
changes the decoy area. At this time, the attacker can count
and examine all the file IDs existing in the decoy area. After
that, the access of the legitimate user is monitored and the file
ID that appears based on this knowledge is inspected, and if
the attacker observes a file ID that does not exist in the list
of counted IDs, the attacker can suspect the existence of a
hidden file. Here, consider another strategy, for example, a
mechanism in which a common area accessible from a legit-
imate user and an attacker is created and a decoy file ID and
a common file ID appear randomly. Assuming the worst-case
above, where there is no legitimate user access and only this
attacker to change the decoy area. The attacker can count and
examine all the file IDs that exist in the common area and
the decoy area in this case. Therefore, the common area is
equivalent to the expanded decoy area and is not an effective
measure. However, for example, assuming the existence of
parallel access accompanied by an update to a file by a legiti-
mate user when observed by an attacker, it seems possible to
create a certain confidential margin.

To solve the problems of these methods, propose a method
for a file in any hidden area to be embedded internally in
one of the files in the decoy area. Here, the hidden file is
recognized as a free area by the system that handles only the
decoy area. Similarly, one directory in a hidden area should be

464646 R. Shibazaki et al. / Towards Resistance to Memory Inspection Attacks on Plausibly Deniable Distributed File Systems

embedded inside one of the directories in the decoy area. As
a premise, the data placed on the decoy side or hidden side in
the persistent storage object read is recorded in the encrypted
area of the persistent storage object. Which one should be
accessed by the system can be safely confirmed and operated
within TEE.

5.2 FID Unification Procedure
The operation of embedding a hidden file inside a file in

a decoy area in an appropriate directory structure is called
FID unification processing. In the FID unification process,
the same FID can be used by embedding the contents of the
hidden area file in the file located in the appropriate directory
structure of the decoy area. Embedding this file is called a
merge operation.

The ideal design of the FID unification process is executed
on the server-side, monitoring the existence of non-identical
FIDs for each file operation and merging files as necessary.
However, if the merge process requires an amount of calcula-
tion in the design, the client may be blocked for a long time.
To evaluate the amount of the processing, we implemented
the FID unification process on the client-side to simplify the
design enough for performance estimations. Figure 8 shows a
simple client-side flow of the FID identification process. It is
assumed that the FID unification process will be called after
some extent of updates are performed on the client-side and
when the client’s PC idle state continues.

The FID unification process and merge operation are shown
below. The FID unification process is used for initialization
immediately after the proposed system is applied and for the
reunification of unmerged files caused by file changes during
operation. A simplified flow of the processing in the FID
unification process is shown in Fig. 9. To merge the files in
the hidden area into the files in the appropriate decoy area, the
combination is searched to identify the appropriate location of
the directory structure in the decoy area by the method shown
in Algorithm1.

Algorithm1 operates as follows. First, get the pathname list
of all directories in the decoy area and the hidden area, and
pass them to Function Search as an argument. In Function
Search, the directory position of the decoy area, which is the
starting point of the FID unification process, is determined
from the combination of all the directories of the decoy area
and the hidden area. The determination method is as follows.
From the directory position of the decoy area that is the start-
ing point, each directory of the decoy area and the hidden
area has a one-to-one correspondence, and the following uni-
fication suitability evaluation is calculated by the operation
shown in Alogorithm2. The calculation method of the unifi-
cation conformity assessment in Algorithm2 is explained in
Section 5.2.1. The unification relevance evaluation consists
of a mergeable flag and a conformance score. The merge-
able flag is expressed by a boolean value indicating whether
the directory combination can be merged, and when true, it
indicates that the merge condition is satisfied. The calcula-
tion of the unification suitability evaluation is made into a
memo, and when it is necessary to calculate the score of the
same combination, it is called from the memo to shorten the

Figure 8: FID unification and operation mode on client PC

Figure 9: Simplified flow in FID unification

calculation.
Among all combinations, the one with the maximum opti-

mal score is selected from the ones for which the mergeable
flag is true, and the directory position of the decoy area that is
the starting point of the FID unification process is determined.
If none of all combinations have the mergeable flag set to
true, the one with the highest matching score is taken out and
judged to be at risk based on that combination. Algorithm1
performs the processing up to this point and returns the direc-
tory location of the decoy area that is the starting point of the
FID unification process, or risk. The FID unification process
recursively merges files or notifies the user of the risk based on
the result received from Algorithm1. There is a risk, that is,
the mergeable flag obtained by Algorithm2 is not true because
there are not enough decoy files in the decoy directory to be
merged. Therefore, it calculates how many files should be
added to which directory in the decoy area, and also notifies
the user.

