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Abstract - Fog computing, which extends the paradigm of
cloud computing to the edge of networking, has been pro-
posed, and its research has been active. In the field of net-
working, research on Content Centric Networks (CCN) has
been conducted. CCN have been shown to be able to handle
cached content naturally within the network, reducing traffic
and latency. However, in today’s Internet, dynamic content
with dynamic services is indispensable. A system that capa-
ble of handling dynamic services is desired by incorporating
the way of handling computational resources in fog comput-
ing into CCN. In this paper, an autonomous control scheme of
server relocation for fog computing systems is proposed. We
study the optimizing quality of service by allowing services
running on the network to be dynamically relocated. Our ns-
3 simulations show the fairness between users achieved and
the reduction of the average response time on non-uniform
computer resources with three use cases.
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1 INTRODUCTION

The number of IoT devices, which is 27.4 billion as of
2017, is expected to increase to about 40 billion by 2020[1].
For these large volumes of data generated by IoT devices,
processing-intensive architectures such as cloud computing
do not take advantage of the processing power of the edge and
the latency from the point of data generation to the remote
data centers cannot be ignored. Therefore, fog computing,
which extends the paradigm of cloud computing to the edge
of the network, has been proposed and actively studied[2].

In the field of networking, research on CCN (Content Cen-
tric Networks) such as NDN (Named Data Networking) has
been carried out instead of the conventional IP address-based
architecture[3]. It has been shown that CCN can naturally
handle cached content in the network by using location- in-
dependent content as an identifier, which capable of reducing
traffic and latency.

We proposed an autonomous control of server relocation
for fog computing systems[4]. In addition, we improved the
autonomous control of server relocation to transfer services
on the fog network where the processing capacity is hetero-
geneous, so that the service transfer is commensurate with the
required processing capacity[5].

In this paper, to optimize end-user QoS, we control server
transfers in a fog computing environment to achieve both short-

ening of the average response time and fairness between users.
For this purpose, we set up three use cases to examine the
fairness between users in uniform computer resources, the re-
alization of shortening the average response time in hetero-
geneous computer resources, and the realization of fairness
between users and shortening the average response time in
heterogeneous computer resources, respectively.

2 RELATED WORKS
2.1 Fog Computing

In fog computing, the delay time for execution is reduced
by selecting and transporting the points necessary for the ex-
ecution process. For example, in wireless sensor and actuator
networking, simple processing should be performed at inter-
mediate nodes, such as fog nodes, before the data collected
by sensor nodes are transferred to the cloud. The appropri-
ate placement of the processes at the intermediate nodes im-
proves the command response time for actuation, compared
with it is executed at cloud. There is another technique called
code-offloading[6]—[9]. Code-offloading is the optimal use of
resource-constrained mobile devices. This technology aims
to improve the energy efficiency and execution speed of ap-
plications. In a mobile application, a part of the application
code will be offloaded to the node on fog that has more com-
putational resources to execute the code, rather than running
on mobile devices. With the decision, it is possible to save re-
sources such as batteries in mobile devices. In fog computing,
the optimal allocation of computational resources is a focus,
but there has been no discussion on the optimal placement of
content.

Code Bubbling Offload System F. Berg et al.[9] focused
on the fact that only two or relatively simple, restrictive sys-
tem models consisting of three devices have been considered
in previous code-offloading techniques. They argue that n-
tier architectures become interrelated when multiple classes
of various highly distributed resources take advantage of code
offloading. For example, the smartwatch (tier 1) connects to
the smartphone (tier 2) via Bluetooth. Its smartphone con-
nects via Wi-Fi to a car (tier 3) connected to an edge server
(tier 4). In addition, an edge server is connected to a server
in a data center (tier 5) across 4G mobile communications
and fixed networks. Heterogeneous devices in such an n-tier
system differ greatly in terms of energy and computational
resources. In this example, they have tiers 1 to 5, but the
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complexity of the tiers will increase typically from very lim-

ited to virtually unlimited. Therefore, they targeted an n-tier

environment containing highly distributed heterogeneous re-

sources with different performance characteristics and cost re-

lationships code offload system proposed CoBOS (Code Bub-

bling Offload System). This proposal includes a concept called
code bubbling.

