
10 22 Vol. 14 No.2 ISSN 1883-4566

ri

Ismail Guvenc, North Carolina State University (USA)

North Carolina A&T State University

University of Cincinnati Computer Science Faculty

Guest Editor’s Message
Akihiro HAYASHI

Guest Editor of the Forty-first Issue of the International Journal of Informatics Society

We are delighted to have the Forty-first issue of
the International Journal of Informatics Society
(IJIS) published. This issue includes selected
papers from the Fifteenth International
Workshop on Informatics (IWIN2021), which
was held online, Sept. 12-13, 2021. The
workshop was the fifteenth event for the
Informatics Society, and was intended to bring
together researchers and practitioners to share
and exchange their experiences, discuss
challenges and present original ideas in all
aspects of informatics and computer networks.
In the workshop, 29 papers were presented in
seven technical sessions. The workshop was
successfully finished with precious experiences
provided to the participants. It highlighted the
latest research results in the area of informatics
and its applications that include networking,
mobile ubiquitous systems, data analytics,
business systems, education systems, design
methodology, intelligent systems, groupware,
and social systems.

Each paper submitted to IWIN2021 was
reviewed in terms of technical content, scientific
rigor, novelty, originality, and quality of
presentation by at least two reviewers. Through
those reviews, 19 papers were selected for
publication candidates of IJIS Journal, and they
were further reviewed as a Journal paper. We
have three categories of IJIS papers, Regular
papers, Industrial papers, and Invited papers,
each of which was reviewed from different
points of view. This volume includes papers
among those accepted papers, which have been
improved through the workshop discussion and
the reviewers’ comments.

We publish the journal in print as well as in an
electronic form over the Internet. We hope that
the issue would be of interest to many
researchers as well as engineers and
practitioners over the world.

Akihiro HAYASHI received his MBA and
Ph.D. from the University of Tsukuba, Tokyo,
Japan in 1997 and 2010, and his Ph.D. in
Software Engineering from Nanzan University,
Japan in 2019. His professional career includes
global companies such as Motorola USA, NTT,
and IBM Japan. In 2018 he has become a
Professor of Department of Information Design,
Faculty of Informatics, Shizuoka Institute of
Science and Technology. He received the
Annual Best Paper Award from Software
Interprise Modeling (SWIM) of the Institute of
Electronics, Information and Communication
Engineers (IEICE) in 2005 and 2008, 39th
Quality and Technology Award from the
Japanese Society for Quality Control (JSQC) in
2010, Best Industrial Award from IWIN2018,
and Industrial Paper Award from IWIN2021.
His current research interests include process
improvement, quantitative project management,
operating research and management strategy. He
is a member of IEICE and INFSOC.

International Journal of Informatics Society, VOL.14, NO.2 (2022) 53

ISSN1883-4566 © 2022 - Informatics Society and the authors. All rights reserved.

54

Industry Paper

Verification of Shell Script Behavior by Comparing Execution Log

Hitoshi Kiryu†, Satoshi Suda‡, Shinpei Ogata*, and Kozo Okano*

†Graduate School of Engineering, Shinshu University, Japan
21w2025g@shinshu-u.ac.jp

‡Advanced Technology R&D Center of Mitsubishi Electric
Suda.Satoshi@ay.mitsubishielectric.co.jp

*Faculty of Engineering, Shinshu University, Japan
{ogata, okano}@cs.shinshu-u.ac.jp

Abstract - Scripts written in shell languages including Bash

are widely used to automate tasks on UNIX families such as

Linux. These scripts, especially those used for automating tasks,

are often used continuously even after the operating environment

such as OS is updated. The behavior of the shell scripts may

change due to OS updates which also usually include commands’

upgrades. For this reason, developers must in advance know the

changes of the commands used in the script and also check each

script in the OS, for every time of the releases. It also produces

the cost of debugging scripts and the associated commands.

This paper proposes a method to verify if the behavior of a

script does not change between two different OS versions. It

also detects the cause of the difference. An automated tool for

the proposed method is also presented. The proposed method

embeds commands which generate execution logs into the scripts

and executes those scripts on two different OS versions. The

tool compares the generated log files from each OS, and if the

behavior is changed, it presents the commands that is cause

of differences to the developers. As a result of evaluation of

the proposed method, we confirmed that the proposed method

can verify the different behavior and detect the commands that

cause the difference for a simple example. In addition, the result

shows that it was not possible to detect the cause of commands

which behavior changes in the area that does not appear in the

standard output. In order to detect these commands as the cause,

it is necessary to collect logs from a different approach than the

standard output.

Keywords: Behavior verification, Debug, Execution log,

Shell script, Bash

1 INTRODUCTION

1.1 Background
Bash [1] is a typical shell language that runs on UNIX OSes

such as Linux. It is a POSIX-compliant Bourne Shell language

with extended history and aliasing features, and it is mainly

adopted as default login shell in many UNIX OSes. These scripts

written in shells are widely used in corporate business systems

for automating tasks. The behavior of shell scripts written in the

Bash may change due to OS updates and associated command

upgrades. For Instance, because of commands upgrades, it is

possible to lose access to environment variables, which are a set

of variables used to configure the shell and various commands. It

is explained in Section 3. Therefore, developers must understand

the commands which are executed in the scripts and the changes

in the OS specifications when the OS is upgraded. It produces a

lot of costs for debugging scripts and the associated commands.

In this paper, we propose a method to support developers in

solving problems that occur when updating the OS by verifying

whether the behavior of Bash scripts is equivalent between two

different version OSes and detecting the cause of the inequality.

Although there are many distributions of Linux, in this paper,

we focus on CentOS, which has been used for business systems

in companies.

1.2 Related Work
Various studies [2]–[5] have been conducted to localize bugs

related to these problems. These studies proposed methods

to identify statements that cause bugs by using bug reports,

trace information, visualization. These studies aim to fix and

identify bugs, while our purpose is to identify the causes of the

differences in behavior.

A similar role to Bash scripts is played by Dockerfile that

describes a series of procedures to build containers. In the field

of micro-services architecture, services based on Docker are

promising. The services are defined by Doker files, and the files

sometimes contain complex scripts. The analysis of Dockerfile

has been studied particularly from the viewpoint of developer

support. For instance, Kaisei Hanayama and his co-authors [6]

have suggested a method to create a code-completion tool for

writing Dockerfiles is proposed by using machine learning of

Dockerfiles on Github. In another study [7], a survey of Self-

Admitted Technical Debt(SATD) in Dockerfile was conducted

for an actual DockerHub project. From the survey, patterns of

SATD in Dockerfile and their proportion are revealed.

In addition, CBMC [8] and JBMC [9] which is based on

CBMC are software model checking tools for verifying the be-

55International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

Figure 1: Differences from our previous study

havior of programs. These tools take a program and assertions
as input and use bounded model checking [10] to verify that the
assertions are valid. Although it is possible in theory to verify
the behavior using these tools, they are not tools for directly
checking changes of behavior, which is the focus of this paper,
since they are for verifying whether the behavior is as specified.

The author’s group has been researching behavioral equiva-

lence verification of programs [11]–[13]. In these studies, we
verified the differences in the behavior of modified programs
as shown on the left side of Fig. 1. The problem that we will
address in this paper is the difference in the behavior in changes
in the environment, as shown on the right side of Fig. 1. There-

fore, the methods used in these studies cannot be applied to this
problem.

The authors did not find any research on the behavioral equiv-

alence of Bash when the environment changes. Therefore, it
would be useful for developers to create a tool to verify whether
a script behaves equally across operating systems. Bash has a de-

bugging tool [14], but these tools do not work with inter-

pipeline output and scripts called within a script.

1.3 The Approach
In the proposed method, we first embed commands which

generate execution log in script files to be verified. The log gen-

erating commands(Loggers) are programs that log standard out-

put, output between pipelines, and variable assignments. Scripts
with Loggers embedded are executed to generate and retrieve the
logs. This process is performed on each of the two target operat-

ing systems built on VirtualBox [14], and the obtained logs are
compared to detect differences in behavior. If the logs match, it
is assumed that there is no change in the behavior. If the logs
do not match, we present where the logs differ as the commands
which is cause of the difference(hereinafter called “cause com-

mand”) to the developer. The information to be presented is
executed command, execution log, and stack trace information
of the function or script.

We conducted three evaluations of the proposed method. In
the first evaluation, we intentionally created commands with
different behaviors and experimented to detect the difference in
behaviors and to identify the cause. In the second evaluation,
we experimented to see if the proposed method can detect the
difference in the behavior of a script containing the command
sudo, whose behavior was changed by updating the command

in the past and to identify the cause of the change. In the third

evaluation, we applied the proposed method to a script, which

access given URL via a proxy server imitatively downloading

files in secured network.

As a result of our evaluation experiments, we confirmed

that our proposed method is helpful for developers in verify-

ing whether behaviors changed. We also found that it is possible

to detect differences in the behavior of commands with small

side-effects, e.g. commands that only calculate and return argu-

ments. However, it is difficult to directly identify the cause of the

differences in commands with side-effects, such as commands

that affect the environment variables.

In the following sections, Section 2 describes the techniques

related to this research, such as bug localization and lexical

and syntactic analysis. In Section 3 we describe the motivating

example, and in Section 4 we describe the proposed method. In

Section 5 we present the results in the evaluation experiments and

in Section 6 we discuss the results in the experiments. Finally,

we conclude in Section 8.

2 PRELIMINARIES

2.1 Bug Localization
Various methods are being researched to identify software

bugs. In the paper [15], a method to identify statements with

bugs from the program spectrum which is execution records of

success or failure of software test cases is studied. It identifies

the statement as the most suspicious statement that includes

bugs. The suspicion of statement is calculated from program

spectrum information using newly proposed metrics. Another

research [16] proposes a method to support identifying defects

by visualizing data transitions and execution flow with dynamic

analysis from Java source code. This research targets to detect

functional defects in logic and visualizes their details the detailed

processing flow and dependencies of variables to assist users in

understanding. In evaluation experiments on the tool, it was

confirmed that the use of the tool can reduce the time required

to locate defects.

2.2 Model Checking
Model checking is a method to verify that the behavior of a

system satisfies the specification. A model checking tool judges

whether or not a specification is valid for a state transition model

that represents the behavior of a system. In many model check-

ing tools, specifications are described by temporal logic such as

CLT and LTL. There is a study [17] that applies model checking

to real system development. In this study, a model checking tool

UPPAAL [18] was used for the development of medical infu-

sion pumps to formalize the models and specifications, verify the

safety of the models and generate code from the verified models.

Also, since the description of the state transition model and the

specification is essential for model checking, the research [19]

has been conducted to support the description of the model and

56 H. Kiryu et al. / Verification of Shell Script Behavior by Comparing Execution Log

Figure 2: Outline of lexer and parser

the specification for engineers who do not have such knowledge.

Automatic generation of checking models from the state tran-

sition table of the system and the table which summarizes the

actions which occur in each state.

2.3 Lexical and Syntactic Analyzer
Lexical and syntactic analysis is a series of parsing processes

in programming languages, as shown in Fig. 2. A series of

pipelined syntactic analyzers check that the token sequence given

by the lexical analysis satisfies the defined grammar. We use

PLY (Python Lex-Yacc) [20] as a lexical and syntactic analyzer

to embed Loggers into Bash scripts given as input. PLY is

an implementation of Lex, a lexical analyzer for Python, and

Yacc which is a syntactic analyzer. In the lexical analysis part,

regular expressions are used to define the string-to-token con-

version rules, and in the syntactic analysis part, the LALR(1)

grammar [21] is used to define the syntax rules. A syntax tree is

constructed from the given rules and parsed for a given sentence.

3 THE MOTIVATION EXAMPLE

Listing 1: foo.bash

1 VAR=’baz ’
2 export VAR
3 sudo bash bar.bash

Listing 2: bar.bash

1 echo ${VAR}

The two Bash scripts in the Listings 1 and 2, foo.bash and

bar.bash, are example scripts whose behavior changes depend-

ing on OS versions. In CentOS5 and later versions, the behavior

of the sudo command in foo.bash has changed due to the upgrade

of the command. Versions that are older than CentOS5 output

the string “baz,” while in CentOS5 and later versions not output

a blank line. This is because, in 1.6 and earlier versions of the

sudo, the command was able to preserve environment variables

when executed by sudo, however, in 1.7 and later versions, it

is necessary to specify the ‘-E’ option to preserve environment

variables. The environment variable is not referred due to the

change of the command specification of the newer version. This

change causes the difference in behavior between versions older

than CentOS5 using version 1.6 bash and later versions of Cen-

tOS.

Figure 3: Outline of the proposed method

4 THE PROPOSED MOTHOD
The proposed method generates execution logs of Bash scripts

and judges the difference in behavior by comparing the logs. The

execution log contains the standard output, the output between

pipelines, and the variable assignments along with the executed

commands. The stack trace information of the command is also

stored to make it easier to identify the cause.

4.1 Outline of the Proposed Method
The schematic diagram of the proposed method is shown in

Fig. 3. The input and output of the proposed method are shown

below.

• Input : Script file to be verified

• Output: verification results (the behavior is different and

which command behaves differently)

The procedure of the proposed method is as follows.

(1) It embeds the Logger into the Bash script given as input.

The Logger refers to a program that logs the standard output,

output between pipelines, and variable assignment. The details

of each program are described below.

(2) It executes script embedded commands on each of the two

operating systems.

(3) It compares the obtained logs and judges whether the

behavior is different. If the behavior is different, the command

that causes the difference and its log information is presented.

We have created a tool that automatically executes the above

procedure.

4.2 Execution Log
The format of the execution log is shown in Listing 3.

Listing 3: Abstraction of the log

1 <log identifier >:< commands >, line: <
lineno >, stack: <stack trace >

2 <output log >
3 :<log identifier >

1. <log identifier> : “assignment” if the log is an assignment,

“command” if the log is a command execution

57International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

2. <commands> : Executed commands

3. <line> : line number of executed command

4. <stack trace> : Stack trace information of the script and

function when the command is executed.

5. <output log> : Assignment log and standard output log.

4.3 Log Generating Command(Logger)
The following four Loggers are embedded in the script. The

behavior of each is shown below.

• Standard output log command : Generate standard output

log

• Assignment Log command : Generate Variable Assign-

ment Log

• Stack push command : Record Stack trace information

• Stack pop command : Record Stack trace information

4.3.1 Standard Output Log Command

This command logs the standard output and the output between

pipelines. It also takes two arguments, a command to be ex-

ecuted and its line and logs the string to be executed. The

standard output log command is “stdout_logger” in Listing 5.

This logging command can generate the standard output log by

pipelining this command to a line that does the normal standard

output as shown in the examples in Listings 4 and 5.　

Listing 4: Before embedding example for standard output

1 echo hello

Listing 5: After embedding example for standard output

1 echo hello | stdout_logger ’echo
hello ’ 1

The log shown in Listing 6 is generated by executing the script

shown in Listing 5.

Listing 6: Log example for standard output

1 command :echo hello , line: 1, stack:
2 hello
3 : command

Also, the output between pipelines can be logged like the

standard output by embedding it as Listings 7 and 8.

Listing 7: Before embedding commands for pipeline

1 commandA | commandB

Listing 8: After embedding commands for pipeline

1 commandA | stdout_logger ’commandA ’ |
commandB

4.3.2 Assignment Log Command

In this step, we generate log of assignments to variables. The as-

signment log command is “assign_logger” in Listing 10. It takes

the assignment command to be executed, the variable name, and

the value of the variable as arguments and records them in the

execution log. When the assignment command is taken as an

argument, single quotes are escaped to avoid the expansion of

variables. The Listings 9 and 10 show an example of before and

after embedding the log.