5.2.1 Conformance Score

The conformance score integrates the conformance values for
a specific file to be merged, and the larger the conformance
score, the better the combination of the corresponding direc-
tories. A high match score means that the percentage of files
in the decoy area where hidden area files are not embedded is
high. In other words, if the conformance score is high, even
if a new file on the hidden side is added or a file on the decoy
side is deleted, there is a high possibility that the FID unifi-
cation process can be performed only within the combination
of the corresponding directories. It is used as a conformance

4747International Journal of Informatics Society, VOL.14, NO.1 (2022) 41-52

score of the FID unification process. The average size of the
files in the directory is the size of the decoy area as pSize, and
the size of the hidden area is as sSize. The number of files
in the directory is the number of decoy areas as pNum, and
the number of hidden areas as sNum. The mergeable flag is
boolean valule of the following predicate equation.

(𝑝𝑆𝑖𝑧𝑒/𝑠𝑆𝑖𝑧𝑒 + 𝑝𝑁𝑢𝑚/𝑠𝑁𝑢𝑚)/2 >= 2

The conformance score is given by;

𝑝𝑁𝑢𝑚/𝑠𝑁𝑢𝑚

5.3 Invocation of FID Unification Process
We have two cases in the FID unification process invoked.

First, FID unification processing is performed in the initializa-
tion of this system. Start by migrating the server to the same
mode for FID unification processing. Perform the above FID
unification, notify the user of the result if necessary, and then
switch to normal mode. Next, the processing after the changes
are made to the file will be explained. Think about the direc-
tory containing the file that is unmerged in the hidden area
due to the modified file. Target hidden directory has already
been merged into the decoy area directory. When re-merging
a file that has been changed and is out of the merged state,
first check whether it can be resolved in the corresponding
directory. Algorithm1 is operated by passing only the corre-
sponding directory as an argument. The relevance evaluation
of the directories of the corresponding decoy area and the
hidden area is calculated, and if the mergeable flag is true, re-
merge is performed in the corresponding decoy area directory
and the hidden area directory. If the mergeable flag is false,
the mode shifts to the unification mode in the same way as the
initialization, and the FID unification process is started for all
directories.

6 EXPERIMENT

In this section, to consider the validity of the design of
PTEE FS, the evaluation is performed using the verification
case from the following two points.

1. Processing time in normal access :
For the performance when applied to the cloud service
of Section 6.1, first, we get the trace data of the file
system acquired under assuming a realistic file group
workload. The processing time is estimated applied our
performance model [5] to the trace data got.

2. Processing time of FID unification invoked on demand
: Regarding the FID unification processing shown in the
proposed method, the processing time when applied to
the local file system is measured by the evaluation pro-
gram. The evaluation program is implemented in Algo-
rithm1and Algorithm2, algorithms are implemented in
python. Estimate from actual measurement and extrap-
olation of processing time using the evaluation program.

6.1 Processing Time for Normal Access
For the implementation model of the proposed method,

we estimate the performance when operating with the access
pattern of the file synchronization service that is often seen in
cloud storage services. We obtained Equation (1) as a model
for calculating the overhead on the processing time per call to
NFS RPC that needs protection [5].

OH (ms) represents the overhead of additional response
time, and i (MB) represents the size of the transfer buffer
during the enclave call. o (MB) represents the size of the
transfer buffer when escaping the enclave.

