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- RTK-GNSS is a promising positioning technique
to achieve centimeter-level accuracy. In this technique, a 
stationary base station plays a vital role in correcting the 
positioning results of a movable user receiver; however, the 
base station correction signals are often interrupted, or 
delayed due to single-base line area, hardware biases,
environmental factors, and multipath errors. Therefore, we 
propose three major new components to improve a user 
receiver's positioning accuracy and precision. The first 
component detects the status (i.e., healthy or unhealthy 
state) of the base station through the internet. The second 
component assigns the most favorable base station from 
multiple base stations in a seamless approach. The final 
component detects the multipath signal using a machine-
learning classifier model. After analyzing the experimented 
results, our approach maintained the rover receiver 
positioning accuracy within the centimeter-level even after 
the base station handover. Similarly, in multipath detection, 
around 98% of NLOS and around 95% of the LOS signals 
are correctly discriminated. By combining all three 
components, we achieved high reliability of RTK-GNSS
positioning in different areas by using continuous correction
signals from the base station and considering only the 
visible satellites.

: RTK-GNSS, Seamless handover, Web-based
monitoring, Reliable infrastructure, Multipath detection

1 INTRODUCTION

Global Navigation Satellite System (GNSS) is an active
research area for navigation, mapping, positioning, and 
many other areas that need monitoring and controlling their 
location-based services. In the conventional single-point 
positioning system, the user's position can be instantly 
determined using a pseudorange between the satellite and
the user's receiver. For this, the receivers need a signal from
four or more satellites. In this single-point positioning, the 
positioning accuracy ranges from 10m to 30m, as various 
factors caused errors in the GPS observation [1]. However, 
many applications, including autonomous driving and flying, 
precision agriculture, and weather forecasting, require
centimeter-level accuracy, which is called precise 
positioning. Therefore, we need advanced positioning
techniques to provide highly accurate positioning and 
navigation functionalities in those applications. One of the 
famous differential positioning systems is the Real-Time 

Kinematics-Global Navigation Satellite System (RTK-
GNSS).

A higher resolution distance information called a phase 
pseudorange is used instead of the code pseudorange. As 
shown in Fig. 1, the precise position, also called fixed 
position, of a rover receiver, i.e., user receiver, is calculated 
through the received signal from satellites and the correction 
signal from the base or reference station. 

However, rover receiver position accuracy is degraded 
severely because of the interrupted, delayed, or 
discontinuous base station's correction data as well as
communication link. In this differential system, correction 
data from the base station is affected by a number of factors:
such as coordinate errors, environmental factors, the
reflected or diffracted signals, which results in a less 
accurate position (i.e., within a few meters of accuracy), 
called a float solution.

Therefore, challenging environments, including snowy, 
mountain, forest, and urban areas, are crucial for precise 
positioning in RTK-GNSS. Errors that occurred due to these 
factors are extremely difficult to solve through differential 
correction techniques. For instance, the precise positioning 
applications like the drone carrying medicines and 
equipment service, aiming to provide medical care to the 
remote mountain communities and precisely measuring the 
altitude of the mountain, including Mt. Everest, is the 
subject of attention in the Himalayan country, Nepal [2], [3].
Similarly, applications like precision agriculture, mapping,
and survey, weather forecasting are gradually increasing in 
many countries.

Figure 1: Principle of differential positioning
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However, service disruption and false assumptions
caused by different error factors in the base station may lead
a rover receiver to use unreliable correction information 
from unhealthy base stations. As a result, it will mislead the 
rover receiver as well as degrade the reliability and accuracy 
of the base station data.

Furthermore, the base receiver's differential correction
signal is valid for the short-baseline range only, i.e., 
generally considered the area within 10km. Therefore, the 
conventional RTK technique is inefficient and cannot ensure 
the continuity of the GNSS signal for a moving object that
may operate beyond a base operating range. Besides, no 
redundancy of the base station is usually available if the 
active base station experiences any malfunctioning or 
hardware bias errors.