Listing 9: Before embedding commands

1 VAR=’baz ’

Listing 10: After embedding commands

1 VAR=’baz ’
2 assign_logger ’var=’\’’baz ’\’’’ VAR "

$VAR" 1

Running the script ex.bash that executes Listing 10 will gen-

erate the log shown in Listing 11.

Listing 11: Log example for assignment

1 assignment :VAR=’baz ’, line: 1, stack :
2 VAR=baz
3 : assignment

4.3.3 Stack Push, Stack Pop Command

In order to identify the execution path of commands, command

to stack push and pop records stack trace information into a text

file. At the start of the script or function, their name is pushed.

At the end of that, the pushed name is popped. In addition, the

call command string is pushed just before the script or function

call, and the pushed string is popped after the calling. Listings 14

and 15 shows the result of embedding for ex.bash and test.bash

shown in Listings 12 and 13.

Listing 12: ex.bash before embedding commands

1 test.bash ’test ’

Listing 13: test.bash before embedding commands

1 echo ${1}

Listing 14: ex.bash after embedding commands

1 push_stack ex.bash
2 push_stack ’test.bash ’\’’test ’\’’’
3 test.bash ’test ’
4 pop_stack
5 pop_stack

58 H. Kiryu et al. / Verification of Shell Script Behavior by Comparing Execution Log

Listing 15: test.bash after embedding commands

1 push_stack test.bash
2 echo ${1} | stdout_logger ’echo ${1}’

1
3 pop_stack

Listing 14 generate the log shown in Listing 16.

Listing 16: Log example for stack and push command

1 command :echo ${1}, line: 1, stack: ex
.bash ->test.bash ’test ’->test.bash

2 test
3 : command

The log “ex.bash->test.bash ’test’->test.bash” which is the

stack trace information following “stack:” in the log, indicates

that the log was generated in test.bash called by test.bash ‘test’

from within ex.bash.

4.4 Embedding Commands
Embed Loggers into scripts given as input. The tool embeds

each command in the following cases.

• Start of the script or function : Stack Push Command

• End of the script or function : Stack Pop Command

• The line just before the call of script or function : Stack

Push Command

• The line just after the call of script or function : Stack Pop

Command

• Pipeline : Standard Output Log Command

• Variable Assignment : Assignment Log command

4.5 Executing Scripts
Scripts which is embedded Loggers are executed. In run-

ning the script, copy it to OS built using VirtualBox and run.

Verification can be done within a single machine.

4.6 Comparing Logs
The tool compare 2 execution logs generated by running.

Execution log contains following information.

• Executed command

• Stack trace information

• Log identifier of standard output or assignment

• Log of standard output or assignment

In case that no difference between the logs is detected, the tool

judge that behavior is consistent. If not so, the tool judge that

behavior is changed and display different logs as causes.

4.7 Implementation
We create the tool based on the proposed method. The tool

gets scripts as input, embed commands, run embedded scripts,

compare logs, and display results automatically.

The Loggers were embedded using a lexical and syntactic

analyzer written in Python Lex-Yacc. It embeds Loggers if the

script matches defined grammars. For example, if assignment

operator “=” appears in a single command, it is recognized as an

assignment and the assignment log command is embedded. The

four Loggers and the log comparison program were implemented

using C++.

Target OSes of verification are built on VirtualBox on Win-

dows. Scripts given as input are embedded Loggers on Windows

and copied to target OSes, then the execution logs are provided

by running the scripts on each OS. The logs are copied to the

Host OS and verified. By executing the script on target OSes

using SSH from the Host OS, this method is executed automat-

ically.

5 EVALUATION EXPERIMENT
In order to evaluate the proposed method, we conducted eval-

uation experiments for the following three scripts to see if it is

possible to detect and identify the cause of different behaviors.

1. A script that executes commands created to behave differ-

ently between operating systems.

2. A script containing the sudo command described in Sec-

tion 3

3. A script that imitates a situation of building environments

via proxy

The environment and OS used for these evaluation experiments

are as follows.

• Host OS : Windows10 Pro

• VirtualBox ver 5.2.18 r124319

• Guest OS 1: CentOS 4.6

• Guest OS 2: CentOS 8.2.2004

Both experiments followed steps below.

1. Embed commands into scripts given as input on the Host

OS.

2. Copy the Scripts which is embedded commands to the

target OSes.

3. Execute the scripts on each target OSes and copy generated

logs to the Host OS.

4. Compare the obtained logs and get verification results.

59International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

5.1 Experiment 1
We prepared a command “sample” and a simple script to ex-

ecute the command for each OS. The command “sample” takes

two integer arguments and outputs the result of addition on Cen-

tOS4.6 and multiplication on CentOS8.2. The proposed method

is applied to the scripts we created and conducted experiments

to evaluate whether the tool can detect a difference in behavior

between scripts with a different function, and whether “sample”

can be identified as the causative command.

The script used for the experiment, “ex.bash,” is shown in

Listing 17.

Listing 17: ex.bash

1 result =$(sample 2 3)
2 echo ${ result }

Script after embedding the commands into ex.bash is shown in

Listing 18.

Listing 18: ex.bash after embedding command

1 push_stack ex.bash
2 result =$(sample 2 3 | stdout_logger

’sample 2 3’ 1)
3 assign_logger ’result =$(sample 2 3

)’ result " $result " 1
4 echo ${ result } | stdout_logger ’echo

${ result }’ 2
5 pop_stack

Obtained logs by executing the above script on each target OSes

are shown in Listings 19 and 20.

Listing 19: Log on CentOS4.6 in Experiment 1

1 command : sample 2 3, line: 1, stack:
ex.bash

2 5
3 : command
4

5 assignment : result =$(sample 2 3),
line: 1, stack: ex.bash

6 result =5
7 : assignment
8

9 command : echo ${ result }, line: 2,
stack: ex.bash

10 5
11 : command

Listing 20: Log on CentOS8.2 in Experiment 1

1 command : sample 2 3, line: 1, stack:
ex.bash

2 6
3 : command

Figure 4: Result of Experiment 1

4

5 assignment : result =$(sample 2 3),
line: 1, stack: ex.bash

6 result =6
7 : assignment
8

9 command : echo ${ result }, line: 2,
stack: ex.bash

10 6
11 : command

The results of the comparison of the two logs are shown in

Fig. 4.

Different logs are suggested. According to the results in Fig.

4, differences in the script behavior were detected. The cause

of the different behavior of the script “ex.bash” is the command

“sample,” and the first presented log shows the command “sam-

ple 2 3.” Therefore, the difference in behavior was detected and

the command that caused the difference was identified.

5.2 Experiment 2
The proposed method is applied to scripts shown in Listings

1 and 2, which are indicated in Section 3 and conducted experi-

ments to evaluate whether the tool can detect differences in the

behavior of the scripts and identify the command “sudo” as the

cause of the difference.

The Bash scripts after embedding the commands into the

scripts are shown in Listings 21 and 22.

Listing 21: foo.bash after embedding command

1 push_stack foo.bash
2 VAR=’baz ’
3 assign_logger ’VAR=’\’’baz ’\’’’ VAR "

$VAR" 1

60 H. Kiryu et al. / Verification of Shell Script Behavior by Comparing Execution Log

4 export VAR | stdout_logger ’export
VAR ’ 2

5 push_stack ’sudo bash ./ bar.bash ’
6 sudo bash ./ bar.bash
7 pop_stack
8 pop_stack

Listing 22: bar.bash after embedding command

1 push_stack bar.bash
2 echo ${VAR} | stdout_logger ’echo ${

VAR}’ 1
3 pop_stack

logs generated by executing the scripts shown in Listings 21

and 22 on each target OSes are shown in Listings 23 and 24.

Listing 23: Log on CentOS4.6 in Experiment 2

1 assignment :VAR=’baz ’, line: 1, stack:
foo.bash

2 VAR=baz
3 : assignment
4

5 command : export VAR , line: 2, stack:
foo.bash

6 : command
7

8 command :echo ${VAR}, line: 1, stack:
foo.bash ->sudo bash ./ bar.bash ->
bar.bash

9 baz
10 : command

Listing 24: Log on CentOS8.2 in Experiment 2

1 assignment :VAR=’baz ’, line: 1, stack:
foo.bash

2 VAR=baz
3 : assignment
4

5 command : export VAR , line: 2, stack:
foo.bash

6 : command
7

8 command :echo ${VAR}, line: 1, stack:
foo.bash ->sudo bash ./ bar.bash ->
bar.bash

9

10 : command

There is a difference in the 9th line of each log: CentOS4.6

outputs “baz,” but CentOS8.2 outputs an empty string. This is

the same as the result mentioned in Section 3.

The results of the comparison of the logs are shown in Fig. 6.

From the results in Fig. 6, the difference in behavior is detected

Figure 5: Result of Experiment 2

by comparison of the execution logs. However, the command

“echo $VAR” suggested as a cause is not true cause as described

in Section 3. The true cause command “sudo” wasn’t identified

as a cause of the difference in the behavior of the script.

5.3 Experiment 3
The following script shown in Listing 25 updates packages

with package managing command “yum” via a proxy server,

which is described by environment variables including “http_proxy.”

Some enterprises and institutions often create proxy servers to

protect internal networks from cyberattacks, and users in orga-

nizations access external networks via proxy servers. A tool

to manage packages like “yum” in the script is necessary com-

mand for building server environment. This script imitates such

a situation.

Listing 25: Example script of updating command via a proxy

server

1 http_proxy =" http
://192.168.56.1:3128/"

2 https_proxy =" https
://192.168.56.1:3128/"

3 ftp_proxy =" ftp ://192.168.56.1:3128/"
4 export http_proxy https_proxy

ftp_proxy
5 sudo yum update -y

In this Experiment, We applied the method to a script that

is the essence of the script in Listing 25. The script extracts

the title of the given URL “http://example.com” with the curl

command via a given proxy server. In order to evaluate that

the tool can detect differences in behaviors and identify cause

command. This script just extracts the title of a given URL via

proxy server.

Listing 26: test.bash

1 export http_proxy =" http
://192.168.56.1:3128/"

2 echo "title is" $(sudo curl -sS "
example .com" 2>&1 | grep -Po "(? <=
title >)(.+)(?= </ title >)")

The script embedded command is shown in Listing 27.

Listing 27: test.bash after embedding command

61International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

1 push_stack test.bash
2 export http_proxy =" http

://192.168.56.1:3128/"
3 assign_logger ’http_proxy =" http

://192.168.56.1:3128/" ’ http_proxy
" $http_proxy " 1

4 echo "title is" $(sudo curl -sS "
http :// example .com" 2>&1 |
stdout_logger ’sudo curl -sS "http
:// example .com"’ 2 | grep -Po
"(? <= title >)(.+)(?= </ title >)" |
stdout_logger ’sudo curl -sS "http
:// example .com" 2>&1 | grep -Po
"(? <= title >)(.+)(?= </ title >)"’ 2)

| stdout_logger ’echo "title is "
$(sudo curl -sS " example .com"

2>&1 | grep -Po "(? <= title
>)(.+)(?= </ title >)") ’ 2

5 pop_stack

Listings 28 and 29 show generated logs on the each OSes.

Listing 28: Log on CentOS4.6 in Experiment 3

1 assignment : http_proxy =" http
://192.168.56.1:3128/" , line: 1,
stack : test.bash

2 http_proxy =http ://192.168.56.1:3128/
3 : assignment
4

5 command : sudo curl -sS "http ://
example .com", line: 2, stack: test
.bash

6 <! doctype html >
7 <html >
8 <head >
9 <title > Example Domain </ title >

10 (Omission)
11 </html >
12 : command
13

14 command : sudo curl -sS "http ://
example .com" 2>&1 | grep -Po "(? <=
title >)(.+)(?= </ title >)", line: 2,

stack: test.bash
15 Example Domain
16 : command
17

18 command : echo "title is" $(sudo curl
-sS " example .com" 2>&1 | grep -Po
"(? <= title >)(.+)(?= </ title >)") ,
line: 2, stack: test.bash

19 title is Example Domain

Listing 29: Log on CentOS8.2 in Experiment 3

Figure 6: Result of Experiment 3

1 assignment : http_proxy =" http
://192.168.56.1:3128/" , line: 1,
stack: test.bash

2 http_proxy =http ://192.168.56.1:3128/
3 : assignment
4

5 command : sudo curl -sS "http ://
example .com", line: 2, stack : test
.bash

6 curl : (6) Could not resolve host:
example .com

7 : command
8

9 command : sudo curl -sS "http ://
example .com" 2>&1 | grep -Po "(? <=
title >)(.+)(?= </ title >)", line: 2,

stack : test.bash
10 : command
11

12 command : echo "title is" $(sudo curl
-sS " example .com" 2 >&1 | grep -Po
"(? <= title >)(.+)(?= </ title >)") ,
line: 2, stack: test.bash

13 title is
14 : command

The result is shown in Fig. 6.

The result shows that the tool detect changes in logs and the

commands “sudo curl -sS "http://example"” are suggested as

cause commands.

6 DISCUSSION
In the all Experiments, the difference in behavior between

the script which executes commands with different behaviors is

detected.

The cause command of the difference is identified in evalua-

tion Experiment 1. In the experiment, differences in execution

logs were detected in command substitution and assignment be-

fore they appear on standard output. Shell scripts that have

complicated processing will almost certainly use such opera-

tors. Therefore, It is helpful for developers to find the difference

before it comes out as standard output. This is also true for the

pipeline which our method supports.

62 H. Kiryu et al. / Verification of Shell Script Behavior by Comparing Execution Log

While, in the Experiment 2, the wrong command was sug-

gested as the cause command. The reason is that the environment

variables are not referred in the script called by the “sudo” com-

mand in CentOS8.2, and the difference in behavior is surfaced

at the stage of “echo $VAR” which performs standard output. In

the case of change in the behavior of such a command which has

no standard output, differences in behavior are detected in stan-

dard output or assignment. This is because the proposed method

generates execution logs which focus on standard output and as-

signment. Therefore, it will be difficult to directly identify such

commands as the cause command. Similarly, it will be difficult

to precisely identify the cause commands in case of commands

like “sudo,” which has a function to affect shared resources such

as environment variables changed, i.e. a command with a strong

side effect.

In Experiment 3, The tool identified cause command “sudo”.

The command “sudo curl -sS "http://example.com"” accesses

the URL via proxy server, which is described by “http_proxy”.

However, in CentOS8.2, the access to URL fails due to the com-

mand “sudo” doesn’t preserve environment variables. There are

commands that refer to environment variables when performs,

such as curl and tools to manage packages including yum and apt.

These commands are generally used in building environment on

server.

From result of the evaluations, Our proposed method can

support developers in checking behavior changes in scripts.

7 FUTURE WORK
Defined grammars on lexical and syntax analyzers are simple.

The analyzers cannot support complex grammars. Therefore, the

tool needs to expand the grammars of analyzers.

Since this method only collects logs that appear in the standard

output or assignment. If the behavior differs in areas that don’t

appear in the standard output or assignment, e.g. signal trapping,

it is not possible to verify whether the behavior changed.

The proposed method needs to evaluate the execution time and

used memory for large and complex scripts such as recursive.

Thus, addressing these issues will be the main task in the

future.