Since it is known that the overhead increases when the
transfer buffer at the time of enclave call exceeds 64 kB, the
equation is divided into 2 by i = 64𝑘𝐵 when calculating the
overhead. When the proposed system is applied to a cloud
service, it can be seen that the effect on the performance of the
file system can be evaluated from the difference in response
time depending on whether TEE is used or not.

File synchronization is a practical example of cloud appli-
cations. Therefore, we will evaluate TEE performance again
and use RSYNC [16] as a concrete file synchronization sys-
tem. Trace the RSYNC execution traffic, give the size to be
sent/received as an argument of Equation (1), calculate the
estimation overhead, and evaluate its effectiveness.

𝑂𝐻 =

{
0.0097 + 0.0354𝑜 + 0.0115 𝑖 < 0.064
0.9560𝑖 + 0.0354𝑜 − 0.0002 𝑖 >= 0.064

(1)

6.2 Processing Time of FID Unification
Process

Regarding the FID unification process, we evaluate the ef-
fect of the smallest process among the FID unification pro-
cesses that occur when used in a typical workload. When the
same usage as the file system using the existing PDE concept
is used, it is the most called process in the proposed method,
and the impact on the user is significant. So, we evaluate the
effect of the additional latency to gave by the FID unification
process.

Create an environment that assumes the use case described
in Section 7 of the proposed system, operate the FID unifica-
tion process under that environment, and perform an evalua-
tion experiment.

The performance is estimated and evaluated from the re-
sponse time by the Python-based code for the effect of the
FID unification process on the performance in a steady state.
In this experiment, we evaluate a part of the performance of
FID unification processing. In the experiment, we perform
the process of passing only one directory to each argument of
Alogrithm1, which occurs most in the FID unification process.

The FID unification process may be performed on all di-
rectories existing in the volume, but this is not the target of
this experiment. As a PTEE FS system, it is conceivable that
decryption and encryption will be performed before and after
the FID unification process, but this is not the case in this ex-
periment. The performance of the implementation in Python
may be lower or almost unchanged than that implemented in

484848 R. Shibazaki et al. / Towards Resistance to Memory Inspection Attacks on Plausibly Deniable Distributed File Systems

Algorithm 1 Algorithm to search for the best directory combination
1: function 𝑆𝑒𝑟𝑎𝑐ℎ(𝑠𝑒𝑐𝑟𝑒𝑡𝐷𝑖𝑟𝑠, 𝑝𝑢𝑏𝑙𝑖𝑐𝐷𝑖𝑟𝑠)
2: if 𝑠𝑒𝑐𝑟𝑒𝑡𝐷𝑖𝑟𝑠.𝑙𝑒𝑛𝑔𝑡ℎ > 𝑝𝑢𝑏𝑙𝑖𝑐𝐷𝑖𝑟𝑠.𝑙𝑒𝑛𝑔𝑡ℎ then ⊲ If the hidden area has more directories than decoy area, no search is

performed because there is no matching pattern.
3: 𝑟𝑒𝑠𝑢𝑙𝑡 ⇐ 𝑛𝑜𝑀𝑎𝑡𝑐ℎ
4: return 𝑟𝑒𝑠𝑢𝑙𝑡
5: 𝑎𝑙𝑙𝑀𝑎𝑡𝑐ℎ ⇐ 𝑎𝑙𝑙𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑖𝑡𝑖𝑜𝑛𝑃𝑎𝑡𝑒𝑟𝑛(𝑝𝑢𝑏𝑙𝑖𝑐𝐷𝑖𝑟𝑠) ⊲ Calculate and substitute permutation patterns for directories in