On the other hand, satellite positioning is still challenging
in urban areas due to signal reflections by buildings or 
skyscrapers, so-called multipath error. As a result,
positioning accuracy is severely degraded. 
Therefore, focusing on those errors factor of snowy areas 
and multipath areas, this paper presents a modality of a 
robust RTK-GNSS infrastructure that guarantees continuity 
and reliability for precise positioning.

This paper is divided into seven sections. After the first
introductory section, the second section clearly describes the 
problem statement, where we discuss the necessity of this 
research work. Section 3 gives a brief overview of the past 
researches and the preliminary works. Section 4 is an 
important section, where we discuss the system approach
with theoretical dimensions of the research. Section 5 and 6 
describe the design, methodology, working principle, 
characterization, result, and evaluation of this research.
Finally, the last section of this paper gives a brief conclusion.

2 PROBLEM STATEMENT

The reliability and continuity are major concerns in RTK-
GNSS, even though it is widely used in various applications. 
Notably, while doing RTK-GNSS experiments in dense 
snowfall or high buildings areas, various limitations were
encountered. Therefore, to address the specific problem 
through a new approach, the authors mainly focus on three 
dominant problems that should be addressed for continuous 
and precise positioning.

2.1 Unknown Status of The Base Station

Any problems or errors in the base station affect the 
corrective signal used to calculate the rover receiver's 
precise positioning. For example, in the mountain or snowy 
area with the uneven landscape, hard frost weather, and 
chances of heavy snowfall, landslide, earthquake, and
volcanic eruption caused significant errors. Mainly, when 
the bunch of snow covered the base station's antenna, the 
signal strength was degraded because of the multipath error 
induced by the snow surface [4]. Also, if the coordinate of
the base station changed because of landslides or by other 
factors, the positioning accuracy of the rover receiver would 
degrade due to the inaccurate base station's coordinate. 
Similarly, if the running base station experienced any 
malfunctioning or hardware errors, no redundancy solution
would be available to detect the base site's status from the 
rover end. In addition, when the base station interrupted by
some errors, the recovery time was often several minutes or
even a few hours. Hence, the rover receiver ends up using a 
correction signal from that unstable or unhealthy base 
station. As a result, positioning accuracy is severely 
degraded. 

On the other hand, if there is no correction signal from the 
base station, we need to visit the actual field to confirm a
base station's state; however, this is not a cost-effective, 
reliable, and appropriate solution for real-time applications.
Therefore, ensuring the data continuity and reliability of the 
base station under challenging environments is very 
important.

Figure 2: Multipath signals

Figure 3: Snow effects in time to first fix solution

Figure 4: Snow effects in Carrier to Noise Ratio
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2.2 Limitation of Base-to-Rover Operating
Range

In the conventional RTK-GNSS, the base and the rover 
station need to operate in the same environmental area (i.e., 
generally considered 10km from the base station). Beyond 
this range, distance errors and atmospheric conditions at the 
base and the rover receiver may significantly vary. These 
error factors cannot cancel out through differential 
processing. Therefore, the base station data outage is one of 
the major concerns, particularly for the moving object. In
the past few years, many researchers have proposed a multi-
network base station adjustment process for the wide area
[5]; however, those methods are challenging to implement in 
the actual field and for a smooth handover, i.e., handover to 
another base station without dropped signal. Thus, to
provide a continuous correctional signal in a wide area for a 
moving object, the authors are concerned with this problem.

2.3 Multipath Error on The Rover Receiver

GNSS satellite signals are subject to reflection and 
diffraction, like any other type of electromagnetic wave.
Therefore, in an urban area where the grounds are
surrounded by tall buildings, skyscrapers, or trees, the rover 
receiver often faced multipath error. Notably, the reflected 
or diffracted signal from those objects causes multipath 
errors. In general, the receivers receive both direct and 
reflected (or diffracted) signals. As the multipath signal 
takes a longer path than the direct signal, an error was 
caused in pseudorange measurement, which severely 
degrading the GNSS accuracy to several meters [6].

There are mainly two types of multipath signals: Line of
Sight (LOS) multipath signals and Non-Line of Sight 
(NLOS) multipath signals, as demonstrated in Fig. 2. For
LOS multipath error, various signal correlation techniques 
were proposed to mitigate or minimize the LOS multipath 
signal by many past researchers.