8 CONCLUSION
In this paper, we proposed a method to verify whether the

behavior of shell scripts written in Bash is changed before and

after OS upgrade and created a tool based on the method. The

tool based on the proposed method can verify the behavior and

identify the causes of the differences by comparing the execu-

tion logs of the shell scripts generated by log generating com-

mands(Loggers). From evaluation experiments, we confirmed

that our proposed method can verify differences in the behavior

in standard output and assignment, and the method can support

developers in verifying whether behaviors in scripts is changed

before and after OS update efficiently. Furthermore, we con-

clude that it is difficult to precisely identify the cause commands

in case of commands which have no standard output or strong

side effects.

ACKNOWLEDGEMENT
Part of this work is supported by fund from Mitsubish Electric

Corp.

The research is also being partially conducted as Grant-in-Aid

for Scientific Research A (19H01102) and C (21K11826).

REFERENCES
[1] “GNU Bash,” https://www.gnu.org/software/bash/ (re-

ferred May 13, 2022).

[2] J.Nam, S.Wang, Y.Xi, and L. Tan: “A bug finder refined

by a large set of open-source projects,” Information and

Software Technology, Vol.112, pp.164–175 (2019).

[3] S.Kim, T.Zimmermann, K.Pan, and E.J.Whitehead Jr.:

“Automatic Identification of Bug-Introducing Changes,”

21st IEEE/ACM International Conference on Automated

Software Engineering (ASE’06), pp.81-90 (2006).

[4] S.Tsakiltsidis, A.Miranskyy, and E.Mazzawi: “Towards

Automated Performance Bug Identification in Python,”

2016 IEEE International Symposium on Software Re-

liability Engineering Workshops (ISSREW), pp.132-139

(2016).

[5] K.Matsushita, M.Matsumoto, K.Ohno, T.Sasaki, T.Kondo,

and H.Nakashima: “A Debugging Method Based on

Comparison of Execution Trace,” Symposium on Ad-

vanced Computing Systems and Infrastructures (SACSIS),

Vol.2011, pp.152-159 (2011) (in Japanese).

[6] K.Hanayama, S.Matsumoto, and S.Kusumoto: “Hump-

back: Code Completion System for Dockerfiles Based

on Language Models,” In 1st Workshop on Natural Lan-

guage Processing Advancements for Software Engineer-

ing(NLPaSE 2020), pp. 1-4 (2020).

[7] H.Azuma, S.Matsumoto, Y.Kamei, and S.Kusumoto:

“Survey of Self-Admitted Technical Debt in Container Vir-

tualization Technology,” IEICE technical report, Vol.120,

No.193, pp.25-30 (2020) (in Japanese)

[8] E.Clarke, D.Kroening, and F.Lerda: “A tool for check-

ing ANSI-c programs,” International Conference on Tools

and Algorithms for the Construction and Analysis of Sys-

tems. TACAS 2004, Lecture Notes in Computer Science,

Vol.2988, pp.168-176 (2004).

[9] L.Cordeiro, D.Kroening, and P.Schrammel: “JBMC:

Bounded Model Checking for Java Bytecode,” Interna-

tional Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems(TACAS 2019), Lec-

ture Notes in Computer Science, Vol.11429, pp.219-223

(2019).

[10] A.Biere, A.Cimatti, E.Clarke, and Y.Zhu: “Symbolic

Model Checking without BDDs,” In Proceedings of the

Workshop on Tools and Algorithms for the Construction

63International Journal of Informatics Society, VOL.14, NO.2 (2022) 55-64

and Analysis of Systems(TACAS 1999), Lecture Notes in

Computer Science, Vol.1579, pp.193-207 (1999).

[11] K.Okano, R.Karashima, S.Harauchi, and S.Ogata: “Re-

gression Verification for C Functions with Recursive Data

Structure,” International Journal of Informatics Society,

Vol.11, No.2, pp.107-115 (2019).

[12] K.Okano, S.Harauchi, T.Sekizawa, S.Ogata, and

S.Nakajima: “Consistency Checking between Java Equals

and hashCode Methods Using Software Analysis Work-

bench,” IEICE Transactions on Information and Systems,

Vol.E102, No.8, pp.1419-1422 (2019).

[13] R.Karashima, S.Harauchi, S.Ogata, and K.Okano: “Pro-

posal and evaluation for property verification for Java

functions with recursive data structures by SAW,” Pro-

ceedings of International Workshop on Informatics 2019

(IWIN2019), pp.155-162 (2019).

[14] “BASH Debugger,” http://bashdb.sourceforge.net/

[15] “Oracle VM VirtualBox,” https://www.virtualbox.org/ (re-

ferred May 13, 2022).

[16] C.Oo and H.Min Oo: “Spectrum-Based Bug Localization

of Real-World Java Bugs,” International Conference on

Software Engineering Research, Management and Appli-

cations, pp.75-89 (2019)

[17] T.Sato, T.Katayama, Y.Kita, H.Yamaba, K.Aburada, and

Naonobu Okazaki: “Development of TFVIS (Transitions

and Flow VISalization) for Java Programs,” Journal of

Information Processing (JIP), Vol.59, No.4, pp.1137-1149

(2018) (in Japanese).

[18] B.Kim, A.Ayoub, O.Sokolsky, I.Lee, P.Jones, Y.Zhang,

and R.Jetley: “Safety-assured development of the GPCA

infusion pump software,” 2011 Proceedings of the Ninth

ACM International Conference on Embedded Software

(EMSOFT), pp. 155-164, (2011).

[19] G.Behrmann, A.David, and K.G.Larsen: “A Tutorial on

Uppaal,” In Formal Methods for the Design of Real-Time

Systems, Vol.3185, pp.200-237 (2004).

[20] T.Koike: “Model Checking Support Environment based

on State Transition Matrix,” SIGEMB, Vol.2008, No.116

pp.91-96 (2008) (in Japanese).

[21] “PLY (Python Lex-Yacc) ― ply 4.0 documentation,”

https://ply.readthedocs.io/en/latest/ (referred May 13,

2022).

[22] F.DeRemer and T.Pennello: “Efficient Computation of

LALR(1) Look-Ahead Sets,” ACM Transactions on

Programming Languages and Systems, Vol.4, No.4,

pp.615–649 (1982).

Hitoshi Kiryu is a graduate student of Shinshu Uni-

versity. His areas of interest include formal verifica-

tion.

Satoshi Suda Suda Satoshi received his M.E. de-

gree in mathematical from Osaka University, Osaka,

Japan, in 2016. He joined Mitsubishi Electric Corp.

Currently he is a researcher of Solution Engineer-

ing Dept. at Advanced Technology R&D Center and

mainly engaging in research on software development

efficiency.

Shinpei Ogata is an Associate Professor at Shinshu

University, Japan. He received his BE, ME, and PhD

from Shibaura Institute of Technology in 2007, 2009,

and 2012 respectively. From 2012 to 2020, he was

an Assistant Professor, and since 2020, he has been

an Associate Professor, in Shinshu University. He is

a member of IEEE, ACM, IEICE, IPSJ, and JSSST.

His current research interests include model-driven

engineering for information system development.

Kozo Okano received his BE, ME, and PhD de-

grees in Information and Computer Sciences from

Osaka University in 1990, 1992, and 1995, respec-

tively. From 2002 to 2015, he was an Associate

Professor at the Graduate School of Information Sci-

ence and Technology of Osaka University. In 2002

and 2003, he was a visiting researcher at the Depart-

ment of Computer Science of the University of Kent

in Canterbury, and a visiting lecturer at the School of

Computer Science of the University of Birmingham,

respectively. Since 2020, he has been a Professor

at the Department of Electrical and Computer Engineering, Shinshu Univer-

sity. His current research interests include formal methods for software and

information system design. He is a member of IEEE, IEICE, and IPSJ.

(Received: October 30, 2021)

(Accepted: February 23, 2022)

64

Industry

65International Journal of Informatics Society, VOL.14, NO.2 (2022) 65-74

66 R. Sakauchi et al. / On the Effectiveness and Stability of Multi-channel Time Division Multiple Access Using LoRa

67International Journal of Informatics Society, VOL.14, NO.2 (2022) 65-74

68 R. Sakauchi et al. / On the Effectiveness and Stability of Multi-channel Time Division Multiple Access Using LoRa

69International Journal of Informatics Society, VOL.14, NO.2 (2022) 65-74

70 R. Sakauchi et al. / On the Effectiveness and Stability of Multi-channel Time Division Multiple Access Using LoRa

71International Journal of Informatics Society, VOL.14, NO.2 (2022) 65-74

72 R. Sakauchi et al. / On the Effectiveness and Stability of Multi-channel Time Division Multiple Access Using LoRa

Figure 18. Number of times received between bus stops

Figure 17 shows the result of the transmission time in pat-

tern 2. Figure 17 (a) shows the result with the disturbing

wave, and Fig. 17 (b) shows the result without the jamming

wave. If there is a carrier sense error, the transmission time

will be longer because the carrier sense is repeated. It can be

seen that the transmission time may increase in the presence

of the interference wave shown in Fig. 17 (a). However, this

result shows that the ratio is small and the increase in trans-

mission time is within the allowable time. From this result,

it was confirmed that even if another system is using the

same channel as the bus end device and a collision occurs,

data can be transmitted within an acceptable time. It took

less than 1 second from the time when the bus location in-

formation was obtained at the gateway until it was displayed

on the WEB page. Figure 18 shows the number of times bus

location information was successfully sent to the gateway

between bus stops. The probability of successful location

data transmission at least once between bus stops was 100%

with jamming.

5 CONCLUSION

We are working on the development of a bus operation

management system using LoRa. In recent years, there are

many users in the 920MHz band, and stable system opera-

tion has become difficult. Therefore, in this paper, we have

examined a method that enables stable communication even

under such circumstances. In order to improve the accuracy

of the system, we have created a method for multi-channel

LoRa communication using TDMA for the bus location sys-

tem. We also created the channel hopping method. This

makes it possible to handle changes in the communication

environment over time. We have confirmed the effect as a

result of experiments in the room and the outdoor, so we

explained the details. And we reported on the successful

operation of the communication system and its effectiveness

against communication interference. By adopting the pro-

posed method, we were able to improve QoS. It is predicted

that the number and density of wireless ad hoc networks in

the 920MHz band will continue to increase in the future. We

plan to study a stronger communication method.

ACKNOWLEDGMENTS

The research is supported by Nonoichi City.

REFERENCES

[1] H. Yabe, S. Ishikawa, S. Tomioka, S. Tsukahara, R.

Sakauchi, M. Sode Tanaka, “Bus Location System

with LoRa to Cover the Entire Nonoichi City”, IEEE

3rd Global Conference on Life Sciences and Technol-

ogies(LifeTech), pp.419-420, pp. 419-420,

doi:10.1109/LifeTech52111.2021.9391821, (2021).

[2] T. Boshita, H. Suzuki and Y. Matsumoto, "IoT-based

Bus Location System Using LoRaWAN," 2018 21st

International Conference on Intelligent Transportation

Systems(ITSC), pp.933-938,
doi:10.1109/ITSC.2018.8569920, (2018).

[3] P. Guan, Z. Zhang, L. Wei and Y. Zhao, "A Real-Time

Bus Positioning System Based on LoRa Technology,"

2018 2nd International Conference on Smart Grid and

Smart Cities (ICSGSC), pp.45-48,

doi:10.1109/ICSGSC.2018.8541282, (2018).

[4] https://nottydoko-demo.sodeproject.com/

[5] S. Kakuda, Y. Yamazaki, K. katagiri, T. Fujii, O.

Takyu, M. ohta, and K. Adachi, “Channel Allocation

for LoRaWAN Considering Intra-System and Inter-

System Interferences”, IEICE Tech. Rep., Vol.121,

No.30, IEICE-SR2021-12, pp.79-85 (2021).

[6] Y. Ye and B. Wang, “RMapCS: Radio map construc-

tion from crowdsourced samples for indoor localiza-

tion,” IEEE Access, Vol.6, pp.24224-24238,

doi:10.1109/ACCESS.2018.2830415 (2018).

[7] S. Bi, J. Lyu, Z. Ding, and R. Zhang, “Engineering ra-

dio maps for wireless resource management,” IEEE

Wireless Commun., Vol.26, No.2, pp.133–141 (2019).

[8] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Low

overhead scheduling of LoRa transmissions for im-

proved scalability,” IEEE Internet of Things J., Vol.6,

No.2, pp.3097-3109 (2019).

[9] Z. Qin and J.A. McCann, “Resource efficiency in low-

power wide-area networks for IoT applications,” in

Proc. IEEE Global Commun. Conf. (GLOBECOM),

Singapore, pp.1-7,

doi:10.1109/GLOCOM.2017.8254800 (2017).

[10] Jabandžić, S. Giannoulis, R. Mennes, F. A. P. De

Figueiredo, M. Claeys and I. Moerman, "A Dynamic

Distributed Multi-Channel TDMA Slot Management

Protocol for Ad Hoc Networks," in IEEE Access,

Vol.9, pp.61864-61886, doi:10.1109/ACCESS (2021).

[11] A. Aijaz and A. Stanoev, "Closing the Loop: A High-

Performance Connectivity Solution for Realizing

Wireless Closed-Loop Control in Industrial IoT Appli-

cations," in IEEE Internet of Things Journal, Vol.8,

No.15, pp.11860-11876, (2021).

[12] 920MHz-BAND TELEMETER TELECONTROL

AND DATA TRANSMISSION RADIO EQUIP-

MENT, ARIB STD-T108 Version 1. 3 (2021).

(Received: October 31, 2021)

(Accepted:July 20, 2022)

International Journal of Informatics Society, VOL.14, NO.2 (2022) 65-74 73

Ryotaro Sakauchi is 4th year

undergraduate student in the

Department of Information

Technology, Faculty of Engi-

neering, Kanazawa Institute of

Technology (2022 Current). He

interest in Wireless Communi-

cation Technology, Mobile

Communication and Low Power

Wide Area.

Shuto Ishikawa received bache-

lor of Engineering from Kana-

zawa Institute of Technology,

Japan in 2022. He joined Sony

Network Communications Inc.

in April 2022. He engaged in

LPWA-related research.

Yuki Eto is 4th year undergrad-

uate student in the Department of

Informatics, Kanazawa Institute

of Technology (2022 Current).

He interest in Wireless Commu-

nication Technology, Smart city

and Regional activation.

Shunsuke Segawa is 3th year

undergraduate student in the De-

partment of Electrical and Elec-

tronic Engineering, Kanazawa

Institute of Technology (2022

Current). He interest in Wireless

Communication Technology, AI

image processing and Low power

consumption technology.

Hikaru Yabe graduated in March

2022 from the Department of In-

formation Technology, Faculty of

Engineering, Kanazawa Institute

of Technology, and joined Soft-

bank Corp in April 2022.

Mikiko Sode Tanaka received

Dr. Eng. degrees from Waseda

University in Fundamental Sci-

ence and Engineering. She joined

NEC Corporation, NEC Electron-

ics Corporation, and Renesas

Electronics Corporation. She is

Associate Professor of Interna-

tional College of Technology,

Kanazawa. Her research interests include wireless

communications, AI chip, and personal authentica-

tion. She is a member of IEICE (Institute of Elec-

tronics, Information and Communication Engineers).

Also, she is senior member of IPSJ (Information Pro-

cessing Society of Japan) and IEEE (Institute of

Electrical and Electronics Engineers).