Code bubbling[9] moves code dynamically and adaptively
towards more powerful and more distant tiers, enabling an
efficient and scalable code-offloading in n-tier environment.
CoBOS decreases the energy consumption by 77% and the
execution time by 83% for code-offloading in an n-tier envi-
ronment.

This research aims to optimize the execution point in mo-
bile applications by offloading the code components of the ap-
plication to a stronger tier at runtime. Therefore, we thought
that we could optimize the execution point of the services by
considering an architecture that executes the services running
in the cloud closer to the user.

2.2 CCN

V. Jacobson et al.[3] proposed a CCN that does not use the
traditional IP addressing architecture and Two types of CCN
messages, Interest and Data, are used in the CCN communi-
cation. This is done by a protocol that is based on the Mes-
sages can be sent and received through the FIB( Forwarding
Information Base), CS( Content Store), PIT (Pending Inter-
est Table) to send the data back to the requester, three main
data structures are used. Using these data structures, CCN
exchange messages between Interest and Data. The result re-
tains the simplicity and scalability of IP but offers much better
security, delivery efficiency, and disruption tolerance. In this
way, CCN put content closer to the user, which allows static
contents to be disseminated. However, to treat the running
system, we need to care the internal state to continue the pro-
cess, it is not possible to handle in the same way to provide
dynamic content and services.

There is research on cache efficiency in CCN and how to
route Interest packets efficiently[ 10]. These studies have been
discussing the treatment of static content and how efficiently
distributed content can be considered as transparent, and there
is no discussion on how dynamic services can be distributed
and deployed on the network.

2.2.1 Service over Content-Centric Routing

In host-oriented communication, technologies such as repli-
cation of content and services, caching services, load bal-
ancing, and routing of content requests have been enabled
by the introduction of applications (e.g., CDN and P2P), but
the cost of managing and operating the network is high. Two
paradigms, CCN and SCN (Service Centric Network)[11], are
used to solve these problems.

If content and services are treated separately, it is not pos-
sible to show the relationship between content and services.
In practice, services generate new content or perform various
functions on existing content, just as some services perform

various functions on existing content, but despite the deep re-
lationship between content and services, there is a problem of
creating a content-service divide and the gap between CCN
and SCN needs to be bridged. Therefore, S. Shanbhag et
al. proposed Services over Content-Centric Routing (SoC-
CeR)[10]. The SoCCeR has added a new ant colony opti-
mization[12] based service routing control layer on top of the
CCN to manipulate the routing table for Interest messages.
Without affecting the content request and retrieval capabilities
of the CCN, they show that they can add SCN capabilities,
service requests selectively to service instances with lighter
loads and is highly responsive to network and service state
changes. However, there is no discussion of how to deploy
distributed service instances on the network.

2.2.2 PiGeon

A platform for service orchestration is proposed that addresses
the challenges of CCNs in delivering dynamic content and
services. M. Selimi et al. propose a Docker container-based
PiGeon platform that extends CCN to seamlessly deliver, cache,
and deploy at the network edge[13]. PiGeon consists of three
types of components: a service controller that monitors the
network topology and resource consumption of nodes for ser-
vice deployment, a service execution gateway for executing
service instances at the network edge, and a forwarding node
that forwards user requests to nearby caches and other con-
tent. The service provider uploads the service to the service
controller as a prelude, and the service controller uses the de-
cision engine to decide when and where to place the service
in a service algorithm based on the monitoring data.

The PiGeon platform has a service controller as a single
point of failure. If a service controller is isolated from the
network, the service is not relocated. It is necessary to regis-
ter the service execution gateway with the service controller
in advance, and the monitoring information must be sent pe-
riodically from the service execution gateway to the service
controller. In medium-sized networks, such as the 80-node
experiment in their previous work[14] and the 32-node net-
work in their study, the effect is more than the traffic of mon-
itoring information, but in large networks, the traffic of mon-
itoring information is rapidly increasing and the scalability to
the network is low.