However, there is no reliable technique for the NLOS 
multipath. Also, it is more crucial than LOS multipath
signals because of the reflected signals. As a result, a broad 
range of positioning errors happens. Hence, NLOS 
multipath detection and mitigation techniques are required.

In summary, to increase the overall performance and 
build a robust RTK infrastructure in the mountain and urban 
areas, multi-base stations with seamless handover 
mechanisms and NLOS multipath detection mechanisms are 
essential parameters.

3 BACKGROUND

3.1 Preliminary Research

Our preliminary research proposed a cost-effective and
reliable system that overcomes the conventional RTK-
GNSS infrastructure to enhance positioning solutions [7].

The goal of that research was to evaluate the low-cost 
receiver's capability in the harsh receiving condition (such 
as challenging weather, multipath, obstruction, etc.) and find
the major problems that happen in the base site [8].
Therefore, we conducted our experiment in two different 
weather and geographical regions to demonstrate 
positioning accuracy, reliability, and feasibility of the
system's architecture.

Nonetheless, the major problem encountered while doing
an experiment in the heavy snowfall region.

The snow accumulation problem, the signal strength, and 
time to first fix solution (TFFS) are negatively affected, as 
shown in Fig. 3. Here, TFFS means the time need to get the 
first fix solution from the float solution. Similarly, a
significant difference was found while comparing the value 
of Carrier to Noise Ratio (CNR) between snow and without 
snow state, as shown in Fig. 4. The difference of carrier to 
noise ratio is more than 8dB because of the reflected or a
diffracted signal when the snow height on the antenna is 
around 15cm.

In the second experiment scenario, we have done our 
experiment where GNSS signals are often obstructed by 
buildings leading to reflected and diffracted signals. The 
observation shows the tendency of a drop in SNR when the 
receiver is in the multipath environment. SNR
measurements are smoother when the receiver is in an
obstruction-free environment, as shown in Fig. 5.

We concluded that conventional RTK-GNSS is still 
insufficient to provide continuous, reliable, and precise 
positioning in those areas from these experimental scenarios 
and results. Thus, this research focused on cost-effectively 
building a robust RTK-GNSS infrastructure.Figure 5: Positioning error caused by Snow accumulation

Figure 6: System architecture
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3.2 Related Research

Several previous studies enhance the reliability and
accuracy of the RTK-GNSS technique using different 
methods. In RTK positioning, the rover receiver needs to 
work within a base operating range, which is a major 
constraint for a moving object that works beyond the 
operating range. Therefore, many networking techniques 
that use multiple base stations were practiced in recent years. 
Some of the networking techniques are Master-Auxiliary 
(MAC), Virtual Reference Station (VRS), Pseudo-Reference 
Station (PRS), which operate with multiple base stations and 
provide precise positioning [9]. Quan et al. proposed a
Network RTK system using observations from numerous 
continuously operating base stations [10]. Similarly, VRS 
based RTK system was also proposed to provide continuous 
observations in Malaysia [11]. However, these methods are 
challenging to implement, need active communication links, 
demanding control center operation, stability issues, and
expensive operating costs. Also, a continuous handover 
could be the limitation of these Network RTK systems. 
Generally, accuracy drops to float solution from the fixed 
solution in the handover process.

Similarly, to mitigate the NLOS multipath error, it is
crucial to identify the NLOS signal from all received GNSS 
signals. A new research stream dealing with multipath
detection utilizes an additional sensor, 3D mapping, or 
image processing technique. Suzuki et al. proposed a fisheye 
camera and omnidirectional infrared camera techniques to 
detect multipath signals [12]. However, these detection 
techniques are affected by weather, light conditions. The 
method of integrating multi-sensors might be helpful in 
some conditions but could not solve entirely.

Also, a laser scanner to differentiate visible and invisible 
satellites was proposed by Maier et al. [13]. Also, multipath 
detection using 3D maps and Aerial LiDAR data were also 
practiced in few researches [14]. However, these were
complicated to apply for the moving object and challenging
to integrate in real-time. Some researchers worked on
multiple GNSS signal correlators in a software GNSS
receiver; however, it is challenging to design a special 
correlator in the practical field effectively. Therefore, to 
address the station-based errors and the base station 
handover issue, we felt the necessity of reliable, smoothly 
operable, easily applicable, and cost-effective RTK-GNSS

used in different places and scenarios, including Himalayan 
and snowy regions.