Yota Nomoto is 4th year un-

dergraduate student in the De-

partment of Information Tech-

nology, Faculty of Engineering,

Kanazawa Institute of Technolo-

gy (2022 Current). He interest in

Wireless Communication Tech-

nology, Mobile Communication

and Low Power Wide Area.

74 R. Sakauchi et al. / On the Effectiveness and Stability of Multi-channel Time Division Multiple Access Using LoRa

Regular Paper

Performance Evaluation of a CyReal Sensor System

Kei Hiroi†, Akihito Kohiga‡, and Yoichi Shinoda‡

†Disaster Prevention Research Institute, Kyoto University, Japan
‡Japan Advanced Institute of Science and Technology, Japan

hiroi@dimsis.dpri.kyoto-u.ac.jp

Abstract - IoT devices are expected to enable inexpensive

and easy measurement and collection of a wide range of en-

vironmental information, especially in the field of disaster

prevention. Whereas, preliminary verification is difficult, be-

cause of a functional design that assumes their distributed de-

ployment, the cost of development itself. Therefore, we de-

velop a sensor system emulator with CyReal concept, which

integrates the virtual device with the actual device, and fed-

erated with other simulators. This paper presents a prototype

of our sensor system, its feasible performance, and discusses

a design for flexible integration, in order to figure out that our

sensor system supports large-scale virtual sensor devices for

verification of the development, update, debugging, and oper-

ation of sensor systems as a distribution network for disaster

prevention information.

Keywords: sensor network, emulation system, sensor testbed

1 INTRODUCTION

IoT (Internet of Things) devices equipped with sensors and

related technologies are expected to enable inexpensive and

easy measurement and collection of a wide range of environ-

mental information. In the field of disaster prevention, they

are being utilized for various fields such as river observation

and slope measurement, and are expected to be useful for col-

lecting data at points where it has been difficult to figure out

the condition of the environment.

Conventional environmental monitoring for disaster response

is usually installed at a few vulnerable sites that require mon-

itoring. The environmental observation had been carried out

through a robust monitoring system using a leased network

lines. However, due to the frequent and large-scale river floods

in recent years, we face on pressing importance requiring a

larger-scale monitoring network, even for small rivers and

waterways that have not been monitored well in the past. An

observation network using IoT has the potential to minimize

the cost of implementation and operation. This implies that a

large-scale observation system can be applied.

However, installation of a large number of sensor devices

creates a new problem. IoT devices are expected to be used

in urban areas and mountainous regions. Devices can be in-

stalled in large numbers to provide valuable measurements

that have not been possible with conventional observation sys-

tems. Whereas, installing a large number of devices over a

wide area makes it complicated to handle them and difficult to

improve them by relocating them after installation. Especially

in data measurement where the relationship between devices

is meaningful, it is important to design functions and consider

how to utilize them with distributed deployment. Preliminary

verification in this paper indicates to test the operation of the

entire sensor network before installation, to find bottlenecks,

and to consider solutions based on this functional design. By

conducting preliminary verification before installing sensor

devices, we can clarify data from the unique characteristics of

sensor devices and the relationship between data from multi-

ple sensor devices, as well as the transmission characteristics

of data due to terrain and communication infrastructure, and

use these results to design measurements that satisfy the pur-

pose of use. Nevertheless, since a large number of devices

are required, it is difficult to verify the functions in advance

by preparing the necessary number of actual devices, which

increases the cost of development itself and improving such

as relocation. Although various sensor emulators have been

developed to enable such preliminary verification, they are

limited to verification of some functions such as network per-

formance and device performance after using virtual devices.

In this study, we develop a sensor emulator system to sup-

port research, development, and operation of disaster preven-

tion information collection and operation, and to enable pre-

liminary verification assuming a specific installation environ-

ment and operational configuration. A sensor emulator is a

virtualization technology that emulates the computers perfor-

mance involved in sensor devices and their functions. In this

research, we develop an emulator system that can exchange

the virtual device with the actual device and can be federated

with other simulators in order to support the development, up-

date, debugging, and operation of sensor systems as a distri-

bution network for disaster prevention information. By sep-

arating the Node and Sensor, and incorporating a connection

mechanism between the virtual and physical devices for each

of them, we can verify the functions of a large-scale sensor

device. By enabling connection and verification not only with

the virtual device but also with the physical device, it is pos-

sible to assume functions and communication environments

that cannot be demonstrated with the virtual device, and it also

facilitates connection to the cloud, thereby reducing operat-

ing costs and enabling multiple use of resources based on the

assumption of an actual operating environment. Federation

with other simulators can be possible through data exchange

using the IoT linkage infrastructure. Through collaboration,

data that assumes actual operation can be incorporated into

the sensor, and preliminary verification, including operational

forms such as disaster response based on data collection, be-

75International Journal of Informatics Society, VOL.14, NO.2 (2022) 75-84

comes possible.

2 RELATED WORKS

Sensor emulator is a powerful tool that helps researchers

and users to consider the design of sensor networks. An enor-

mous amount of effort has been invested in developing emula-

tors for various technologies related to sensor networks; com-

munication protocols, computer processes, application soft-

ware. As the number of sensors increases with the spread of

IoT, the need to handle a large number of sensors has led to

the development of a number of sensor virtualization tech-

nologies. SenaaS [1] is IoT virtualization framework to sup-

port connected objects sensor event processing and reason-

ing. This framework provide an ontology design by a seman-

tic overlay of underlying IoT cloud and a policy-based ser-

vice access mechanism in terms of semantic rules. Bose et

al. [2] have presented resource abstraction at the sensor level

on Sensor-Cloud infrastructure with virtualization of sensors

for developing applications in various fields. This is a design

for virtual sensor on cloud station. SenseWrap [3] is a middle-

ware architecture providing virtual sensors as representatives

for any type of physical sensors. This midlleware supports

sensor-hosted services and a standardized communication in-

terface that applications can use without having to deal with

sensor-specific details.

Wireless networks, an indispensable technology for sen-

sor networks, are also subject to emulation. TOSSIM [4]

focuses on simulating a wide range of network interactions.

TOSSIM, which features a high fidelity and scalability, can

capture network behavior while scaling to thousands of nodes.

COOJA [5] is a sensor network emulator aimed at cross-level

simulation, allowing simultaneous simulation at many lev-

els of the system; sensor node platforms, operating system

software, radio transceivers, and radio transmission models.

Many other emulators for sensor network verification have

been researched and developed, such as EmStar [6], Avrora [7],

and J-Sim [8]. These sensor emulators have been developed

on the premise of wireless sensor networks. Recently, based

on recent developments in low power wide area networks, in-

cluding the rise of Long Range (LoRa) technology, a LoRa

Coverage Emulator [9] has also been developed. This LoRa

emulator consists of a transmitter and receiver and provides a

reliable network coverage estimation based on the LoRa net-

work design framework.

There are many researches on emulators from Hardware /

Software point of view as well as network. The Freemote Em-

ulator [10] is an emulator for developing software for nodes.

It provides developers with a system architecture in several

layers: Physical, Data Link (MAC), Routing and Applica-

tion. Similarly, ATEMU [11] is a well-known sensor net-

work emulator with a lot of contributions. A unique feature of

ATEMU, which can operate on different application/hardware

platforms, is its ability to simulate a heterogeneous sensor

network. ATEMU emulates the processor, radio interface,

timers, LEDs and other devices. Kasprowicz et al. [12] fo-

cused on CCD sensors as devices and developed a hardware

emulator to speed up and streamline post-assembling tests and

debugging. Furthermore, research on emulators has also fo-

cused on commoditization, with an emphasis on lightweight

and small IoT systems. Brady et al. [13] developed an em-

ulator for an IoT environment using the popular QEMU sys-

tem emulator to build a testbed of inter-connected, emulated

Raspberry Pi devices. The effort to emulate functionality ex-

tends to applications that anticipate not only specific devices,

but also power supply and utilization. Deda et al. [16] have

designed a battery emulator/tester system to reduce develop-

ment time for developing and testing of high-voltage power

supply systems. Abrishambaf et al. [14] have developed a

laboratory emulation model for energy scheduling in an agri-

culture system using real nodes.

The conventional emulators so far can be said to be em-

ulators that specialize in a certain function of the computer.

By using these technologies, hardware, software, and network

can be emulated in an integrated manner. However, with the

evolution of IoT, we have to treat power supply, heteroge-

neous sensor devices, and network devices. We need to pro-

vide an operator-friendly verification environment. The ben-

efits of the IoT have increased the opportunities for sensing

technologies to be more readily available to a wider user. And

this advantage means that sensor networks can be built more

widely and in more places than ever before. Verifying the

required functionality with a few emulators may provide the

required results. Althogh, for actual operators whose work is

on the use of application services, it is very difficult to verify

the functions in isolation. Nonetheless, emulators that require

special technology are considered to have little affinity with

this kind of operators. Also, for operators, when considering

many things that could not be verified with previous emula-

tors, such as geospatial and distributed installation for busi-

ness efficiency, these requirements are not considered with

previous emulators.

3 SENSOR SYSTEMS BY CYREAL
EMULATOR

3.1 Overview
The sensor emulator system developed in this paper en-

ables preliminary verification of IoT devices based on the as-

sumption of their specific installation environment and oper-

ational configuration. Based on the concept of CyReal, this

sensor emulator system is designed to support the develop-

ment, update, debugging, and operation of sensor systems, so

that the virtual machine and the actual machine can be ex-

changed and can be federated with other simulators.

3.2 System Requirement
We aim to develop a verification environment for sensor

systems for actual operators whose work is on the use of ap-

plication services. What is the most user-friendly verification

environment for operators? Our definition is an emulator that

does not require any special skills and produces output that is

directly relevant to thier work. With the development of IoT,

there is a need to master the power supply, different types of

sensor devices, and network devices. What is important for

operators who work with IoT-based applications and services

76 K. Hiroi et al. / Performance Evaluation of a CyReal Sensor System

is that the data from the IoT is stable and their applications

and services can work smoothly.

In case of a disaster, there is a risk of failure of the sen-

sor system, power supply to operate the sensor system and

obtain data, and communication problems. Thus, it is neces-

sary to verify that the operation of the system as a whole is

stable, not only the operation of the IoT sensor system, but

also the power supply and communication status. Further, in

considering how to improve the efficiency of their work, it

is essential for operators to verify this in light of utilization,

such as device locations in geographical environments and

distributed installations that address disaster vulnerabilities.

Our primary focus in this verification environment is to cap-

italize on the IoT sensor devices currently being operated by

operators. This is because using real installed and operating

devices as part of the emulator not only enables preliminary

verification including actual performance, but also aims to op-

erate as a real-time emulator in the future. For these reasons,

we develop a verification environment that is compatible with

real systems and can handle the large scale of IoT devices.

We defined the requirements for a sensor emulator system

to meet these requirements as follows.

• The sensor system emulator should be compatible with

a real system.

• The sensor system emulator should be able to handle a

large number of sensors.

To meet the above requirements, we develop an emulator that

incorporates the concept of CyReal.

3.3 CyReal Approach

CyReal is intended to be an entity that plays an intermedi-

ate role in the concept of digital twin [15]. CyReal enables

flexible replacement and integration of real and virtual en-

tities, such as computer systems, people, and environments.

The configuration based on CyReal strongly promotes the dig-

ital twin of disaster prevention IT systems. Digital twin refers

to the creation of digital objects to be handled in the real world

and computer systems. This is the concept of debugging var-

ious properties on the created twin, in the case of computers,

and is an important concept in the AI world.

Namely, the configuration on the left in Fig. 1 is one in

which all subsystems are configured by simulators, and the

subsystems are connected via a federation platform. On the

other hand, the various simulations and systems that configure

this platform can all be replaced with real things, real systems.

The configuration on the right side of Fig. 1 shows a situation

in which the subsystems are all real and in actual operation,

such as people, natural phenomena, and a real disaster pre-

vention information system. These two are in a digital twin

relationship. Then, we have further extended the digital twin

concept to allow real systems and simulators to be integrat-

eded in a subsystem (The center of Fig. 1). This concept is

beginning to be called CyReal, as an integration of Cyber and

Real.

Figure 1: CyReal Approach for Sensor System

3.4 CyReal Sensor System
The sensor system we are developing is configured in ac-

cordance with the CyReal concept. The sensors are connected

as subsystems in Fig. 1. The sensors can be replaced by real

or virtual ones. We expect that this CyRealization allows the

subsystems to work in various ways and the system to be used

for various purposes. That is, depending on the system we

replace, this configuration can be transformed into a system

with various purposes.

If the system is entirely composed of simulators, it will

work as a disaster management IT simulator. For example,

new analysis technologies and simulators can be connected to

the disaster prevention IT simulator, and all simulators can be

run based on data from past disasters. Since data is difficult

to collect in disaster research, evaluating the performance of

analysis technologies and simulators is a difficult and costly

task. By creating this disaster prevention IT simulator, we

have the prospect of providing an evaluation environment and

facilitating development. Alternatively, if the subsystems are

replaced with real ones (i.e., if the sensor system is replaced

with a real one), it becomes a test bed that can be used for

research and development and performance evaluation of the

sensor system.

This configuration eliminates the limitation of devices, sim-

ulators, and systems that can be verified, which is a require-

ment of this paper. In other words, we can connect not only

sensor devices, but also geospatial and operational simula-

tions to verify the functionality and effectiveness of the sys-

tem in actual operations. In order to develop a system that

can flexibly switch between these three modes, we have em-

barked on a sensor system as one of the proofs of concept for

the digital twin and CyReal that bridges the gap between Real

and Virtual.

3.5 Significance of CyReal Sensor System
This sensor system is not a simple sensor virtualization.

We have designed the system to anticipate the actual data uti-

lization of the sensors. Conventional sensor virtualization has

only simulated the data and functions involved in sensing. On

the other hand, we not only simulate the data, but also develop

the sensor device and its environment as an instance.

77International Journal of Informatics Society, VOL.14, NO.2 (2022) 75-84

Figure 2: Federation with External Simulators

Our expected applications are as follows. Data missing is

an unavoidable problem in large-scale sensor deployments. It

is difficult for a system that only simulates data to represent

the handling of such missing data. Our system design is able

to produce data by incorporating not only the sensor device

itself, but also the external environment, such as the wire-

less environment and the conditions of the location where the

sensor is installed. This makes it possible to represent fluc-

tuations in the data due to the influence of the external envi-

ronment(Fig. 2). In addition, data diversity can be expressed

by integrating with external simulators, such as simulators for

operations and simulators for natural phenomena. This is the

advantage of an emulator that can replace and integrate ac-

tual and virtual nodes and sensors. Such a sensor system has

many uses in verifying operations, but it also has many chal-

lenges. This paper shows proof-of-concept for a sensor sys-

tem according to this concept, investigates its performance

when running virtual sensors on a large scale, and consider

the challenges of implementation.

3.6 Structure of CyReal Sensor System

Based on the CyReal concept, we have developed a sensor

emulator system that can connect and verify not only virtual

devices but also real devices. A sensor emulator is a kind

of virtualization technology that enables preliminaly verifica-

tion of sensor-related systems, such as network performance,

device performance, and computer processing performance.