2.2.3 Necessity of Fog Computing and CCN Integration

In order to solve the problems we have seen from the research
mentioned so far, it would be useful to consider an architec-
ture that allows us to control the deployment of services run-
ning in the cloud and dynamically redeploy them as needed.
For example, it may be possible to optimize the point of exe-
cution of services by running them closer to the user.

Since the CCN is based on the idea of replacing the cur-
rent TCP / IP with the CCN, there are several discussions on
static content caching schemes. However, in today’s Inter-
net, which is created by real-world TCP / IP, dynamic content
with dynamic services is essential. For example, there is a
web page that authenticates the user and displays informa-
tion appropriate for the user. We wondered if a static content
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caching scheme is not enough to replace the current Internet
with a CCN because of the large amount of these dynamic
contents. In the study of fog computing, there is little dis-
cussion on the issue of how to place data on a fog network.
Therefore, we believe that the problems in the research fields
of fog computing and CCN can be mutually resolved by in-
corporating the way computational resources are handled in
the CCN, as introduced in 2.1, into the CCN.

3 CHALLENGE

We consider optimizing quality of service by allowing ser-
vices running on the network to be dynamically relocated. In
this paper, we focus on response time as seen by the client as
quality of service. We assume that the response time is ex-
pressed as the sum of the network transmission delay and the
processing time at the server. When considering the response
time, we need to optimize the system in two ways: fairness
of the response time among clients and minimization of the
processing time. An example is shown and discussed below.

3.1 Use Case that Require Fairness in Delay
Times

There is a need for autonomous resource allocation that sat-
isfies the fairness of delay times for participants. For exam-
ple, in an Internet conferencing system, media quality for all
participants may not be maintained if the server is in a sin-
gle location for clients distributed in different locations on
the network with different latency. Therefore, there is a need
for autonomous resource allocation that satisfies the equity of
delay time for participants.

3.2 Use Case that Require Minimize
Processing Time

We assume that the system is available with a dedicated

purpose-specific unit, such as TPU (Tensor Processing Unit)[15],

to enable machine learning at the edge. Installing a purpose-
specific unit for every node may be cost-prohibitive. There-
fore, in order to utilize the sparsely placed purpose-specific
unit, it is necessary to discover the node with the unit from
the topology and to transfer the execution point to the node.

3.3 Assumptions and Requirements for
Autonomous Control of Server Relocation
System

We need a system that aims at fairness in average response
time and shortening of service execution time among users
simultaneously. We define the service response time which is
the sum of the network latency between the client and server
and the processing time of the service.

In addition, the system should reduce the average response
time on non-uniform computer resources. For machine learn-
ing applications, where the execution time varies greatly de-
pending on the processing performance, the processing time
of the service becomes a bottleneck due to the processing per-
formance. Therefore, by monitoring the processing perfor-
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mance of each node and transferring services based on the
predicted service response time, services can be transferred
to nodes with appropriate processing capacity.

In this system, we assume that the client has a fixed posi-
tion in the network because it communicates directly with the
sensor and user. On the other hand, since servers providing
services are arbitrarily located in the fog/cloud, we assume
that it is possible to relocate the server by transferring the
state of service execution to obtain the necessary resources to
execute a process.

4 PROPOSAL FOR AUTONOMOUS
CONTROL OF SERVER RELOCATION
SYSTEM

In order to optimize QoS for end users, we propose the au-
tonomous control of server relocation for fog computing to
reduce both the average response time and the fairness be-
tween users.

4.1 The Functions Required by the System

This system collects information about the computing en-
vironment of the surrounding nodes, searches for a candidate
node that can minimize the service response time, and trans-
fers the server to the selected node.

In searching for candidate nodes, it is not realistic to as-
sume global knowledge across different computing environ-
ments such as fog and cloud. As a reasonable scope of search,
we assume a routing topology of CCN interest messages when
the server is regarded as a resource. It collects PCEL (Avail-
able Processing Capacity and Estimated Latency) manage-
ment information for each node on the path where a message
arrives and determines the server transfer based on this infor-
mation.