Thus, we have primarily done our research [15] to analyze 
the system architecture and introduced the handover scheme 
and multipath detection approach in this research paper.

4 SOLUTION APPROACHES

This section explicitly describes our approaches to 
solving conventional RTK-GNSS, especially in 
mountain/snowy areas and urban areas, as shown in Fig. 6.
Firstly, to know the base station's status from the rover side
(as described in subsection 2.1), we proposed a base station 
monitoring system such that an unhealthy base station could
be detected in the rover end. Secondly, we proposed a 
seamless handover mechanism with a multi-base network to
solve the single base-rover range problem (as described in 
subsection 2.2). Finally, to solve the multipath error on the 
rover receiver (described in subsection 2.3), we proposed 
LOS and NLOS multipath detection mechanisms. The 
detailed explanations are as follows:

4.1 Detecting an Unhealthy Base Station

The first approach is knowing the base station's status 
from the rover end in real-time. When different limiting
factors obstruct the base station, the correctional signal from
that base station consists of many errors. As a result, the 
positioning solution in the rover receiver degraded. 
Therefore, to make a proper decision and constant alert for 
future trouble prevention, we proposed detecting unhealthy 
base stations through the internet. Different kinds of sensors
require in this proposed system. For example, we used
ultrasonic sensors and accelerometer sensors, which are
used for snow height measurement and antenna movement 
detection, respectively.

After collecting data on the server, sensors' data are used 
for two purposes: web-based monitoring and the optimum 
base station selection process. Here, we proposed a web-
based base station monitoring technique to monitor the base 
station's status manually. Sensors' data are visualized on a 
web page and monitored from anywhere, provided that an 
internet connection is available. Similarly, a handover 
process is needed for the kinematic rover receiver beyond a
base station's baseline area.

Figure 7: Snow height measurement scenario

Figure 8: Block diagram of the base station
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In such conditions, the optimum base station (i.e., a
favorable base station among available base stations) is 
needed in the rover receiver to calculate precise positioning. 
Therefore, the base station's sensors data are used with the
base-rover range to detect the base station's state. If the 
particular sensor data is less than the respective threshold
value, the base station is considered unhealthy. For instance, 
the threshold value of snow height is 5cm because the signal 
strength is decreased faster after that height. For a reliable
system, the physical hardware and data processing method 
also have a significant impact. Therefore, we proposed 
compact hardware and reliable data processing.

4.2 Seamless Handover

The second component is a processing component, an 
algorithm specially designed to assign the most favorable 
base station from the list of multiple base stations in a 
seamless manner. To achieve precise positioning, we 
proposed a Rule-Based Base Station Assignment (hereafter, 
RuBBSA) algorithm. In this algorithm, the rule is based on
two major factors: sensors' value and the distance between 
the rover receiver and the corresponding base station
(explicitly explained in section 5.5). The first rule ensures 
that the sensor's measurement is used to monitor the base 
station's physical condition, such as snow accumulation, 
battery power supply outage, and the base station's
coordinate. The second rule ensures the operational range of 
the receiver. 

For instance, when the user moves out from the functional 
baseline area and or conditions when the base station cannot
send differential correction information to the rover receiver, 
this algorithm assigns a new base station. This processing of
choosing an optimum base station from multiple base 
stations is the main target of this algorithm. The next 
available optimum base station is assigned by the proposed 
algorithm seamlessly and dynamically.