The sensor emulator is used for functional verification using

virtual sensor devices. Conventional technologies and prior

research to date have only supported virtual sensor devices, so

that it is difficult to conduct verification based on actual op-

erational environments. Recent IoT devices and related tech-

nologies are said to make it possible to distribute sensors over

a wide area and to measure and collect data easily and in-

expensively. However, in reality, it is difficult to design func-

tions assuming distributed deployment and to prepare the nec-

essary number of actual devices for functional verification in

advance, and this has the disadvantage of leaving the decision

to the user. Therefore, we have attempted to develop a CyReal

sensor system to support research and development and op-

erations related to the collection and distribution of disaster

prevention information. In Fig. 3, Sensor refers to a mea-

Figure 3: Structure of CyReal Sensor System

surement device and Node refers to a computer that processes

and communicates measurement data. Here, both sensor and

node are designed to be interchangeable between actual and

virtual machines. Furthermore, the system can be communi-

cated with other simulators. This is based on data from past

disasters, and is intended to be extended to verification based

on actual situations such as power outages, device failures,

and network disconnection.

4 IMPLEMENTATION AND
PERFORMANCE TEST

4.1 Overview

The implementation of this paper is based on two points.

The first point is the use of existing IT technologies. The

first point is that we use existing IT technology, using AWS, a

commercial IoT cloud, to aggregate and process data without

preparing any onpremise servers. This allows us to consoli-

date and process data without any servers. Since there are no

servers, there is no need for maintenance. This is an attempt

to minimize the cost of implementation and operation.

The second point is API unification. By using SigFox and

AWS, whose specifications are open to the public, we can

take advantage of the functions that already exist. Also, as an

open system, others can take advantage of this mechanism.

By using the existing functions, we can simplify the develop-

ment of the system, and finally, the internal structure is quite

simple.

The data from the CyRealized sensor emulator system is

currently only recorded in the slack as a logger. If this data is

put into a DB, it can be displayed in various UIs and used in

applications. In addition, we are planning and implementing

data exchange with other simulations.

4.2 Implementation

Figure 4 shows a prototype configuration of the sensor em-

ulator system we have implemented. From Real Node, we

used Sigfox, an IoT network and cloud to aggregate the mea-

surement data and put it into the AWS cloud. We used an

Arduino Uno as the hardware for Real Node. The Arduino

78 K. Hiroi et al. / Performance Evaluation of a CyReal Sensor System

Figure 4: Prototype Configuration

Uno is equipped with a Physical Sensor that measures tem-

perature, humidity, and air pressure. The Arduino Uno sends

these data to the AWS API gateway via the Sigfox una shield.

Although the hardware used in this paper is an Arduino Uno,

it also has the commutativity to connect data obtained from

other devices.

To show the commutativity, we use a Raspberry pi as an-

other Real Node. The Raspberry pi collect the data from the

Virtual Sensor. In this proof of concept, data is retrieved from

Open Weather Map1, which is a weather information API. We

use Node-Red to retrieve the data and send it to the AWS API

gateway using the flow shown in Fig. 4. We are using AWS

as a Serverless service. The physical/virtual sensor data sent

to the AWS API gateway is sent to the Slack webhook API

via AWS Lambda. Figure 4 shows the data sent to Slack and

recorded.

In addition, we created a combination of a computer pro-

cess and a Virtual Sensor as a Virtual Node. The sensor data

generated by the Virtual Sensor is sent to AWS via the com-

puter process. Using this function, we can of course incorpo-

rate open weather information published on the Internet as

sensor data. In addition, sensor data generated by rainfall

simulation and inundation prediction simulation can be used

as data for the entire system. In addition, sensor data gen-

erated by rainfall simulation and inundation prediction sim-

ulation can be used as data for the entire system. With this

configuration, we are demonstrating the CyReal environment

that can operate simultaneously heterogeneous computers, as

a Real/Virtual Node and a Physical/Virtual Sensor.

4.3 Performance Test and Discussion

We have proposed and implemented a design using SigFox

and AWS for a CyReal sensor system. In 4.3, we conduct

a test to measure the performance of this sensor system. The

performance test focuses on the sensor system connected with

only virtual devices. Considering that preliminary verifica-

tion of these devices can be conducted on this sensor system,

it is necessary to investigate the performance of scalability

to show how large an emulation can be performed using this

sensor system. Therefore, this paper sets up virtual devices on

our sensor systems and tests the following evaluation points

1Open Weather Map: https://openweathermap.org/

Table 1: Performance Test Scenario

Scenario Duration(min) Time interval(s)

A 100 1.0

B 30,60,120,180,240 0.5, 1.0

C 30 60.0

using the number of virtual sensors as a parameter.

• Performance of a large scale installation of virtual sen-

sors

• Limitations of devices, simulators, and systems, and

discussion based on actual operations

4.3.1 Setup

For the performance test, we use a computer process and vir-

tual sensors implemented in Python. As the Ministry of Land,

Infrastructure, Transport and Tourism is working to install

3,000 water level sensor devices in small and medium-sized

rivers, and in addition to the Japan Meteorological Agency,

many companies have installed rainfall observation sensor de-

vices, with each company operating about 100-400 sensor de-

vices. As a result, nearly 4,000 sensor devices are expected to

be in constant use in the field of disaster prevention. Thus we

configure the virtual sensors on a scale of 2n (n = 0 − 16).

Data is transmitted via MQTT.

For performance testing, we experimented and discussed

two evaluation points. In the first test, we calculate CPU us-

age and processing time when emulating the CyReal sensor

system on a PC. This test is to investigate that this sensor

system can handle large scale virtual sensors. Secondly, we

discuss whether the requirements in this paper have been im-

plemented and further for future practical use. Both the emu-

lated and virtualized environments are run on a PC with a 2.4

GHz Intel Core i9 (4 cores / 8 threads), 64 GB RAM, under

MacOS 10.15.7 64-bit.

4.3.2 Performance Test Scenario

In the future, we aim to federate the sensor system with other

simulators in order to obtain useful results for disaster re-

sponse. The purpose of federating with simulators is to verify

the operation of the entire disaster response system, includ-

ing the operation of the IoT sensor system, power supply, and

communication network status. Moreover, the sensor system

is intended to be a verification environment for operators to

consider how to improve the efficiency of their disaster re-

sponse work. For the performance test, we prepared three

scenarios, Scenario A)-C).

Scenario A) Scenario A) assumes 100 minutes of sensing

time duration at 1 minute intervals, and all virtual sensors

transmitted this data every second for emulation. This is a test

to estimate the performance and processing time when feder-

ating an emulator that uses sensor system data with other sim-

ulaters for efficiency improvement of operation and damage

prediction. Simulations for efficiency improvement and pre-

diction can be repeated many times by changing the predicted

79International Journal of Informatics Society, VOL.14, NO.2 (2022) 75-84

values of sensor data and simulator parameters to calculate

results for various situations. Obviously, the faster the pro-

cessing time is, the greater the number of possible trials in a

limited time period. For this reason, it is desirable to have a

fast processing time, although it is necessary to achieve the

utmost performance possible with a commodity computer in

light of its utilization. The purpose of Scenario A) is to in-

vestigate the performance of a large-scale operation using a

commodity computer with ordinary performance.

Scenario B) In Scenario B), we prepare several different

sensing time durations as shown in Table 1, in order to inves-

tigate the performance for each of them. When the sensing

time duration is 30 minutes, we assume a short simulation.

For example, it can be used to analyze the prediction accu-

racy of flood simulations immediately before a disaster, or to

simulate effective emergency measures in the operations de-

partment. With a sensing time duration of 120 minutes, it is

assumed that the simulation will be used for predictions based

on a flood simulation and emergency measures based on the

results of the predictions, or for the simulation of emergency

measures at the disaster site in case of sensor device or net-

work failure. In the case of a relatively long sensing time

duration, such as 300 minutes, we plan to simulate operations

when long-term warning is required due to typhoons or long

rains, and scenarios of sensor device and network failures and

recovery. We will examine the performance of such short and

long time simulations to find out how much processing time

will be available for calcuration. For each sensing time dura-

tion, all virtual sensors transmit their data every 0.5 seconds

or every 1 second. We assume 100 minutes of sensing sce-

nario at 1 minute intervals, and all virtual sensors sent this

data every second for emulation.

Scenario C) Then, in Scenario C, we estimate the perfor-

mance of the sensor system in real time. In Scenarios A and

B, data generated every minute was transmitted at one-second

time interval. Our objective is to verify the system in a prelim-

inary manner by federating with other simulators such as dis-

aster response and damage prediction. Scenario C measures

performance by connecting to real sensor devices and operat-

ing in a integrated environment with virtual sensors. That is,

we verify whether our sensor system is capable of handling

a large number of sensor devices in a integrated environment

with real sensors. This is the scenario in which the CyReal

sensor system shows its full potential. Here, data is transmit-

ted every minute with a time duration of 30 minutes.

4.3.3 Result and Discussion

Scenario A) The Scenario A result obtained for the perfor-

mance of the large scale installation of virtual sensors are

shown in Fig. 5. This figure shows the maximum CPU us-

age for n = 0 − 16 with the number of virtual sensors as 2n

sensor devices. When the number of sensors was set to 20, the

CPU usage was 6.8%, and the transmission time was about 90

seconds. Then, the number of sensors was set to 29, the CPU

usage reached 97.64%. The processing time for transmission

Figure 5: Scenario A) Performance (CPU usage)

in this case was 119 seconds. For n = 10 − 16, the CPU

usage was 98.58-99.95%, almost 100%. The processing time

was about 120 seconds up to the 211 unit, gradually increased

as the number of sensor devices increased. It reached 212 sec-

onds with 212 sensor devices, which is close to the number of

4,000 sensor devices that will be operated for disaster preven-

tion in the near future. 1,071 seconds with 214 devices, and

2,528 seconds with 216 devices.

Considering the use of such a sensor system emulator dur-

ing a disaster situation, two patterns can be considered: pre-

liminaly verification, and scenarios that require real-time data

verification. In the case of preliminaly verification, there is no

time limitation, thus it is possible to use a processing speed of

n = 14 or more. In contrast, in the case of real-time use, con-

sidering the sensor data missing during a disaster and related

actions, it is appropriate to use about n = 12. It is certainly

that this performance vary depending on the computer perfor-

mance. However, in the case of disaster response, where it

is difficult to use high performance computers, this result is

useful to consider usecase scenarios.

Scenario B) Figure 6a-6d show the results of the perfor-

mance test for five different time duration patterns. Figure 6a

shows the processing time for transmitting sensor data with a

time interval of 60 seconds, and Fig. 6b shows the CPU usage.

Given that the sensing time duration is 30 minutes, the data

that is sensing every minute is being transmitted at 60x speed.

Therefore, if data is being transmitted and received success-

fully, all data transmission and receiving would be completed

in about 30 seconds. Up to n = 11, transmission and re-

ceiving were performed in about 30 seconds, whereas as the

number of sensors increased to n = 12 or more, the process-

ing time required for transmission and receiving increased to

66 seconds. Similarly, in the case of 60 minutes of time du-

ration, if processing proceeds smoothly, all data transmission

and reception can be completed in about 60 seconds, while

processing time is about doubled for the number of sensors

above n = 13.

The probable reasons for this are saturation due to failure of

virtual sensor process generation due to insufficient memory

of the computer used for performance testing, CPU shortage,

and overhead of process switching. For the number of sensors

above n = 12 or n = 13, the CPU shortage and the overhead

of process switching caused the increase in processing time.

80 K. Hiroi et al. / Performance Evaluation of a CyReal Sensor System

Also, in the case of n = 16 with 120 minutes time duration,

processing time decreased in spite of the increase in the num-

ber of sensors. It is considered that the process that actually

did the work was less than the designated process because the

transmission process of the virtual sensor was not generated

due to insufficient memory. Then, with the number of sensors

above n = 12 or n = 13, correct sensor transmission and re-

ceiving were not performed. This means that the commodity

computer used for the performance test can be operated with

this number of sensor devices or less.

Figure 6c shows the processing time for transmitting sen-

sor data at a shortened to 120x speed, and Fig. 6d shows the

CPU usage. In other words, in the case of 30 minutes of

time duration, sensor data is transmitted and received every

0.5 seconds, and all data transmission is completed in 15 sec-

onds. In the case of this transmission time interval, data was

transmitted and received successfully when n = 13, while

the processing time increased from n = 14. This is a typical

method of estimating system performance, and depending on

the time interval and time duration, as well as the computer

that processes the virtual sensors and the computer of the sen-

sor system, we can determine the number of sensors that are

capable of transmission. It is essential to determine the num-

ber of sensors according to these verification environments

when operating the sensor system in federation with simula-

tion. In the commodity computer environment used for this

performance test, the number of sensors that can be operated

is about n = 12 or n = 13. Considering the number of sen-

sors that are actually used in Japan, we found that this number

is large enough for preliminary verification.

Scenario C) We measured the processing time of a sensor

system that transmits data in real time, namely every minute,

when the data is transmitted at 1x speed. Up to n = 16, no

saturation occurred, and the data was successfully transmit-

ted and received in 30 minutes, the same value as the time

duration. This means that it is possible to operate a number

of virtual sensor devices with n = 16 in this performance test

environment. Scenario B), with 30 minutes time duration,

was saturated with 2000 processes. Assuming that the over-

head of process switching in particular dominates and leads

to this result. Since the process switching time is 2000 pro-

cesses per second, we can assume that it is about 500 [μs] per

process. Considering the switching time of 500[μs/process]

in a time interval of 60 seconds, the process can be estimated

to saturate in 12×104 processes. Figure 7 shows the result

of increasing the number of devices to n = 17 and transmit-

ting/receiving data. At n = 16, the number of virtual sensor

devices is 65,536, and even if all sensor devices transmit data

simultaneously, the number of processes is less than 12×104

processes. In this case, saturation is not considered to occur.

For n = 17, the number of virtual sensor devices is 131,072,

and the number of processes exceeds 12×104 process. Thus,

the process of the sensor system would saturate, and the pro-

cessing time is expected to be more than 30 minutes.

At n = 16, the processing time was 1,798 seconds, which

is within 30 minutes. Meanwhile, at n = 17, the process-

ing time was 2,043 seconds, which is considered to be satu-

rated. This means that if the sensor system is operated in real

time with a time dutation of 30 minutes and data transmission

every minute, our sensor system supports 65,536 processes.

On the other hand, 131,072 processes could not be handled,

which is consistent with our estimate of 12×104 processes.

This result shows that when the sensor system operates in real

time under these environments, our sensor system can operate

216 virtual sensor devices, considering the actual number of

devices installed, this number is large enough.

Discussion As for limitations of devices, simulators, and

systems, and discussion based on actual operations, we ad-

dress two functional requirements for the sensor system em-

ulator; The emulator should be compatible with a real system

and be able to handle a large number of sensors. Performance

tests have shown that it is possible to emulate a large number

of sensors in a typical usage environment and the expected

number of sensors. The compatibility with real devices al-

ready in operation is achieved by implementing the prototype

in the configuration shown in Fig. 4. This configuration inte-

grated three types of real/virtual systems: Real Node / Phys-

ical Sensor, Real Node / Virtual Sensor, and Computer Pro-

cess / Virtual Sensor. We have achieved the integration re-

quirement, then we plan to expand the types of sensor devices

and communication ports. As a sensor device, we are also

planning to incorporate an Emulator Node/Virtual Sensor. By

emulating the Node, we will be able to test a wider variety of

devices.

The key issues are CyReal-ness and software transparency.

For the CyReal-ness, we are incorporating virtual sensors.Then

we need to consider the degree of virtuality, and CyReal in-

tegration. We will provide more specialized virtualization

and integration of hardware, algorithms, data, and its utiliza-

tion (missing data and heterogeneous sensor data integration),

rather than per node or sensor. We believe that this will en-

able more realistic emulation in large-scale IoT environments.