Compared with the related studies mentioned in Section
2.2.2, the advantages of our system are as follows. From this
system collects information via service communication and
the service execution point makes the relocation decision, the
system has high availability, including the fact that the single
point of failure for each service moves through the fog net-
work and does not affect other services. By this system loads
monitoring information on a node via service communication,
it is not necessary to register the system at a single location
simply by installing it on the node. Also, since the monitor-
ing information is superimposed on the communication of the
service, there is no increase in traffic to monitor the network
status and the network is scalable.

The following sections describe the main components of
the proposal, the estimation of the service processing time,
the collection of PCEL information on the message arrival
route, and the algorithm for selecting candidate nodes.

Service processing time

C which is the processing power of a node and L which is
the amount of processing of the requested service executed
by the node are represented as a two-dimensional vector to
decompose the processing power of the node into CPU C
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Figure 1: System Configuration Example

and the purpose-specific unit 7', respectively. The process-
ing capacity of a fog node is represented by (C¢, Cr), and
the amount of processing required for service execution is de-
fined as (L, Lr). Based on these processing capacity and
processing volume, the service processing time Tes; is de-
fined as follows.

Lo+ L)y (Cr=0)
Test(Co,Cr, Lo, Ly, ) = Cc o
+(Cc,Cr, Lc, L7, ) {max(éiC7 %) (otherwise)

However, the CPU can perform the processing required for
the purpose specific unit. The « that express ratio is set to 5
for use in later evaluation.

Collecting PCEL information on the message arrival path

In order to treat all the nodes on the path from each client
node to the server as candidates for transfer, it is necessary to
collect information on the delays between the links traversed
and the processing capacity of the nodes traversed. These are
called the route PCEL information. In our system, PCEL in-
formation is added to the request message at the node that
passes by the time the request message reaches the server
node, and it is transmitted to the server.

For example, when our system is used as shown in Fig. 1,
the following parameters are added to the request message of
C:. In Fig. 1, S'is the server node, F is the fog node, and C
is the client node.

* Lc, ., which is the communication delay of the link
from C to fog node F when a request message from
client node C'; goes through each fog node

* L, 5, which is communication delay of the link from
server node S to F}

* Cp,, which is the CPU processing power of F}

* T'r, which is the processing power of the purpose-
specific unit of F

This added PCEL information can be acquired by S from
the request message. Similarly, S is able to obtain informa-
tion on the route to and from all clients from the PCEL in-
formation attached to the request messages from C; to Cy,
which are all participating client nodes.

Candidate node selection algorithm

The server selects candidate nodes for transfer from the PCEL
information appended to the request message received from
the client By using the algorithm shown in Algorithm 1. Al-
gorithm 1 calculates the average and standard deviation of the
service response time of the participating clients based on the
information that the server shown in Fig. 1 can obtain from
the request message. The value is the sum of the service re-
sponse time multiplied by 1 — R4 and the standard devia-
tion multiplied by R4, based on R4, which specifies how
much importance is placed on the fairness between clients and
users. Then, we find the node whose evaluation value is at a
minimum.

Algorithm 1 Find Candidate Node

Require: L 4;;:List of L on the Path

Require: L, c,):List of L on the Path between F; to C;;

Require: F'y;;:List of F' on the Path

Require: C'4;;:Clients connected to the service

Require: L:CPU processing capacity during service exe-
cution

Require: L7 :Purpose specific unit throughput during service
execution

Require: node.Cc: CPU processing capacity of the node

Require: node.Cp: Purpose specific unit capacity of the
node

Require: R;4:Ratio of importance to the standard deviation

Require: Sp, ¢, :Standard deviation of service response
time between F; to C'yy;

Require: «:Coefficient that represents the ratio when the
CPU can handle the amount of processing of the target-
specific unit

Ensure: MinNode is candidate node
MinCost + oo
for all node in F'y;; do

for all client in Cy;; do
Latencynode,client — Z Lnode,client * 2
Latencysym < Latencysum + Latencynode,client

end for

Latencysum
Latencygpe < Cay.length
Cayr.length

Latencyyq, <+ m >
Latencynode,Ci)2
ServiceRTT < Test(node.Ceo,node.Cr, Lo, L, o)+
Latencygye
Rrrr 1 — Ryq
COST < ServiceRTT * Rprr + Snode,Cay * Rstd
if MinCost > Cost then
MinCost <+ Cost
MinN ode < node
end if
end for
return MinNode