all decoy areas
6: for 𝑖 = 1, · · · , 𝑎𝑙𝑙𝑀𝑎𝑡𝑐ℎ.𝑙𝑒𝑛𝑔𝑡ℎ do ⊲ Repeat the process for the number of allMatch
7: for 𝑗 = 1, 𝑠𝑒𝑐𝑟𝑒𝑡𝐹𝑖𝑙𝑒𝑁𝑢𝑚 do ⊲ Repeat the process for the number of file in hidden area
8: if 𝑟𝑒𝑠𝑢𝑙𝑡𝑀𝑒𝑚𝑜[𝑗] [𝑎𝑙𝑙𝑀𝑎𝑡𝑐ℎ[𝑖] [𝑗]] = 𝑛𝑢𝑙𝑙 then
9: 𝑠𝑐𝑜𝑟𝑒 ⇐ 𝐶ℎ𝑒𝑐𝑘𝑀𝑎𝑡𝑐ℎ𝐷𝑖𝑟 (𝑠𝑒𝑐𝑟𝑒𝑡𝐷𝑖𝑟𝑠[𝑗], 𝑝𝑢𝑏𝑙𝑖𝑐𝐷𝑖𝑟𝑠[𝑎𝑙𝑙𝑀𝑎𝑡𝑐ℎ[𝑖] [𝑗]]) ⊲ Get the mergeable flag and

optimal value for a combination of a directory in a decoy area and a directory in a hidden area
10: 𝑟𝑒𝑠𝑢𝑙𝑡𝑀𝑒𝑚𝑜[𝑗] [𝑎𝑙𝑙𝑀𝑎𝑡𝑐ℎ[𝑖] [𝑗]] ⇐ 𝑠𝑐𝑜𝑟𝑒 ⊲ Save the score you have done once in a memo
11: else
12: 𝑠𝑐𝑜𝑟𝑒 ⇐ 𝑟𝑒𝑠𝑢𝑙𝑡𝑀𝑒𝑚𝑜[𝑗] [𝑎𝑙𝑙𝑀𝑎𝑡𝑐ℎ[𝑖] [𝑗]] ⊲ When the same combination appears, call it from the memo
13: 𝑡ℎ𝑟𝑜𝑔ℎ𝑆𝑐𝑜𝑟𝑒[𝑖] .𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⇐ 𝑠𝑐𝑜𝑟𝑒.𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⊲ Accumulate scores in the current permutation pattern
14: if 𝑠𝑐𝑜𝑟𝑒.𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚 = 𝑓 𝑎𝑙𝑠𝑒 then
15: 𝑡ℎ𝑟𝑜𝑔ℎ𝑆𝑐𝑜𝑟𝑒[𝑖] .𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚 ⇐ 𝑓 𝑎𝑙𝑠𝑒
16: 𝑡ℎ𝑟𝑜𝑔ℎ𝑆𝑐𝑜𝑟𝑒[𝑖] .𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⇐ −1
17: if 𝑚𝑎𝑥(𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑆𝑐𝑜𝑟𝑒[𝑖] .𝑜𝑝𝑡𝑖𝑚𝑎𝑙)! = 1 then ⊲ Check if there is a mergeable combination
18: 𝑟𝑒𝑠𝑢𝑙𝑡 ⇐ 𝑎𝑟𝑔𝑚𝑎𝑥(𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑆𝑐𝑜𝑟𝑒.𝑜𝑝𝑡𝑖𝑚𝑎𝑙) ⊲ Get the permutation pattern with the highest conformance score
19: else
20: 𝑟𝑒𝑠𝑢𝑙𝑡 ⇐ 𝑛𝑜𝑀𝑎𝑡𝑐ℎ
21: return 𝑟𝑒𝑠𝑢𝑙𝑡

C ++. Therefore, if a sufficient value is obtained in the eval-
uation performance based on Python, it is expected that the
evaluation performance will be sufficient in C ++. The pro-
posed system will be implemented in C ++, but this time we
will evaluate it using the one implemented in Python.

To understand the additional latency provided by the FID
unification process, compare the processing time of the FID
unification process in one directory in the local directory to
which PTEE FS has already been applied and the processing
time of file synchronization with PTEE FS. The following use
cases are assumed when applying the FID unification process.

It is assumed that the client uses this system when saving
highly confidential data such as password lists and keys in the
storage on the cloud for backup purposes. For this reason, the
data saved in the hidden area is sufficiently smaller than the
decoy area, and even if the FID unification process occurs due
to file changes/deletion, it is assumed that most of the data can
be resolved only in the relevant directory.