The other is software transparency. The number of nodes and

sensors that can be connected to this sensor system is planned

to increase. By considering software that can be used in com-

mon regardless of the nodes, devices, and systems connected,

the sensor system emulator will be able to easily support a

large number of sensors. In addition, we will develop other

simulators for specific use cases; for example, functions for

optimize sensor installation and development support through

fedelating a flood simulator, an evacuation simulator, a sensor

system emulator for river level sensors and precipitation sen-

sors, or a multi-agent simulator for disaster response, and a

network emulator and sensor system emulator.

5 Conclusion

It is very difficult to prepare properly preliminaly verifi-

cation for a large-scale IoT environment, in consequence, we

have not benefits from IoT technologies. To address this prob-

lem, this paper proposes a sensor system emulation environ-

ment based on the CyReal concept that integrates real and

virtual systems. We aim to support research, development,

and operation of disaster prevention information collection

81International Journal of Informatics Society, VOL.14, NO.2 (2022) 75-84

(a) Processing time (60 seconds time interval) (b) CPU usage (60 seconds time interval)

(c) Processing time (30 seconds time interval) (d) CPU usage (30 seconds time interval)

Figure 6: Scenario B) Performance

Figure 7: Performance of Sensor System (CPU usage)

and operation, and to enable preliminary verification assum-

ing a specific installation environment and operational con-

figuration. We expect to further develop the sensor system

emulator in this paper and for verification by federating with

other simulators in order to improve the efficiency of disaster

response.

This paper developed a prototype of a sensor system that

integrates real and virtual systems. The result of the exper-

iments on the prototype showed the number of devices that

can be used as a guide for larger scale in a general use en-

vironment, which is sufficient to operate the number of sen-

sors currently used for disaster response. We plan to define

CyReal-ness and improve the system to allow selective use of

Real / Virtual at several layers: hardware, algorithms, and

data. We expect preliminaly verifivcation for IoT systems

from both functional and utilization aspects, including more

realistic verification such as data missing.

Our objective is to develop a sensor emulator that enables

preliminary verification of the behavior of the entire sensor

network before installation to identify bottlenecks and deter-

mine how to resolve them, based on the premise of functional

design. It is intended to be used to design measurements that

satisfy the purpose of use by clarifying data due to the unique

characteristics of sensor devices, relationships between data

from multiple sensor devices, and data transmission charac-

teristics due to terrain and communication infrastructure. In

this paper, we have shown that Physical/Virtual Sensor/Nodes

can be integrated in a CyReal Sensor System, and the perfor-

mance of virtual sensors in a typical computational environ-

ment. In order to use the CyReal Sensor System for func-

tional design in the future, it is necessary to develop an eval-

uation environment with large-scale physical devices, and to

add functions for various conditions such as network condi-

tions, power consumption, and environmental exposure due

to the installation location, and then integrate these functions

with the physical and virtual conditions. Even if we con-

sider only the network, the variety of infrastructures avail-

able makes it necessary to consider a complex configuration

to build these functions on the sensor device. Therefore, we

are trying to solve this problem by developing a simulation

layer that enables CyReal of network and power on a sepa-

rate layer from the sensor device, and federating these simu-

lations. Moreover, we plan to develop a verification environ-

ment for distributed installation from the perspective of geo-

graphical characteristics of sensor installation and utilization

82 K. Hiroi et al. / Performance Evaluation of a CyReal Sensor System

through MQTT-based federation with other simulators for ex-

ternal environment.

Acknowledgement

This work was supported by JST, PRESTO Grant Number

JPMJPR2036, Japan.

REFERENCES

[1] A. Sarfraz, M. MR Chowdhury, J. Noll, “Senaas: An

Event-driven Sensor Virtualization Approach for Inter-

net of Things Cloud”, In 2010 IEEE International Con-

ference on Networked Embedded Systems for Enter-

prise Applications, pp. 1–6 (2010).

[2] S. Bose, A. Gupta, S. Adhikary, N. Mukherjee, “To-

wards a Sensor-cloud Infrastructure with Sensor Virtu-

alization”, In the Second Workshop on Mobile Sensing,

Computing and Communication, pp. 25–30 (2015).

[3] P. Evensen, M. Hein, “SenseWrap: A Service Ori-

ented Middleware with Sensor Virtualization and Self-

configuration”, In 2009 IEEE International Conference

on Intelligent Sensors, Sensor Networks and Informa-

tion Processing (ISSNIP), pp. 261–266 (2009).

[4] P. Levis, N. Lee ,M. Welsh, D. Culler, “Tossim: Accu-

rate and Scalable Simulation of Entire Tinyos Applica-

tions, In Computer Communications and Networks”, In-

ternational Conference on Embedded networked sensor

systems, pp. 126–137 (2003).

[5] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, T. Voigt,

“Cross-level Sensor Network Simulation with Cooja”,

In 31st IEEE conference on local computer networks,

pp. 641–648 (2006).

[6] L. Girod, N. Ramanathan, J. Elson, T. Stathopoulos, M.

Lukac, D. Estrin, “Emstar: A Software Environment

for Developing and Deploying Heterogeneous Sensor-

actuator Networks”, In ACM Transactions on Sensor

Networks (TOSN), Vol.3, No.3, pp. 1–34 (2007).

[7] B. Titzer, D. Lee, J. Palsberg, “Avrora: Scalable Sen-

sor Network Simulation with Precise Timing”, In IEEE

Fourth International Conference on Information Pro-

cessing in Sensor Networks(IPSN’05), pp. 477–482

(2005).

[8] A. Sobeih, J.C. Hou, L. Kung, N. Li, H. Zhang, W.

Chen, H. Tyan, H. Lim, “J-Sim: A Simulation and

Emulation Environment for Wireless Sensor Networks”,

IEEE Wireless Communications, Vol.13, No.4, pp. 104–

119 (2006).

[9] B. Al Homssi, k.Dakic, S. Maselli, H. Wolf, S. Kan-

deepan, A. Al-Hourani, “IoT Network Design Using

Open-Source LoRa Coverage Emulator”, IEEE Access,

No.9, pp. 53636–53646 (2021).

[10] T. Maret, R. Kummer, P. Kropf, J. F. Wagen, “Freemote

Emulator: A Lightweight and Visual Java Emulator for

WSN”, In International Conference on Wired/Wireless

Internet Communications, pp. 92–103 (2008).

[11] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. Baras,

“Atemu: a Fine-grained Sensor Network Simulator, In

Sensor and Ad Hoc Communications and Networks”,

pp. 145–152 (2004).

[12] G. Kasprowicz, L. Mankiewicz, K. T. Pozniak, R. S.

Romaniuk, S. Stankiewicz, G. Wrochna, “Hardware

Emulator of the High-resolution CCD Sensor for the

Pi of the Sky Experiment”, In Photonics Applications

in Astronomy, Communications, Industry, and High-

Energy Physics Experiments 2007, Vol.6937, pp. 693–

708 (2007).

[13] S. Brady, A. Hava, P. Perry, J. Murphy, D. Magoni, A.

O. Portillo-Dominguez, “Towards an Emulated IoT Test

Environment for Anomaly Detection using NEMU”, In

2017 Global Internet of Things Summit (GIoTS), pp. 1–

6 (2017).

[14] O. Abrishambaf, P. Faria, Z. Vale, “Laboratory Emula-

tion of Energy Scheduling in an Agriculture System. In

2020 IEEE/PES Transmission and Distribution Confer-

ence and Exposition (T&D)”, pp. 1–5 (2020).

[15] S. Boschert, R. Roland, “Digital Twin̶The Simula-

tion Aspect, Mechatronic futures, Springer”, pp. 59–74

(2016).

[16] S. Deda, A. Eder, V. Mhetre, A. Kuchling, R. Greul,

O. Koenig, “Designing a Battery Emulator/Tester from

Scratch to Prototyping to Automated Testing within a

HIL Digital Twin Environment”, In International Exhi-

bition and Conference for Power Electronics, Intelligent

Motion, Renewable Energy and Energy Management,

pp. 1–8 (2020).

[17] Z. Ye, F. Hu, L. Zhang, Z. Chu, Z. O’Neill, “A Low-

Cost Experimental Testbed for Energy-Saving HVAC

Control Based on Human Behavior Monitoring”, In-

ternational Journal of Cyber-Physical Systems (IJCPS),

Vol.2, No.1, pp. 33–55 (2020).

[18] P. Evensen, M. Hein, Sensor Virtualization with Self-

configuration and Flexible Interactions, In the 3rd ACM

International Workshop on Context-Awareness for Self-

Managing Systems”, pp. 31–38 (2009).

[19] H. Debnath, N. Gehani, X. Ding, R. Curtmola, C.

Borcea, “Sentio: Distributed Sensor Virtualization for

Mobile Apps”, In 2018 IEEE International Conference

on Pervasive Computing and Communications (Per-

Com), pp. 1–9 (2018).

[20] Z. Wang, M. Liu, S. Zhang, M. Qiu, “Sensor Virtualiza-

tion for Underwater Event Detection”, Journal of Sys-

tems Architecture Vol.60, No.8, pp. 619–629 (2014).

(Received: October 30, 2021)
(Accepted: July 19, 2022)

83International Journal of Informatics Society, VOL.14, NO.2 (2022) 75-84

Kei Hiroi received her Master of Media Design

and Ph.D. in Media Design in 2011 and 2014, re-

spectively from Keio University. She has been an

assistant professor in the department of Informa-

tion and Communication Engineering, Graduate

School of Engineering, Nagoya University. She

is currently an associate professor in Disaster Pre-

vention Research Institute, Kyoto University. Her

research interests include disaster simulation, and

crisis computing.

Akihito Kohiga is a Project Researcher of Infor-

mation Sciences at Japan Advanced Institute of

Science and Technology. He received Ph.D (In-

formation Science) in 2020. His research interests

lie in cloud computing, massive distributed sim-

ulation, modeling and architecture, especially in

flood and evacuation fields.

Yoichi Shinoda is currently a professor of Japan

Advanced Institute of Science and Technology. His

research interests include Impact of digital tech-

nologies on human activities, Parallel and Distributed

Systems, Networking Protocols and Systems, and

Information Handlinf Systems.

84 K. Hiroi et al. / Performance Evaluation of a CyReal Sensor System

Regular Paper

Adaptive NDN Content Delivery Mechanism on Mobile Networks

Taichi Iwamoto†and Tetsuya Shigeyasu‡

†Graduate School of Comprehensive Scientific Research, Prefectural University of Hiroshima, Japan
‡Department of Management Information Systems, Prefectural University of Hiroshima, Japan

sigeyasu@pu-hiroshima.ac.jp

Abstract - Recently, named data networking (NDN) has at-

tracted considerable attention from network researchers as a

network architecture based on a content-centric manner. NDN

delivers user requests according to the shortest path recorded

in the forward information base (FIB) of relay content routers

(CRs). Incidentally, the development of portable ICT devices

enables the publishing of content even in the mobile environ-

ment. The current version of NDN, however, does not con-

sider publisher migration. If the location of the content pub-

lisher changes, NDN cannot deliver the Interest/content to the

appropriate destination accurately. In this study, we discuss

how to address the publisher migration problem on NDN and

propose a new adaptive content delivery method and priority

cache holding method. The proposed methods are evaluated

under the scenario that the mobile publisher changes its loca-

tion. The results of the evaluations confirm that our proposal

improves the performance of content delivery even in a mo-

bile environment.

Keywords: NDN, publisher migration, cache management,

adaptive content delivery

1 INTRODUCTION

Recently, many new network architectures based on in-

formation centric data delivery have been proposed [1]-[4].

Named data networking (NDN) is a popular architecture that

has garnered considerable attention from network researchers

as a network architecture based on a content-centric manner.

NDN delivers users’ requests and their corresponding con-

tents according to the shortest path recorded in the forward

information base (FIB) of relay content routers (CRs). Inci-

dentally, the development of portable ICT devices enables the

publishing of content even in the mobile environment.

The current version of NDN, however, does not consider

publisher migration. For example, NDN does not update re-

lay information in the FIB in accordance with the dynamic

topology change. When the topology change occurs by node

migration, relay information in the FIB can no longer be used.

Wrong FIB information misleads Interest the content requested

by users and increases network traffic needlessly. Therefore,

a new mechanism for updating FIB information quickly in

response to publisher migration is required.

Based on the situation of a publisher’s migration, contents

generated on the migrating publisher cannot be reached from

the network. Network reachability for those contents will

recover once the migrating publisher completes its location

change and reconnects to the network. Thus, during the pe-

riod from the beginning and end of migration, the users will

not be able to obtain the contents of the migrating publisher

if the CRs do not hold the cache. Hence, a new cache man-

agement method for maintaining the CR cache of a mobile

publisher during its migration is required.

To address this publisher migration problem on NDN, this

study proposes a new adaptive content delivery mechanism

for mobile networks, comprising two parts: pre-forwarding

with update method of old/wrong FIB information, and pref-

erentially cache-keep method for migrating publishers’ con-

tents.

In the first method, the old/incorrect FIB information of re-

lay CRs is canceled by control information on pre-forwarded

contents transmitted from the migrating publisher before its

migration. Subsequently, Interest destined for contents of mi-

grating publishers will not be forwarded to the previous loca-

tion of the publisher. In addition, after the migrating publisher

arrives at a new location, another control information is trans-

mitted to form new FIB information for relay CRs. There-

after, Interest destined for the contents will be forwarded to

an appropriate new location.

In the second method, during the publisher migration, the

cache of the contents generated by the publisher will be pref-

erentially stored on CRs. Therefore, content can be obtained

more easily, even if there is no network access to the pub-

lisher.

The proposed methods will be evaluated considering sce-

narios where the mobile publisher changes its location. The

results of the evaluations confirm that our proposal improves

the performance of content acquisition ratios.

2 PROCEDURE OF NDN

NDN is an architecture that performs both content discov-

ery and content delivery in a content-centric manner. NDN

performs the procedure using two packet types: Interest and

Data, as shown as Fig.1.

The Interest is used for requesting the desired contents. If a

content request has newly arrived at a user, the user transmits

this Interest toward a publisher/CR with original/cache con-

tent of the corresponding content. Meanwhile, Data is used

for returning the content corresponding to Interest. The pub-

lisher/CR returns the content as Data if and only if it has the

contents/cache corresponding to the received Interest. The

Data will be forwarded along the reverse path of the previ-

ously received Interest.

85International Journal of Informatics Society, VOL.14, NO.2 (2022) 85-94

Figure 1: Frame format of Interest and Content on NDN.

Figure 2: Naming structure of NDN.

In NDN, the name of the content is used as an identifier. All

contents will be requested by specifying the names of each

content. As shown in Fig. 2, the contents are named using a

hierarchical structure divided by ”/”.

2.1 Construction of CR on NDN
As shown in Fig. 3, CR performs packet forwarding ac-

cording to the following three tables.

• FIB

FIB consists of information used for forwarding Inter-
est toward a content publisher. When a CR receives a

new Interest, the CR forwards it according to the in-

formation registered in its FIB. In the FIB, each record

consists of two fields: prefix of the contents (i.e., the

name of contents) and an interface number that must be

forwarded the Interest.

• PIT (Pending Interest Table)

PIT maintains a history of received content requests

corresponding to the forwarded Interest. Each PIT record

consists of two fields: the prefix of the forwarded Inter-
est and several interfaces to which the Interest was for-

warded. By referring to a PIT entry, the CR can return

Data to the appropriate direction if the CR receives it

in the future.