(Latencyaye—

4.2 Functions of the Node

The movement of the proposed system is shown in Fig. 2.
This system is assumed to operate at the session layer of all
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Application layer Application layer

Session layer Session layer Session layer

Proposed System Proposed System Proposed System

Server Node Relay Node Client Node

Figure 2: Autonomous Control of Server Relocation System

participating fog nodes. It is preferable that the change in the
point of service execution is done transparently to the client
and server. In order to implement the collection of PCEL
information and transparent addition to the request message,
it is convenient to work at the session layer in the seven-
layer model. Since management actions such as service trans-
port are operated by resources below the transport layer, they
must be located in the upper layer where they are visible, and
the session layer is lower than the application layer where
clients and servers are running. By relaying communication
between server nodes and client nodes at the application layer,
the server relocation system at the session layer of server
nodes, relay nodes and client nodes share information about
resources available at each node. Based on the collected in-
formation, it realizes the selection of service execution points
and resource allocation.

The proposed system consists of three types of nodes. The
proposed system consists of multiple connections: a cloud
node that has the contents necessary for service execution
and has high processing power, a middle-class fog node that
has medium processing power and can communicate with end
devices with relatively low latency, and a client node that
is an end device such as a smartphone that participates in
the server. Based on the client-server communication model,
cloud nodes and fog nodes play the role of servers, and leaf
nodes play the role of clients. The server monitors the com-
munication status of participating clients and decides whether
it should autonomously play the role of the server or delegate
the role of the server to other fog nodes based on the com-
munication status. The delegated fog node takes over the role
of the server. In this way, we try to optimize the server re-
location of the server’s role. This is an attempt to reduce the
service response time.

There is each fog node has an in-network resource moni-
toring function, a candidate selection function and a service
transfer function. In this section, each function is explained.
The autonomous control of server relocation system at each
node operates at the session layer to superimpose manage-
ment information on the communication messages between
the server and the client to realize the resource monitoring
function in the network. At the same time, it constantly mon-
itors changes in the resources in the network, and if a change
is observed, it executes the candidate selection function and,
if it is judged to be necessary, it executes the service transfer
function to the selected node to optimize the server relocation.
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4.2.1 Network Resource Monitoring Function

The in-network resource monitoring function monitors the
currently used network resources and collects information to
decide whether or not to transfer the service. Specifically,
this function monitors and records network information, such
as the delay between client nodes participating in the service
and the network information, as well as the CPU and memory
resources of the fog nodes themselves, while the fog nodes
on which this system is installed are deploying the service.
As described in the previous section, the PCEL(available Pro-
cessing Capacity and Estimated Latency) management infor-
mation described below is included in the normal communi-
cation message exchange between the client and server, and
information on relay nodes that exist on the route between the
client and server is collected.

4.2.2 Candidate Selection Function

The candidate selection function is called when there is a
change in the information collected by the in-network resource
monitoring function. This function determines whether the
service should be transferred. In addition, if it is to be trans-
ferred, it will be based on the information collected by the
in-network resource monitoring function. Select the appro-
priate candidate nodes. After the consignee is determined by
this function, the server is consigned by the service transfer
function.

4.2.3 Service Transfer Function

This function transfers services to the nodes selected by the
candidate selection function. The node that is the current
server is the candidate server for the new candidate fog node
specified by the candidate selection function. The information
about the data required for the service is sent with a message
informing the user that the service is being entrusted. The
server candidate fog nodes are now in the process of gather-
ing all the necessary data and are ready to take on the server.
It sends a message informing the user that it can be entrusted
to a fog node that is a server of When the fog node, which is
currently the server, receives it, it sends a message to a client
node that has joined the server It sends a message notifying
the new destination to In this way, the service is transferred.