The assumed decoy use case workload is as follows. The
ratio of requests for create: read: write is set to about 1: 40.5:
12.75, referring to the previous research by Leung et al. [6].
The size ratio of bytes flowing on the traffic by read: write
is 2.1: 1. 70% of the file size to be handled is a file less
than 1KB, 10% is 1 to 100KB, and the remaining 20% is
100KB to 1MB. The hidden area use case assumes pgp key
management, and the key used is 2048 bits of RSA encryption
key. The processing time of the FID unification process is
evaluated as the additional latency that gives the proposed
system as it is, and the effect of the additional latency on the
file system is estimated and evaluated concerning an example
of file sharing.

6.3 Experimental Method

6.3.1 Experiment of Processing Time with Normal Ac-
cess

We prepared a server/client capable of RSYNC communica-
tion and synchronized the files. The server configuration of
RSYNC is mainly done by directly using the file server in
the company or school, but it is assumed that the changes
are synchronized on the client terminal at home for remote
work. Assuming that the size of the data loaded for uploading
and downloading the modified file is the same, here we trace
the traffic between the uploading client and server. Figure 10
shows the configuration for data acquisition. The server was
mounted on the proxy server, rsync was performed from the
client to the proxy server, and NFS traffic between the proxy
server and server was observed. From the trace data, the RPC
READ and WIRTE call get the series of buffer sizes to be
passed.

The series of buffer sizes was used as the buffer size for
calling and escaping the enclave in Equation (1), the execution
time was measured, and the evaluation was performed as the
overhead of Intel SGX when using this system.

The response time of the entire process was measured 10
times for file synchronization of the same size, and the average
process time was used. The files shown in Table 2 were used
as the files that are changed synchronously by RSYNC. The
average size of the text file was 11263 bytes, and the average
size of the binary file was 216269 bytes. Four of the files
have a file size that exceeds 64 kB, which increases the TEE
response time to input/output these files.

4949International Journal of Informatics Society, VOL.14, NO.1 (2022) 41-52

Algorithm 2 Algorithm for calculating the unification aptitude score
1: function 𝐶ℎ𝑒𝑐𝑘𝑀𝑎𝑡𝑐ℎ𝐷𝑖𝑟(𝑠𝑒𝑐𝑟𝑒𝑡𝐷𝑖𝑟, 𝑝𝑢𝑏𝑙𝑖𝑐𝐷𝑖𝑟)
2: 𝑝𝑢𝑏𝑙𝑖𝑐𝐹𝑖𝑙𝑒𝑠 ⇐ 𝑔𝑒𝑡𝐴𝑙𝑙𝐹𝑖𝑙𝑒𝑠(𝑝𝑢𝑏𝑙𝑖𝑐𝐷𝑖𝑟) ⊲ Get the file entry for the target decoy area directory
3: 𝑠𝑒𝑐𝑟𝑒𝑡𝐹𝑖𝑙𝑒𝑠 ⇐ 𝑔𝑒𝑡𝐴𝑙𝑙𝐹𝑖𝑙𝑒𝑠(𝑠𝑒𝑐𝑟𝑒𝑡𝐷𝑖𝑟) ⊲ Get the file entry for the target hidden area directory
4: 𝑝𝑢𝑏𝑙𝑖𝑐𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑀𝑒𝑎𝑛 ⇐ 𝑝𝑢𝑏𝑙𝑖𝑐𝐹𝑖𝑙𝑒𝑠.𝑠𝑢𝑚𝑆𝑖𝑧𝑒/𝑝𝑢𝑏𝑙𝑖𝑐𝐹𝑖𝑙𝑒𝑠. 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚 ⊲ Get the average file size of the decoy area

directory
5: 𝑠𝑒𝑐𝑟𝑒𝑡𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑀𝑒𝑎𝑛 ⇐ 𝑠𝑒𝑐𝑟𝑒𝑡𝐹𝑖𝑙𝑒𝑠.𝑠𝑢𝑚𝑆𝑖𝑧𝑒/𝑠𝑒𝑐𝑟𝑒𝑡𝐹𝑖𝑙𝑒𝑠. 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚 ⊲ Get the average file size of the hidden area