• CS (Content Store)

CS is a buffer to store caches of the content temporar-

ily. An entry of CS consists of the prefix and cache

of the content. CR returns the cache of the content in-

stead of the publisher generating the original content if

and only if the CR has the corresponding cache of the

Figure 3: Contents Router in NDN.

publisher

Figure 4: Basic procedure of NDN

requested contents. When the content is returned to a

user from the CR in shorter hops than those required

by the original publisher, the amount of network traffic

and response time can be reduced effectively.

2.2 Basic Procedure of NDN
Figure 4 illustrates the basic procedure of NDN. As shown

in the figure, (1) the user transmits the Interest to the neigh-

boring CR. The CR receiving the Interest checks whether the

corresponding cache to the Interest is stored in its buffer. If

a cache exists, the CR returns it as Data through the inter-

face that the Interest came from; otherwise, the CR registers

the information of the Interest into its PIT; (2) the Interest is

forwarded to the next upstream CR. The next upstream CR is

selected according to the entry of FIB. If there is no cache cor-

responding to the Interest, (3) the Interest is forwarded to the

original publisher, who then returns the contents to the user.

During Data returning, the CR receiving the returning Data
stores the Data to its CS as a cache, and the CR checks if it

86 T. Iwamoto et al. / Adaptive NDN Content Delivery Mechanism on Mobile Networks

Figure 5: Missing access problem to contents during

publisher migration

has an entry corresponding to Data on its PIT. If the entry

exists, the CR returns the Data through the interface(s) in ac-

cordance with the entry and removes the entry from the PIT.

By repeating the process, CR can deliver the Data to the user

requesting the contents, even if the Interest excludes the loca-

tion information of the user.

In addition, when other user(s) request the same content,

(7)(8), the CR responds by returning the cache of content

stored in CS, with a shorter delay compared with traditional

host-centric network. Moreover, if the CRs estimate the pop-

ularities and keep caches of the higher popular content, the

cache hit ratio at the the CR can be effectively improved, and

the amount of network traffic can be effectively reduced in

NDN.

3 PROBLEMS ON CONVENTIONAL NDN

This section describes the three problems induced by pub-

lisher migration on conventional NDN.

3.1 Missing Access Problem to Contents
during Publisher Migration

Once the mobile publisher starts its migration to a new lo-

cation, users requesting the contents may lose access to the

original content generated by the publisher. Figure 5 illus-

trates this problem. As shown, after the beginning of the mi-

gration of Host 1, Interests destined for Host 1 cannot reach

the desired contents if the requested contents are not stored in

CSs on intermediate CRs (CR0, CR1) between the user and

Host 1.

3.2 Incorrect Interest Forwarding Problem
Induced by Old FIB Information

On conventional NDN, old FIB information will be kept

holding on CRs, even if a publisher changes its location by its

migration. Thus, the Interests destined to a content generated

by the publisher will be delivered to the old publisher location

according to the old FIB information. As shown in Fig. 6, the

Interest destined to the Host 1 content will be forwarded to

Figure 6: Incorrect Interest forwarding problem induced by

old FIB information

direction (1), despite the right path to the current Host 1’s

new location being (2).

4 RELATED WORKS

This section describes the developments of network archi-

tectures related to the NDN. In order to reduce both of the

network traffics and delays for content delivery, NDN is ex-

pected to be replaced instead of traditional location centric

network, namely, IP network architecture. However, because

current Internet infrastructure is established based on IP, most

applications used worldwide are also guaranteed to work only

over the IP architecture. Hence, for a smooth architecture mi-

gration from TCP/IP to NDN, some methods have been dis-

cussed.

The literature [5] discussed methods for coexisting IP and

NDN architectures. In this literature, authors classify the ex-

isting methods into three types: stack modification, encapsu-

lation and translation. In the literature [6], a method, named,

IP/NDN, for coexisting IP and NDN by introducing transla-

tion mechanism has been. proposed. In the IP/NDN, trans-

lation is implemented to realize coexisting two architectures

in same network. IP datagrams from senders are captured at

TUN device, and translated into NDN Interest or Data. Those

architecture coexistence methods can push architecture mi-

gration, IP to NDN.

Incidentally, NDN belongs to the category of Information

Centric Networking (ICN) which is most focusing on get-

ting/delivering contents efficiently instead of knowing node

location. Currently, the most practical ICN system is CDN

(Content Delivery Network). The literature [7] has proposed

that content migration method to realize efficient content de-

livery under the client node mobilities on vehicular network.

In the literature, authors proposed a strategy to place contents

on network node as edge router cache, based on deep rein-

forcement learning approach. However, in this method, only

client mobilities are considered. In other words, how to deal

with the mobilities of publisher is not discussed.

Previously, a method for a proactive selective neighbor caching

strategy has been proposed [8]. In this strategy, the contents

87International Journal of Informatics Society, VOL.14, NO.2 (2022) 85-94

going to be requested by mobile users will be cached proac-

tively on selected neighbors. Neighbor candidates for proac-

tive caching are selected based on the cache cost delay and

mobility behavior. This strategy is for mobility support on

the CCN, focusing on user mobility and not on publisher mo-

bility.

DONA also handles events related to the user (consumer

mobility) [9]. In DONA, content request/delivery is handled

by introducing a resource handler (RH) mechanism, which

acts as a domain name system (DNS) server. According to

user requests, RH provides the information for rendezvous

for content delivery from publishers. In DONA, the user’s

mobility event is handled by changing RH information.

Although the above mechanism focuses on mobility sup-

port on information-centric network architectures, they are

focused on user (consumer) mobility rather than on publisher

mobility.

4.1 PMC: Publisher Mobility Support
Protocol in CCN

To solve the publisher migration problem on NDN, the pub-

lisher mobility support protocol (PMC) was proposed [10].

In the PMC, to cope with publisher migration, a publisher se-

lects a HomeNode. The publisher registers its new location to

the HomeNode when it migrates to another place. Using the

HomeNode, Interests that arrive at the old publisher’s loca-

tion owing to the old/incorrect FIB entry can be correctly for-

warded to the new publisher’s location. Figure 7 demonstrates

the procedure of Interest forwarding on PMC. As shown, after

a publisher migration, the publisher sends an MR request, in-

cluding its new location information, to the HomeNode. The

HomeNode returns an MR response to the mobile publisher.

At this time, CRs belonging to the forwarding path of the MR

response update their FIB entry according to the received MR

response.

After the transmission of the MR response, CRs can for-

ward the future Interest destined for the contents generated

by the mobile publisher.

In the PMC, publisher mobility can be solved by introduc-

ing location support of the mobile publisher using HomeN-
ode, holding information of both the old and new locations of

the migrating publisher. However, without support from the

HomeNode, PMC cannot address the mobility problem of the

publisher, autonomously, Hence, in the following sections, we

propose a new autonomous solution for the mobility problem

by the publisher.

5 PROPOSAL

We propose a new solution for coping with the problem

induced by publisher migration on conventional NDN. Our

solution consists of two parts: 1) content pre-forwarding and

updating old FIB information, and 2) prioritizing holding for

caches generated by mobile publishers until it recovers net-

work connections.

Publisher migration

CR
(Home Node)

MR request

MR response

Mobile Publisher
(old location)

Mobile Publisher
(new location)

CR

CR

CR
CR

CR

User
(contents requestor)

Figure 7: Procedure of PMC

5.1 Content Pre-forwarding and Updating
Old FIB Information

This section describes the first part of the proposal. The

first proposal, namely content pre-forwarding and updating

FIB information, is further divided into two methods: before

leaving method and after arrival method.

Hence, the followings describe these two methods in detail.

5.1.1 Before Leaving Method: A Method for Contents
Pre-forwarding and Updating FIB Information

As we mentioned previously, during the publisher migration,

all users willing to acquire content lose access to them if the

desired contents are not stored in the CS of CRs belonging to

the Interest forwarding path. Therefore, this section proposes

a method for content pre-forwarding from the mobile pub-

lisher to the neighboring CR before publisher migration and

for updating FIB information according to the header infor-

mation of the pre-forwarding contents. By pre-forwarding,

Interest can be delivered to the CS holding the correspond-

ing contents even if the mobile publisher changes its location.

This phenomenon increases content acquisition ratio. By us-

ing the pre-forwarded contents, this method also deletes the

old (wrong) FIB information on CRs belonging to the short-

est path from users to the previous publisher location. For the

deletion of FIB information, caches of pre-forwarded content

are marked with a M-flag (Migration flag), which indicates

that the publisher that generated the content already left the

network from the old location. Similar to the conventional

approach, the cache of the pre-forwarded content is returned

when the CR receives the corresponding Interest. However,

the CR deletes the FIB information corresponding to the con-

tent name when it receives the content with the M-flag. Fig-

ure 8 demonstrates the procedure of this mechanism.

The detailed procedure of NDN employing both content

pre-forwarding and FIB information updating by M-flag is de-

scribed as follows:

88 T. Iwamoto et al. / Adaptive NDN Content Delivery Mechanism on Mobile Networks

m-flag

Figure 8: Procedure of content pre-forwarding and updating

FIB information by M-flag

1. Procedure on CR when receiving contents with M-flag

(a) Store received content into its CS with M-flag.

(b) Forward received content with M-flag to its down-

stream CRs registered in its PIT.

(c) Delete its FIB information corresponding to the

same content name with the received content.

2. Procedure on CR when receiving contents without M-
flag.

(a) Search FIB information having the same content

name as the newly received content. Register the

new FIB with the information of the received face

if the corresponding FIB information is not recorded

yet.

(b) Search its CS whether content with the same con-

tent name is cached or not. If not, store the re-

ceived content. Otherwise, when the content hav-

ing the same content name is already cached, CR

further checks whether the M-flag is set. If so, it

unsets the M-flag.

(c) Forward the received content without M-flag if

the corresponding entry is recorded into its PIT.

3. Procedure on CR when it receives the Interest (This is

similar to the conventional NDN procedure.)

CR returns corresponding content when it con-

tains the desired cache. Otherwise, it records the

requested information regarding the received In-
terest on its PIT and forwards the Interest to its

upstream CR.

As described in the above pre-forwarding process, a CR

that receives an Interest for a content for which M-flag is set

returns the content only to the CRs listed in the face registered

in its own PIT.

M-flag has the role of deleting FIB information that is no

longer needed in order to prevent unnecessary forwarding of

Interest to the mobile publisher that has moved to new loca-

tion.

Figure 9: Procedure of dissemination of new FIB

information by R-flag

However, as described in the following section, the mobile

publisher will send another R-flag to set the new location in-

formation to all potential users after the move.

Therefore, the pre-forwarding process reduces unnecessary

Interest forwarding traffic by removing FIB information from

users who have sent Interest to the relevant content and CRs

on their Interest forwarding path.

5.1.2 After Arriving Method: A Method for Dissemina-
tion of New FIB Information

This section describes the after arriving method that dissem-

inates new FIB information to CRs. In this method, the mi-

grated publisher disseminates the control packet from the new

location toward users when its migration is finished. The con-

trol packet with R-flag (Rebuild flag) on its packet header is

transmitted from the migrated publisher. By receiving the

control packet with R-flag, the CRs that belong to the shortest

path among the mobile publisher and users renew their FIB

information immediately.

Figure 9 illustrates the procedure for dissemination of new

FIB information using R-flag. In this method, mobile publish-

ers transmit new control packets with R-flag after the comple-

tion of their migration. The control packet is then forwarded

to the user. At this time, the control packet with R-flag is

forwarded in all directions that received at least one Interest,
regardless of its content name.

CRs receiving the content with R-flag set new FIB infor-

mation according to the arrival face of the content with R-
flag. Accordingly, CRs can obtain the desired content with-

out turning on multicast Interest forwarding, which increases

needless traffic. The content with the R-flag is forwarded to

the downstream CRs until end users.

The detailed procedure for introducing the R-flag is de-

scribed as follows:

1. Procedure for CRs receiving content with R-flag

(a) Check the FIB information relating to the same

content name with the content possessing an R-

89International Journal of Informatics Society, VOL.14, NO.2 (2022) 85-94

flag. If it does not exist, the CR adds the FIB in-

formation.

(b) Store the received content into it CS.

(c) Forward the content with R-flag to the downstream

CRs. To reduce the forwarding traffic, the content

is only forwarded to the downstream CRs from all

faces that have received any previous Interest.

2. Procedure for users receiving content with R-flag

A user receiving content with R-flag checks its

FIB information. If there is no corresponding FIB

entry, the user adds the FIB entry according to the

received content with the R-flag.

The proposed method uses R-flag to inform all potential

users of the mobile publisher’s new location. The CR that

receives the R-flag forwards the R-flag to downstream CRs

from all faces that have received any previous Interest.

In other words, the R-flag to update FIB information is for-

warded to all CRs that have users under them. Therefore, as

the number of mobile publishers in the network increases, the

network load due to R-flag forwarding also increases.

5.2 Priority Cache Holding for Mobile
Publisher Contents

In the previous section, we proposed a method that employs

both pre-forwarding and updating old FIB information. By

implementing this method, owing to cache pre-forwarding,

the cache hit ratio can likely be improved even when the mo-

bile publisher is disconnected from the network.

The pre-forwarded caches, however, will be removed from

the CR buffer when the buffer overflows by the new arrival

cache. If the pre-forwarded cache is removed from all CRs’

buffers, although the mobile publisher has not yet completed

its migration, the cache cannot be obtained by any user.

Therefore, to improve cache acquisition performance, it is

desirable to keep holding the pre-forwarded cache preferen-

tially, while the mobile publisher is disconnecting from the

network.

Figure 10 presents an overview of the proposed priority

cache holding method. Before starting its migration, the mo-

bile publisher records the current neighboring CR (in Fig.

reffig:priori, the current neighbor is Node1).

The mobile publisher transfers its original content accord-

ing to the pre-forwarding method, as described in 5.1.1. On

priority cache holding, pre-forwarded caches in CRs are rec-

ognized by referring to their M-flag; such caches are given

preference over those without M-flag. In case of the neces-

sity to remove any cache from CS on CR due to the arrival of

new content, the cache without M-flag will be removed first.

If and only if there is no cache without M-flag in the CS, the

pre-forwarded cache, which is the cache with M-flag, will be

removed from CS (Please note that the cache without M-flag
can be obtained from the original publisher because the pub-

lisher is connected to the network).

After the mobile publisher finishes its migration, the pub-

lisher sends a control packet, named Address packet, to the

D-flag

D-flag

D-flag

Figure 10: Method for priority cache holding for mobile

publisher contents

CR (Node1, in the case of Fig. 10) recorded before the migra-

tion. The CRs receiving the Address forward it to the desig-

nated CR according to the location information without refer-

ring to the PIT, FIB, and CS, indicating that Address will be

transferred by location base.

The destination CR transfers the control packet with D-flag
(Delete flag) to the downstream from all IFs that transferred

the pre-forwarded cache, namely content with M-flag. The

forwarding is repeated until the packet with the D-flag arrives

at the user end. The CRs that receive the packet with D-flag
unset M-flag from all caches corresponding to the received

D-flag. Subsequently, the caches are treated the same as com-

mon caches on NDN.

5.3 Advantage and Disadvantage of Proposal

5.3.1 Effects on Content Acquisition Delay

As described in the section4, PMC method has been proposed

to cope with the publisher migration. However, on the PMC,

all first requests for migration publisher’s content must be for-

warded to the HomeNode for reaching the new publisher lo-

cation. This leads to increase unneeded delay. In addition,

consumers could not get the mobile publisher’s content be-

fore the publisher finish its migration, on the PMC.