4.2.4 Overall Flow to Optimize Server Placement

We summarize the optimization process explained so far. The
client sends a request to the server . The server stores infor-
mation associated with the request by means of an in-network
monitoring function. Using the candidate selection function,
we select candidate nodes from the accumulated information.
After a candidate node is selected, it sends a message to the
candidate node that it will transfer the service. A fog node
that receives a message to transport a service confirms that no
other service is established at its own node and starts collect-
ing data for service execution, while at the same time sending
a message to the node from which the service is being trans-
ported to inform it that the service is being prepared. When a



134 K. Kamada et al. / Evaluation of Autonomous Control of Server Relocation for Fog Computing Systems

Figure 3: The network topology used in the experiment

fog node completes its data collection, it starts the service and
sends a message to the source node telling it that it is ready.
The server node that receives the ready message announces
the new server to its current clients. The client receives infor-
mation about the new server and changes the destination of
the request to the new server. A client that joins from the mid-
dle of the process first sends a request to the original server
node, receives information on the current server, and joins the
service based on that information.

S EVALUATION

We defined three use cases to show three aspects: fairness
between users on uniform computer resources, reduction of
average response time on heterogeneous computer resources,
and fairness and reduction of average response time between
users on heterogeneous computer resources.

5.1 Simulation Environment

For the network topology, we used the topology generated
by BRITE[16], which is a topology generator as shown in
Fig. 3. A county of three AS-equivalent nodes was prepared,
with about 20 Fog nodes in each AS, and in each simulation,
one AS was treated as a cloud environment and two AS were
treated as a fog network with clients connected to it. Table 1
shows the parameters used in the simulation. The amount of
content cache space owned by each node is also determined
by the This was done assuming that the system has enough
space to cache all the necessary data.

5.2 Use Case 1: Internet Conference

Use case 1 assumes a multi-point Internet conferencing sys-
tem to show fairness among users with uniform computer re-
sources. In the Internet conferencing system, the server mixes
media data received from all connected terminals and dis-
tributes them as a single stream to all terminals. The goal

Table 1: Simulation Parameters

Parameters Value
Cache Algorithm LRU
Data Rate 10Mbps
Delay 1ms
Simulation time 100s
Server’s Co 100.0
Server’s Cp 100.0
Dedicated Unit’s C | 20.0
Dedicated Unit’s Cr | 50.0
Regular Unit’s C¢ 20.0
Regular Unit’s Cr 0

is to keep media quality fair in situations where geographi-
cally distributed participants connect to the system. Simulate
the behavior of a server moving to the optimal location for
clients distributed in different locations on the network with
different latency times.

Simulation Scenario Multiple meetings were defined and
the participants of each meeting were placed in the same AS,
and the servers of all the meetings were placed together in a
different AS than the AS in which the clients were participat-
ing. The processing capacity for conducting the conference
and the processing capacity of each node were assumed to be
constant. The results were compared with the case in which
no transfer was performed.

5.3 Use Case 2: Machine Learning

In Use Case 2, we assume a service that uses machine
learning on a fog network to demonstrate the realization of
shortening the average response time on heterogeneous com-
putational resources. For efficient processing of machine learn-
ing, it is better to have a dedicated purpose specific unit such
as a TPU (Tensor Processing Unit). However, installing a
purpose-specific unit for every fog node may be cost-prohibitive.
Therefore, the cost problem is solved by using nodes with
dedicated units as part of the fog network. In the fog net-
work, nodes with normal CPU only and nodes with special-
ized units are mixed together, and the processing power is not
uniform in the vicinity of a point. In this situation, we aim to
minimize the service response time by transferring the service
execution point from the processing accelerated by a purpose-
specific unit, such as machine learning, to nodes with appro-
priate processing power. Experiments in this use case show
that a certain percentage of nodes with purpose-specific units
such as TPU are randomly placed on the fog network, and the
average service response time can be reduced as expected in
the entire network.

Simulation Scenario The following simulation scenarios
were prepared to achieve the purpose of the experiment. Mul-
tiple clients connected to the network are available with servers
in the distant cloud and fog nodes with various processing ca-
pabilities. Clients make service requests that be able to take
advantage of the processing power of purpose-specific units
such as the TPU. In this experiment, we show that the service
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response time can be minimized by arranging about % of all
fog nodes. For that purpose, the ratio of nodes equipped with
a dedicated unit in the fog network was changed from 0% to
100% in 20% increments, and an experiment was performed
100 times in which the arrangement was randomly changed.