We used two RTK engines on the rover side for this 
handover process. In the RTK system, fixed positioning 
solution is obtained by using carrier-phase measurements 
rather than just pseudorange. However, the processing of 
carrier phase measurements is subject to so-called carrier
phase ambiguity, an unknown integer number of times the 
carrier wavelength that needs to be fixed. The ambiguity 
resolution, which is the crucial factor for precise positioning, 
is the process of resolving the unknown cycle ambiguities of 
double-difference carrier phase data as integers. There are 
mainly three steps to determine ambiguities resolution: 
estimating float-valued ambiguities, finding the best integer 
ambiguity set, and validating the best ambiguity set. After 
validating the ambiguity set, a fixed solution is calculated in 
the RTK engine. However, when one base station is changed 
to another base station in the same RTK engine while doing 
handover, validating the ambiguity set is difficult. Only 
float-valued ambiguity occurred for few seconds. As a result, 
the positioning solution is dropped into a float solution. 
Therefore, to make a handover without losing the fixed 
positioning solution, two RTK-engines are needed. Thus, 
the proposed mechanism has two RTK-engines to provide 
continuous and precise positioning.

4.3 Multipath Detection

In order to increase the positioning accuracy of the rover 
receiver in a multipath environment, this research also aims 
to develop a multipath detection technique. Here, multipath 
detection proposed by using different satellite signal features
by differentiating LOS signal and NLOS multipath signal. In
the last decade, many methods have been proposed to detect 
multipath signals. Most of the research focuses on a single-
point conventional positioning system by using different 
algorithms [16], [17].

Only one receiver is used to calculate its own position in 
single-point positioning; therefore, differentiating LOS
signals and NLOS multipath signals are comparatively more 
straightforward. However, we need to consider the rover and 
the base station's observation data in the RTK-GNSS
technique. Therefore, to classify the LOS and NLOS
multipath signals with high accuracy, we proposed a 
machine-learning-based classifier that can differentiate LOS 
signals and NLOS multipath signals using significant 
features values.

Here, the kernel-based support vector machine (SVM)
classifier is used to differentiate multipath signals. It is 
essential to train our data with accurate classification
because, based on the training data, a machine learning 
model learned the features and predicts the output 
accordingly. Based on the characteristic of CNR, which 
says that the signal fluctuates under static conditions; thus, 
the differential CNR value (i.e., the difference between base
CNR and a rover CNR value) has been used to detect NLOS 
signals. These featured values are applied to the training 
process in machine learning.

5 METHODOLOGY 

5.1 Building a Compact Hardware

This research has been conducted by building a base 
station prototype module consisting of a GNSS receiver 
with antenna, micro-controller, and sensors network. In the
rural and the Himalayan region, the continuous power 
supply is one of the significant problems. Therefore, a solar 
energy source- an easily movable, self-sustainable, and 
reliable power source- is used. A micro-controller called
Wio-LTE is used to process GNSS receiver and other 
sensors data, which is a prototyping development board with 
LTE(4G) communication version of Wio Tracker (Wireless 
Input-output) that enables faster IoT GNSS solutions [18].
To monitor each base station's physical condition, we used 
various sensors modules in respective base stations. For
instance, ultrasonic sensors are used to predict the base 
antenna's snow height, as shown in Fig. 7.

During this process, temperature fluctuation affects the
transmitted sound wave from an ultrasonic sensor. Thus, the
temperature sensor is used to correct the temperature-related 
distortion of the measured value. Also, to precisely monitor 
the base station coordinate, we used a 3-axis digital 
accelerometer sensor that detects orientation, gesture, and 
motion in case of natural disasters. Besides that, to check
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battery voltage level and charging level, a battery state 
sensor is used. To make a compact hardware system, all 
sensors are connected to the microcontroller board that 
consists of a cellular modem, as shown in Fig. 8. All data 
are sent to our server system in real-time. The base station
antenna is fixed correctly in the accurate position. 

Similarly, to overcome the multipath errors and fully 
receive all visible satellite signals, the antenna is placed in
an open sky environment such that all satellite signals are 
received as a Line Of Sight (LOS) signal. This compact 
infrastructure consumes deficient power. The base station 
system needs 600mA to 2A current with a 5V power supply 
at regular communication, making the system operation 
longer. 

Moreover, the system consists of a low-cost receiver and 
digital sensors. The total cost is around $1500. In contrast, 
survey-grade receivers cost around $10,000, for instance. 
Therefore, our system can be comparatively cost-effective,
movable, and easily installable in regular and challenging 
weather areas.