directory
6: if 𝑝𝑢𝑏𝑙𝑖𝑐𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑀𝑒𝑎𝑛/𝑠𝑒𝑐𝑟𝑒𝑡𝐹𝑖𝑙𝑒𝑆𝑖𝑧𝑒𝑀𝑒𝑎𝑛 > 1 then ⊲ Check if the average file size meets the conditions
7: 𝑠𝑖𝑧𝑒𝑆𝑐𝑜𝑟𝑒 ⇐ 𝑡𝑟𝑢𝑒
8: else
9: 𝑠𝑖𝑧𝑒𝑆𝑐𝑜𝑟𝑒 ⇐ 𝑓 𝑎𝑙𝑠𝑒

10: if 𝑝𝑢𝑏𝑙𝑖𝑐𝐹𝑖𝑙𝑒𝑠. 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚 > 𝑠𝑒𝑐𝑟𝑒𝑡𝐹𝑖𝑙𝑒𝑠. 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚 then ⊲ Check if number of files meets the conditions
11: 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚𝑆𝑐𝑜𝑟𝑒 ⇐ 𝑡𝑟𝑢𝑒
12: else
13: 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚𝑆𝑐𝑜𝑟𝑒 ⇐ 𝑓 𝑎𝑙𝑠𝑒

14: if 𝑠𝑖𝑧𝑒𝑆𝑐𝑜𝑟𝑒& 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚𝑆𝑐𝑜𝑟𝑒 then
15: 𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚 ⇐ 𝑡𝑟𝑢𝑒
16: else
17: 𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚 ⇐ 𝑓 𝑎𝑙𝑠𝑒

18: if 𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚 then ⊲ Check if both the average file size and number of files meets the conditions
19: 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⇐ 𝑝𝑢𝑏𝑙𝑖𝑐𝐹𝑖𝑙𝑒𝑠. 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚/𝑠𝑒𝑐𝑟𝑒𝑡𝐹𝑖𝑙𝑒𝑠. 𝑓 𝑖𝑙𝑒𝑁𝑢𝑚 ⊲ If the mergeable flag is true, the optimum value is

calculated.
20: else
21: 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ⇐ 0
22: return (𝑐𝑜𝑛 𝑓 𝑜𝑟𝑚, 𝑜𝑝𝑡𝑖𝑚𝑎𝑙) ⊲ Returns mergeable flag, conformance score

Figure 10: Server configuration in the experiment

6.3.2 Experiment of Processing Time of FID Unification
Processing

We prepared a decoy area directory and a hidden area direc-
tory according to the workload of the use case and performed
the FID unification processing. For the decoy area directory,
referring to the existing research [6] by Leung et al., We pre-
pared 70% for files with file sizes from 1 byte to 1 kB, 10%
for files with a file size of 1 kB to 100 kB, and 20% for files
with a file size of 100 kB or more. We prepared three types
of files, 30 and 50, contained in one decoy directory. For the
hidden directory, referring to the key management of pgp, it
was decided that the public key and private key pair of pub-
lic key authentication, which is asymmetric authentication, is
assigned to each directory. Two types of files, 10 and 20, are
prepared in one hidden directory. If the number of files is

Table 2: File size and type used in the experiment

File size
(byte) File type File size

(byte) File type

55358 Text 1444438 Binary
22113 Text 223065 Binary
11602 Text 97252 Binary
11101 Text 96516 Binary
4284 Text 35184 Binary
2651 Text 33033 Binary
2607 Text 10244 Binary
2317 Text 6527 Binary
567 Text 165 Binary
28 Text

10, there are 5 public/private key pairs, and if the number of
files is 20, there are 10 public/private key pairs. In the actual
experiment, assuming that the user uses so that the number of
files on the hidden area side is sufficiently small in the PDE file
system. We experiment with 2 pairs of decoy area directories
and hidden area directories. One pair is that the number of
files in the decoy area directory is 30 and the number of hidden
area directories is 10. The other is that number of files in the
decoy area directory was 50 and the number of hidden area
directories was 20. We execute the FID unification processing
in these 2 pairs and the execution time was measured.