5.4 Use Case 3: Video Delivery Service

In the third use case, we assumed a video delivery service
to demonstrate the realization of fairness among users and
reduction of average response time on heterogeneous com-
putational resources. In some cases, you may want to cut
out noteworthy parts of the video, overlay the board, or over-
lay chroma-keyless CG. When we want to perform such ad-
vanced video delivery, we need computer resources for video
delivery. In addition, it is required that the communication
delay must be low for the participants to comfortably watch
videos. As in Use Case 2, it is not practical to deploy compu-
tational resources for video delivery to all nodes due to cost
issues. Therefore, optimizing the execution point requires
both processing time and communication delay, which are af-
fected by processing performance. The results are compared
with the case where simple average service response times are
taken into account.

Simulation Scenario The video distributor sends the video
to the server. The client receives the delivery stream pro-
cessed by the server. While transferring to nodes with pro-
cessing power suitable for video processing, the delay in video
delivery to participants is reduced to such a node. When new
participants are added from a different AS than the one that
attracts video distributors and initial participants, the process-
ing power and participants were observed transferring based
on the fairness of the communication delay. New participants
are timed to join the video feed at 50 seconds from the start
of the simulation, such as Simulations were performed.

6 RESULTS AND DISCUSSION

The results and discussion of the experiments conducted
for each use case are described, respectively.

6.1 Use Case 1: Internet Conference

In this use case experiment, we achieved fairness between
users on a uniform computational resource. The experimental
results for Use Case 1 are shown in Fig. 6 and Fig. 7. Figure 6
shows the change in service response time when the proposed
system is not used, and Fig. 7 plots the change in service
response time against time when the proposed system is used.
The users of the proposed system are gradually transferred to
the one with less network latency.

At the timing of the start of the simulation, the two confer-
ence streams are shown in Fig. 4. It is sent from different AS
to a single AS, and the network traffic is aggregated. In the
network after the transfer, the servers are transferred within
each AS, as shown in Fig. 5, and the two conference avoids
the aggregation of meeting traffic.
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o Conference 2 server

D Aggregated Links

Figure 4: Use case 1: Network status before the transfer be-
gins

In Figure 5, the fairness between users depends on which
node on each communication path the server will be trans-
ferred to. It is possible to achieve the fairness required by
each application by adjusting the ;4 used in the algorithm
1 for destination determination. Figure 8 shows the trend of
the mean and standard deviation of the service response time
for a single conference among the results of the selecting can-
didate nodes for transfer, where the value of R4 is set to 0
and only the mean of the service response time is important.
Figure 9 sets the value of R4 as 0.7 and the node selection
with a weighted standard deviation of 70% of the response
time, showed the average service response time for the same
meeting as in Fig. 8. Comparing the two figures, we can con-
firm that the result of Fig. 9, weighted at 70%, is fairer (i.e.
smaller deviation) than the result of Fig. 9, which shows the
fairness of the transfer between users. We are able to confirm
that the fairness of the transfer between users is maintained.
In this way, we achieved fairness among users with uniform
computer resources by performing transfers to shorten the ser-
vice response time and adjusting the parameters to meet the
requirements of the application.

6.2 Use Case 2: Machine Learning

In this use case, we have shown the realization of reduced
average response time on heterogeneous computational re-
sources. Figure 10 shows the average service response time
of 100 simulations with the TPU placement probability vary-
ing from 0% to 100% in 20 percent increments. In the worst
case with the TPU node placement rate set to 0%, transfers
do not occur because the service response time is shorter if
the service continues to be processed at the initial server node
than if it is transferred to the fog node. When the placement
rate of TPU nodes is increased, transfers occur to TPU nodes
and the processing capacity is uneven The service response in
Fig. 10 shows that the optimization of the execution point on
the fog network is correctly done This can be seen by looking
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Figure 5: Use case 1: Network status after transfer
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Figure 6: Use case 1: Changes in service response time if the
proposed system was not used

at the changes in time. We have shown that this reduces the
average response time for non-uniform computer resources.