5.2 Data Processing and Management System

In our proposed system, collected sensors data from each 
base station is sent to the server system through the internet
connection. Here, we need a proper and continuous 
communication link between a base station and a user 
receiver for the real-time application. Therefore, we should 
select effective communication to provide reliable internet 
connection continuously. Considering those factors, 
including operational cost, maintenance cost, and the 
number of computations needed by the rover and the 
processing center, we found that a cellular modem is one of 
the appropriate methods in the mountain region. We used 
cellular connectivity Soracom, which provides the IoT 
network platforms [19].

JavaScript Object Notation (JSON) format is used to 
transmit these data in web-based applications such that those 
data could be displayed on a web page correctly. The time-
series data shows the base station's past conditions and 
present conditions, such that the changing state is visible
and easily compared to the respective sensors' threshold
value. Thus, detecting unhealthy base stations is done before 
assigning a base station in a rover receiver. The web-based 
graph is plotted on the web browser, which shows that each 
sensor's data is being updated with time-lapse. This process 
of monitoring the actual state of data is adequate, especially 
when the base stations' knowledge is manually needed for 
the assignment process.

5.3 Determining of an Optimum Base Station

In this section, the mechanism of relative positioning is 
briefly introduced along with the sorting mechanism to 
determine the optimum base station.

As shown in Fig. 1, the code pseudorange and phase
pseudorange at base station to satellite measured at 
epoch can be modeled by

(t0)= (t0)+ (t0)+ (t0)+ (t0) (1)

(t0)= (t0)+ (t0)+ (t0)+ (t0)+ (2)

Where are the 
geometric range, orbital errors, satellite-dependent errors, 
receiver-dependents errors, and phase ambiguity, 
respectively [20]. Also is the wavelength, defined as 

, where c is the speed of light and is the frequency of 
satellite carrier. In relative positioning, the code and phase 
correction of the base station for the same satellite at base 
epoch is calculated as

(t0) = (t0 - (t0) (3)

(t0)= (t0)- (t0) (4)

Similarly, in the rover receiver 'r', the code pseudorange ,
and phase pseudorange are calculated for the observation 
epoch because the range and range rate correction (RRC) 
referring to the base epoch t0 are transmitted to the rover 
receiver in real-time. At r, the pseudorange, carrier phase,
and the pseudorange correction (PRC) for the observation 
epoch is modeled  by

(t) = (t) + (t) + (t) + (t) (5)

(t) = (t) + (t) + (t) + (t) + (6)

(t) = (t0) + (t0) (t- t0) (7)

where is defined as latency. After applying the 
predicated pseudorange correction to the measured 
pseudorange of the rover receiver, the satellite-dependent 
bias has canceled out. Also, the base and the rover receiver 
have highly correlated satellite-receiver-specific biases in a 
short baseline area. Neglecting these biases, the corrected
code and the phase pseudorange are calculated in  the rover 
receiver as

(t)corr = (t) + (t) + (8)

(t)corr = (t) + (t) (9)

Where and are the 
difference of phase ambiguities [20]. To determine the 
coordinate of an unknown point concerning a known point. 
Thus, the baseline vector between the base and the rover is 
calculated with corresponding position vectors , and 
formulated as

Xr = Xb + Xbr (10)

Here, the base point coordinates must be accurately 
known to calculate the rover receiver coordinate with high 
precision. In the case of a kinematic rover receiver, it is 
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continuously moving from one place to another. Therefore, 
the positioning information of the rover receiver is updated 
in the control unit regularly. Then, the distance between the 
rover and each base station is calculated and list out all 
neighboring base stations. The least distance is in the 
highest priority order. The distance between the rover and 
all neighbor base stations is calculated as follows

= E · arccos[(sin( ) · sin( )) + cos( ) ·
cos( ) · cos( )] (12)

Where are latitude of a rover, latitude 
of a base, longitude of a rover, and longitude of a base,
respectively. All values in radians. E is the equatorial radius 
of earth and is the distance between the rover and a 
base station.

Furthermore, the availability of the base station is also 
measured through sensors data. For instance, ultrasonic 
sensors, voltage sensors, and 3-axis accelerometer sensors
are used in this research. Besides these sensors, the other 
sensors can be used based on geographical and 
environmental conditions.  The threshold values need to be 
entered at the starting time. In this rule of the assignment 
process, there are the following three cases.