505050 R. Shibazaki et al. / Towards Resistance to Memory Inspection Attacks on Plausibly Deniable Distributed File Systems

Figure 11: Transfer data size and part of the NFS Call series
observed during rsync

6.4 Experiment Environment
A computer with RSYNC [16] and NFS Version 3 [17]

installed was used as the server and client for the experiment.
Wire Shark [18] was used to trace the traffic. The network
bandwidth in the experimental environment was 6.90 MB/s.

7 EVALUATION

7.1 Experiment of Processing Time with
Normal Access

The average response time of the entire process on the client/
server in the experimental environment was 18336.2 ms, and
the standard deviation was 2373. Figure 11 shows a series of
transfer data sizes that appear in the NFS traffic trace when
RSYNC is executed. [5]. Substituting this transfer data size
sequence into Equation (1) for calculating the increase in re-
sponse time, which is the overhead (OH) per NFS call, gives
1.9 ms from the total sequence. Therefore, the estimated
processing time when using the proposed system is 18338.1
ms. Therefore, the ratio of overhead to the processing time is
0.010%, and it is considered that the overhead required when
using TEE is acceptable.

7.2 Experiment of Processing Time of FID
Unification Processing

The average time required for FID unification is 133.8 ms
with 30 files in the decoy area and 10 files in the hidden area,
and 134.6 ms with 50 files in the decoy area and 20 files in the
hidden area.

8 CONCLUSION
We improved our design of Plausibly Deniable Distributed

File Systems to obtain resistance to key disclosure attacks.
Two experiments were conducted and evaluated in terms of
performance to validate the design. In the experiments and
evaluations, we discussed the processing time for normal ac-
cess in use cases applied to cloud services. In the file synchro-
nization use case using rsync, the increased ratio in response
time by the use of TEE is estimated with a measured figure.
The result is 0.010%. Increase for the whole operation, which

is considered to be acceptable overhead by TEE. To provide
the resistance to exploiting the knowledge from the use of
disclosed the decoy key, we added new functionalities of the
FID unification as a countermeasure to memory inspection
attacks. The processing time of the FID unification process
invoked on-demand was tested and evaluated using a program
implemented in python.

The processing time of the FID unification process is 1133.8
ms in an environment with 30 files in the decoy area and 10
files in the hidden area, and 134.6 ms with 50 files in the
decoy area and 20 files in the hidden area. Therefore, the
additional latency due to the FID unification process may be
tolerated. However, in this evaluation, the cost of encryption
processing is not added to the processing time. Examination
of a performance model that includes these is future work.

REFERENCES
[1] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. “De-

niable Encryption”. In B. S. Kaliski, editor, Advances
in Cryptology — CRYPTO ’97, Lecture Notes in Com-
puter Science, pp. 90–104. Springer Berlin Heidelberg,
(1997).

[2] Ministry of Internal Affairs and Communications.
“Ministry of Internal Affairs and Communications
｜2019 WHITE PAPER Information and Commu-
nications in Japan｜ICT Data on the ICT Field”.
https://www.soumu.go.jp/johotsusintokei/whitepaper/
eng/WP2019/chapter-3.pdf#page=1. (accessed 2019-
10-22).

[3] G. Kumparak. “Capital One hacked, over 100 million
customers affected”. https://social.techcrunch.com/
2019/07/29/capital-one-hacked-over-100-million-
customers-affected/. (accessed 2021-06-11).

[4] H. Ryo, T. Sasaki, Y. Morita, K. Miyoshi, and
T. Kobayashi. “A Study on Access Control for Devices
with Trusted Execution Environments”. Proceedings of
Computer Security Symposium 2017, Vol. 2017, No. 2,
(2017/10/16).

[5] R. Shibazaki, H. Inamura, and Y. Nakamura. “Design
of Encrypted File System Using the Concept of PDE”.
Proceedings of the 82th National Convention of IPSJ,
Vol. 82, No. 1, pp. 103–104, (2020).

[6] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller.
“Measurement and Analysis of Large-Scale Network File
System Workloads”. In 2008 USENIX Annual Technical
Conference (USENIX ATC 08), (2008/6).