6.3 Use Case 3: Video Delivery Services

In Use Case 3, we showed how to achieve fairness between
users and reduce the average response time on non-uniform
computational resources. A simulation with a 20% probabil-
ity of deploying a dedicated unit to process the video. Figure
11 shows the mean and standard deviation of the service re-
sponse time after 100 trials. In the period from O to 50 sec-
onds in Fig. 11, when only the clients stuck in one AS are
connected to the video delivery server, we are able to see that
transfer reduces the standard deviation value, i.e., the fairness
among the participating clients, but the mean of the service re-
sponse time can be reduced significantly, and therefore trans-
fer is used. In addition, after 50 seconds of simulation time, a
new client of another AS began to connect to the video deliv-
ery server. Temporarily, the values of the mean and standard
deviation of the service response time are increasing. How-
ever, we found a fog node where both the standard deviation
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Figure 7: Use case 1: Changes in service response time when
using the proposed system
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Figure 8: Mean and standard deviation of service response
time for conference A when R4 is set to 0%

and service response time values can be reduced by about 75
seconds of simulation time, and we are capable of seeing a
gradual change in the transfer.

6.4 Discussion

In this section, we discuss the validity and constraint of the
design of the system in the view point of flexibility to scale
and response to changes in available resources.

For scalability to the size of network, the proposed sys-
tem does not require aggregation of information for the entire
network nodes. The server node executing the service deter-
mines the service transfer based only on the PCEL informa-
tion of each client and the relaying node on their path. In
this design, we limit the discovery of the available resource
in node on the message path. Our evaluation shows the ef-
fectiveness, however the result of the service transfer may be
sub-optimal.

In terms of service scalability, the proposed system im-
proved fairness and response time by controlling the place-
ment of a single server instance. We have not considered the
case to utilize multiple instances to scale.

We discuss the network change issues from the perspective
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Figure 9: Mean and standard deviation of service response
time for conference A when R,  is set to 70%
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of adapting to changes in paths and available resources.

Regarding the change of the path due to the reflection of
the network topology etc., proposed system assumes that the
interest message of the base CCN mechanism follows, and
has no other mechanism. To estimate the available resources,
PCEL information is piggybacked on the interest message and
collected at the server node. From these, it can be said that the
possibility of immediate adaptability to changes in the path of
this system and changes in available resources depends on the
frequency of exchange of interest messages.

If there is high frequency of exchange, it is possible to es-
timate precisely than when there are few. The evaluation sce-
narios discussed in this paper, target applications inherently
assume stable frequency of sending and receiving messages.
In contrast, if the use case only interacts with clients infre-
quently, they may not be able to keep up with changes in paths
and available resources. It may be necessary to increase the
volume of message flow for the resource monitoring purpose.

In summary, the situations in which this system is consid-
ered applicable are follows. This system makes it possible to
relocate servers by utilizing frequent exchanges of messages
between clients and servers in response to changes in the net-
work. While this system is scalable to the size of the network
because it does not require aggregation of information for the
entire network, there is a limitation to the service scalability.

7 CONCLUSION

Fog computing, which extends the cloud computing paradigm
to the edge of the network, has been proposed and is being ac-
tively researched. In the field of networking, there is research
on CCN that use location-independent content as identifiers
instead of the traditional IP address-based architecture. So
far, we have proposed a system that aims at fairness in re-
sponse time and shortening of service execution time between
users, respectively. Therefore, in this study, we proposed the
autonomous control of server relocation for fog computing
systems to optimize QoS for end users, which achieves both
shortening the average response time and fairness between
users. To this end, the system achieves inter-user fairness on
uniform computer resources, reduction of average response
time on non-uniform computer resources, and we tested the
fairness between users and the reduction of the average re-
sponse time on non-uniform computer resources by setting
up three use cases for each.

In the future, we will consider further expansion of the pro-
posed system based on the use cases mentioned in this article,
and work to enhance the usefulness of the proposed system.
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