On the other hand, our proposal method can deliver content

without reaching old location (HomeNode in case of PMC). In

addition, consumers can get the mobile publisher’s content if

the desired content is pre-forwarded to the neighbor CR of the

mobile publisher, even before the mobile publisher finish its

migration.

5.3.2 Overhead Induced by Proposal

As described in section 5.1.1, the M-flag process in the pro-

posed method is not a method to immediately rewrite old FIB

information on all CRs. Therefore, it is not a method that

significantly increases the network load.

In addition, the effect of pre-forwarding the M-flagged con-

tent depends on the cache capacity of the neighboring CRs

90 T. Iwamoto et al. / Adaptive NDN Content Delivery Mechanism on Mobile Networks

Table 1: Simulation paprameters

Parameter Value

Number of nodes 24

Interest generation rate 100 [request/sec]

Number of contents 1,000

Interest Packet size 1,024 [bytes]

Content Packet size 1,024 [bytes]

Cache capacity infinity

Simulation length 50[sec]

Time to start publisher migration 10 [sec]

Time to finish publisher migration 40 [sec]

before migration of the mobile publisher. When the cache ca-

pacity is small, the effect is not high, but it does not degrade

the performance of content delivery compared to conventional

NDN that does not consider publisher migration.

On the other hand, the proposed method delivers R-flags to

all CRs having users under them when a publisher migration

is completed.

Of course, R-flags are delivered together in a single packet

where routes for users overlap. Therefore, in a network where

many users are connected to a small number of edge CRs,

the load generated by the R-flag forwarding process is not a

significant problem. However, in a network where many users

are equally connected to many edge CRs, the load caused by

R-flag processing becomes significant.

6 PERFORMANCE EVALUATION

To clarify the applicability of the proposed methods, this

section evaluates the methods using computer simulation.

6.1 Effects of Ratio of Pre-forwarding
Contents on Proposed Method

This section evaluates the effects of the ratio of pre-forwarding

contents on the proposed method for content pre-forwarding

and updating old FIB information.

6.1.1 Evaluation Environment

The evaluation environment is described in this section. Ta-

ble. 1 lists the parameters used in the simulation.

In this paper, we assumed to use the NDN architecture in

which mobile publisher publishes SNS messages consisting

text-based information mainly (not the multimedia content).

Hence, the size of the content will be delivered to the con-

sumers are short in the evaluations. For the simplification of

the evaluations, we used same value, 1024 byte as the length

of the both Interest and Content. Although it would be bet-

ter to use more accurate length of the both packets (at least,

Content length is larger than Interest in terms of SNS mes-

sage), length of the both packets does not influence the char-

acteristics of the evaluation results because of we have mainly

focused on content acquisition ratio.

Figure 11 shows the simulation topology. The number of

publishers, CRs, and users are 1, 18, and 5, respectively. The

mobile publisher starts to migrate from the neighbor of CR1

Figure 11: Evaluation topology

to the neighbor of CR16 during the simulation. Content re-

quests arrive at all users at a rate of 100 [request/s].

The mobile publisher published 1,000 original contents.

The content name recorded in Interest is randomly selected

within the range. Pre-forwarding contents are also randomly

selected at the beginning of publisher migration.

In the simulation, the ratio of pre-forwarding content, time

to live (TTL) of Interest, and the capacity of the PIT are varied

to clarify the characteristics of the proposed method. For the

evaluation, the content acquisition ratio is derived as a value

of the number of contents obtained divided by the number of

contents requested.

6.1.2 Relationship between Content Acquisition Ratio and
Ratio of Pre-forwarding Content

This section reports the characteristics of the content acquisi-

tion ratio under varying amounts of forwarding content. Val-

ues of TTL and PIT are 0.1 [s] and infinity, respectively.

Figure 12 presents the simulation results of three methods,

namely pre-forwarding with M-flag control, pre-forwarding

with both M-flag and R-flag control, and conventional as pre-

forward(M), pre-forward(M/R), and Conventional, respectively.

In addition, Conventional implies the performance of orig-

inal NDN. The figure shows that both pre-forwarding with

M-flag and pre-forwarding with M-flag and R-flag increase

the content acquisition ratio according to the amount of pre-

forwarding content. In addition, pre-forwarding with both M-
flag and R-flag always achieves a higher performance than

that with only M-flag. The difference between the two meth-

ods is due to the fast rebuild of the Interest forwarding path

by the R-flag.

6.1.3 Relationship between Content Acquisition Ratio and
Length of TTL

This section reports characteristics of content acquisition ra-

tio under varying lengths of TTL. For this evaluation, all con-

tents are forwarded to the neighbor of the publisher at the

beginning of the publisher?s migration.

Figure 13 presents the evaluation results, wherein the hori-

zontal and vertical axes represent the length of TTL and con-

91International Journal of Informatics Society, VOL.14, NO.2 (2022) 85-94

0.2 0.4 0.6 0.80.8 1.0

Co
nt
en
t a
cq
ui
sit
io
n
ra
tio

Ratio of pre-forwarded contents

preforward(M)
 preforward(M/R)
Conventional

Figure 12: Characteristics of content acquisition ratio -

amount of pre-forwarding content

Co
nt
en
t a
cq
ui
sit
io
n
ra
tio

Length of TTL [sec]

preforward(M)
 preforward(M/R)
Conventional

Figure 13: Characteristics of content acquisition ratio -

Length of TTL.

tent acquisition ratio, respectively. The colored lines show the

same mean as the previous figure.

All methods increase the content acquisition ratio with in-

creasing TTL length. In addition, the increase in the content

acquisition ratio becomes small when the TTL exceeds 0.1

[s]. This is because the average round trip time (RTT) for

content acquisition is 0.2 [s]. Furthermore, if the TTL is more

than the RTT, the content acquisition ratio did not increase.

As the figure shows, pre-forward(M/R) always maintains

the highest performance compared to the other two methods.

6.1.4 Relationship between Content Acquisition Rate and
PIT Capacity

This section evaluates the characteristics of content acquisi-

tion rate and PIT capacity. We use 0.1 [s] as the TTL on the

evaluation.

Figure 14 presents the results of the evaluation. As shown,

the content acquisition rate of all methods increases in accor-

dance with the PIT capacity when the PIT capacity is smaller

than 5. However, the increase in the content acquisition rate

preforward(M)
 preforward(M/R)
Conventional

Co
nt
en
t a
cq
ui
sit
io
n
ra
tio

PIT capacity

Figure 14: Characteristics of content acquisition ratio - PIT

capacity.

Table 2: Simulation paprameters

Parameter Value

Number of nodes 24

Interest generation rate 100 [request/sec]

Number of each publisher’s content 100

Interest Packet size 1,024 [bytes]

Content Packet size 1,024 [bytes]

Cache capacity 100 [caches]

Simulation length 100 [sec]

Time to start publisher migration 20 [sec]

Time to finish publisher migration 80 [sec]

decreases when the PIT capacity exceeds 5.

As shown in this figure, pre-forward(M/R) always has an

advantage over the other two methods.

6.2 Effects of Priority Cache Holding for
Mobile Publisher’s Contents

This section evaluates the effects of the second part of the

proposal, namely the priority cache holding for mobile pub-

lisher’s contents.

Simulation parameters used in this section are shown in

Fig. 2. In this evaluations, we assume to use our proposal

at the suburban area. At the mountain district, many points

are outside the communication range due to the geographical

features. Hence, network inaccessibility time by publisher

migration will be longer. As shown in the table, the mobile

publisher starts its migration at 20 [s] after the beginning of

the simulation and finishes its migration at 80 [s].

Interest is generated at each user end every 0.01 [s]. In

each Interest, one content name is selected randomly from

the contents of two publishers regardless of the publisher’s

mobility (mobile or stationary). Before the migration of the

mobile publisher, it pre-forwards its content to the neighbor

CR (CR1 in this case). In addition, pre-forwarded contents

are treated using the method of pre-forwarded cache holding.

Figure 16 present the results of content acquisition ratio

under the varying amounts of pre-forwarding contents. As

92 T. Iwamoto et al. / Adaptive NDN Content Delivery Mechanism on Mobile Networks

Figure 15: Topology for evaluation of the effects of priority

cache holding

Co
nt
en
t a
cq
ui
sit
io
n
ra
tio

Ratio of pre-forwarded contents
0.2 0.4 0.6 0.8 1.0

cache priority holding with preforward(M/R)
 preforward(M/R)

Figure 16: Relationship between content acquisition ratio

and ratio of pre-forwarding content on priority cache holding

method

shown, by adding the method of priority cache holding to the

first part of our proposal (pre-forward(M/R)), higher content

acquisition ratio is achieved, regardless of the ratio of pre-

forwarded contents. By holding the cache of the mobile pub-

lisher’s contents while migrating, users can obtain the mobile

publisher’s content. Moreover, the contents generated at the

stationary publisher can be obtained directly from the pub-

lisher, even without a CR holding the cache of a stationary

publisher. Hence, the priority cache holding of the mobile

publisher has no negative effects in terms of contents acquisi-

tion ratio.

7 CONCLUSION

The development of ICT enables the publishing of content

for delivering many network users, even by mobile devices.

This makes it more flexible and adds more richness to the

content generation activities. Moreover, ensuring content pro-

visioning is gaining importance for such mobile content pub-

lishing activities.

This paper proposed solutions to deal with such issues by

implementing new features on NDN that has received much

attention as future network architecture. We proposed a method

for content pre-forwarding and updating old FIB information

effectively, which avoids degrading the content acquisition ra-

tio. In addition, the priority cache holding of mobile pub-

lishers? contents is effective for further improvement of the

content acquisition ratio. The applicability of the proposed

methods is clarified by computer simulations.

In this study, we evaluated the performance of the proposed

system in a scenario where the network contained one mo-

bile publisher. However, in the real situation, multiple mobile

publishers must be considered. In addition, it is obviously

that our proposed content pre-forwarding method is only use-

ful when the root CR, which means the next CR to the mobile

publisher can store the additional cache during the publisher

migration process. In this paper, in order to clarify the con-

stitutive performance of the proposal, we have evaluated the

methods under the situation that CR holding unlimited cache

buffer. However, in the real situations, all CRs hold a finite

cache buffer. Hence, we will continue to discuss detailed pa-

rameters for implementing our method, particularly for the

priority cache-holding policy.

REFERENCES

[1] G. Tyson, A. Mauthe, S. Kaune, P. Grace, and T.

Plagemann, “Juno: An adaptive delivery-centric mid-

dleware,” Proc. of 2012 IEEE Consumer Communica-

tions and Networking Conference (CCNC), pp. 587-591

(2012).

[2] N. Fotiou, P. Nikander, D. Trossen, and G. C. Poly-

zos, “Developing information networking further: From

PSIRP to PURSUIT,” in Proc. of Broadnets, pp. 1–13

(2010).

[3] B. Ahlgren et al., “Design considerations for a network

of information,” Proc. of CoNEXT, pp. 66 (2008).

[4] V. Jacobson, D. Smetters, J. Thornton, M. Plass,

N. Briggs and R. Braynard, “Networking named con-

tent,” Proc. of the 5th International Conference on

Emerging Networking Experiments and Technologies,

CoNEXT ’09, pp. 1–12 (2009).

[5] F. Fahrianto and N. Kamiyama, “Comparison of Migra-

tion Approaches of ICN/NDN on IP Networks,” Proc. of

2020 Fifth International Conference on Informatics and

Computing (ICIC), pp. 1–7, (2020).

[6] S. Luo, S. Zhong and K. Lei, “IP/NDN: A multi-level

translation and migration mechanism,” Proc. of NOMS

2018 - 2018 IEEE/IFIP Network Operations and Man-

agement Symposium, pp. 1–5 (2018).

[7] S. Malektaji, A. Ebrahimzadeh, H. Elbiaze, R. H. Glitho

and S. Kianpisheh, “Deep Reinforcement Learning-

Based Content Migration for Edge Content Delivery

Networks With Vehicular Nodes,” Trans. on IEEE Net-

work and Service Management, Vol. 18, No. 3, pp.

3415-3431 (2021).

[8] X. Vasilakos, V. A. Siris, G. C. Polyzos, and M. Pomo-

nis, “Proactive selective neighbor caching for enhanc-

93International Journal of Informatics Society, VOL.14, NO.2 (2022) 85-94

ing mobility support in information-centric networks,”

Proc. of the second edition of the ICN workshop on

Information-centric networking (ICN ’12). pp.61–66

(2012).

[9] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,

K. H. Kim, S. Shenker, and I. Stoica, “A data-oriented

(and beyond) network architecture, ” SIGCOMM Com-

put. Commun. Rev., Vol. 37, No. 4, pp. 181–192, (2007).

[10] D. Han, M. Lee, K .Cho, T. Kwon and Y. Choi, “Pub-

lisher mobility support in content centric networks,”

Proc. of The International Conference on Information

Networking 2014 (ICOIN2014), pp. 214-219 (2014).

(Received: October 30, 2021)
(Accepted: September 5, 2022)

Taichi Iwamoto received his Bachelor and Master

degrees from Prefectural University of Hiroshima,

2020 and 2021, respectively. He has worked in the

field of Content Centric Networking architecture.

Tetsuya Shigeyasu received his B.S. and M.S. de-

grees from Yamaguchi University, 2000, and 2002,

and his Ph.D. degree from Osaka University in

2010, respectively. In 2022, he joined Hiroshima

International University as a research associate. In

2011, he moved to Prefectural University of Hi-

roshima. He is currently a professor of the Depart-

ment of Management Information Systems. He is

a dean of Faculty of Management and Information

Systems, and a dean of Faculty of Regional De-

velopment. His current research interests include

computer networks, mobile networking, He is a member of IEEE, ACM, IE-

ICE, and a senior member of IPSJ.

94 T. Iwamoto et al. / Adaptive NDN Content Delivery Mechanism on Mobile Networks

Science and Technology

95International Journal of Informatics Society, VOL.14, NO.2 (2022) 95-104

CS

PIT

CS

PIT

FIB

FIB

CS

CS

CS

CS

PIT

PIT

96 A. Yokotani et al. / A Proposal on New Control Mechanisms Based on ICN for Low Latency IoT Services

End devices

Servers

Network

97International Journal of Informatics Society, VOL.14, NO.2 (2022) 95-104

Cyclic period

PIT

PIT

PIT

98 A. Yokotani et al. / A Proposal on New Control Mechanisms Based on ICN for Low Latency IoT Services

N M

N M N M

N G N

G N N M

N M
G N

G
N

99International Journal of Informatics Society, VOL.14, NO.2 (2022) 95-104

Remote

Local

100 A. Yokotani et al. / A Proposal on New Control Mechanisms Based on ICN for Low Latency IoT Services

101International Journal of Informatics Society, VOL.14, NO.2 (2022) 95-104

102 A. Yokotani et al. / A Proposal on New Control Mechanisms Based on ICN for Low Latency IoT Services

 doctoral
 of Science

and Technology, Shizuoka University from 2020. obtained

103International Journal of Informatics Society, VOL.14, NO.2 (2022) 95-104

(Received: October 30, 2021)
(Accepted: September 5, 2022)

104 A. Yokotani et al. / A Proposal on New Control Mechanisms Based on ICN for Low Latency IoT Services

Industry

Industry

,

	2022IJIS_Vol14_No2_v2
	2022IJIS_Vol14_No2_v1
	P73

	p７４
	2022IJIS_Vol14_No2_v2