[7] R. Anderson, R. Needham, and A. Shamir. “The
Steganographic File System”. In Information Hiding,
pp. 73–82. Springer, Berlin, Heidelberg, (1998/4/14).

[8] B. Chang, F. Zhang, B. Chen, Y. Li, W. Zhu, Y. Tian,
Z. Wang, and A. Ching. “MobiCeal: Towards Secure
and Practical Plausibly Deniable Encryption on Mo-
bile Devices”. In 2018 48th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks
(DSN), pp. 454–465, (June 2018).

[9] S. Jia, L. Xia, B. Chen, and P. Liu. “DEFTL: Imple-
menting Plausibly Deniable Encryption in Flash Trans-
lation Layer”. In Proceedings of the 2017 ACM SIGSAC

5151International Journal of Informatics Society, VOL.14, NO.1 (2022) 41-52

Conference on Computer and Communications Security,
CCS ’17, pp. 2217–2229, New York, NY, USA, (2017).
ACM.

[10] A. Zuck, U. Shriki, D. E. Porter, and D. Tsafrir. “Pre-
serving Hidden Data with an Ever-Changing Disk”. In
Proceedings of the 16th Workshop on Hot Topics in Op-
erating Systems, HotOS ’17, pp. 50–55, New York, NY,
USA, (2017). ACM.

[11] “Intel® Software Guard Extensions (Intel®
SGX)”. https://www.intel.com/content/www/us/
en/architecture-and-technology/software-guard-
extensions.html. (accessed 2021-06-11).

[12] Intel® Software Developer Zone. “SDK — Intel® Soft-
ware Guard Extensions”. https://software.intel.com/en-
us/sgx/sdk. (accessed 2019-10-26).

[13] R. Ahmed, Z. Zaheer, R. Li, and R. Ricci. “Har-
pocrates: Giving Out Your Secrets and Keeping Them
Too”. In 2018 IEEE/ACM Symposium on Edge Comput-
ing (SEC), pp. 103–114, Seattle, WA, USA, (10/2018).
IEEE.

[14] A. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Jo-
hansen. “Performance of Trusted Computing in Cloud
Infrastructures with Intel SGX:”. In Proceedings of
the 7th International Conference on Cloud Computing
and Services Science, pp. 696–703, Porto, Portugal,
(2017/4). SCITEPRESS - Science and Technology Pub-
lications.

[15] Trusted Computing Group. “TCG Storage Security Sub-
system Class: Opal”, (2022/1/24). (accessed 2022-02-
16).

[16] rsync. “rsync”. https://rsync.samba.org/. (accessed
2020-05-08).

[17] B. Callaghan, B. Pawlowski, and P. Staubach. “NFS
Version 3 Protocol Specification”. https://www.ietf.org/
rfc/rfc1813.txt, (1995 June). (accessed 2019-12-24).

[18] WIRESHARK. “Wireshark”. https://www.wireshark.
org. (accessed 2020-02-13).

Ryouga Shibazaki received B.E. and M.S. degree
in from Future University Hakodate in 2020 and
2022. His research interests include cloud file sys-
tem and OS security. He is currently an engineer
in MEITEC CORPORATION.

Hiroshi Inamura He is a professor of School of
Systems Information Science, Future University
Hakodate, since 2016. His current research inter-
ests include mobile computing, system software
for smart devices, IoT network and their security.
He was an executive research engineer in NTT
docomo, Inc. He received B.E., M.E. and D.E.
degree in Keio University, Japan. He is a member
of IPSJ, IEICE, ACM and IEEE.

Yoshitaka Nakamura received B.E., M.S., and
Ph.D. degrees from Osaka University in 2002,
2004 and 2007, respectively. He is currently an
associate professor at the Faculty of Engineering
, Kyoto Tachibana University. His research inter-
est includes information security and ubiquitous
computing. He is a member of IEEE, IEICE, and
IPSJ.

525252 R. Shibazaki et al. / Towards Resistance to Memory Inspection Attacks on Plausibly Deniable Distributed File Systems

(Received: October 26, 2021)
(Accepted: April 26, 2022)