Case I: and ; optimum base station 

Where is the output of a cumulative function of sensors 
values, the threshold value of is needed to set after
various experiments. Also, Di is the least distance between 
the rover, for base station. Similarly,  is the distance 
between the next adjacent base station and rover. In the 
above scenarios, if the base station satisfies case I, this base 
station is considered as an optimum base station and assign
this base station till the subsequent handover is needed.

Case II: Si < STH and Di > Di+1; keep and hold (OK)

If the base station satisfies case II, the base station is 
considered as an acceptable base station or the next potential 
base station. Thus, these base stations are kept and hold for 
the next handover. Handover may require while the rover 
moved far from the earlier base station and approaches the 
adjacent base station. In this case, the earlier base station 
will be dropped off, and the adjacent base station will be 
handover for the operating base station.

Case III: Si < STH ; remove from the list (NG)

If the base station satisfies case III, it is considered 
functionless or not a referenceable base station. Therefore, 
this base station is removed from the list until it satisfies 
cases I or II. This situation may arise due to various reasons 
such as due to the accumulation of snow, increase of 
distance between rover and base station etc.

5.4 Base Station Assignment Process

After successfully determining the optimum base station 
through sensors' value and distance measurement, the 
handover mechanism is processed. We need to make 
configurations for this process such that the correction data 
and base station coordinate are streamed in both RTK 
engines.

In the RTK system, the base station sends corrections to 
the rover via a communication link. This correction signal 
enables the rover receiver to compute its position relative to 
the base with high accuracy. Radio Technical Commission 
for Maritime (RTCM) is the standard format with a binary 
data protocol for communication. The output stream should 
be changed in RTCM format to send standard messages and 
the real base antenna reference point (ARP). Therefore, a 
resident type application, str2str of RTKLIB [21], is used to 
input and output stream path. The input command seems as

./str2str-intcpsvr://localhost:60021#ubx
-out tcpcli://localhost:52081#rtcm3 -s 0

msg 1005,1077,1087,1097, 1127 -p
34.726598357 137.718089538 97.398

The data from the TCP server in the u-blox format (i.e., the 
message format type received by the u-blox receivers and 
fully configurable with UBX protocol configuration
messages) as input stream outputs in the RTCM3 format.

Besides that, the coordinate of the base station (i.e.,
latitude, longitude, and height of the base station) and 
RTCM messages are streamed. These multiple signal 
messages (MSM), as shown in Table 1, are streamed as soon 
as they are configured for the corresponding GNSS.

In this approach, the base station's coordinates are changed 
when the base station is assigned dynamically. As every 
base station consists of a cellular SIM (subscriber
identification module), the unique IMSI (International 
Mobile Subscriber Identity) number is used for the 
identification of each base station. Here, the base station is 
assigned as follows:

Chdist[RTK-engine number][ s 
IMSI number]

where chdist is a command to query the status of a 
package of a base station to the designated RTK engine;
thus, the RTK engine at the rover side receives the 
observation data from that assigned base station, and finally 
assigned to the application layer for precise positioning.

Figure 9: RuBBSA approach
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5.5 Base Station Handover Mechanism

This section explains the principle of the RuBBSA 
algorithm and its approach for seamless handover. There are
server backend and user end, as shown in Fig. 9. The server-
side server network consists of two primary units: the data
management and a control unit. The data management unit 
is designed to manipulate and manage data. Generally, all 
physical sensors data, all base stations coordinate data, and 
real-time differential correction data of corresponding base 
stations are collected and then manipulated. These data are 
processed to the central unit called as control and processing 
unit, where the rule is created to specify the most favorable 
base station from multiple base stations.

The RTK processing engine is placed on the user side, 
where the processing of differential correction signals from 
the base station and positioning observation from the rover 
receiver is carried. In this proposed system, two RTK 
engines named primary and secondary RTK engines are 
used to make a seamless handover operation. The primary 
RTK engine operates as a default RTK engine that runs until
the handover is needed. The assigned base station from a 
control panel is linked with the primary RTK engine to 
provide precise positioning in the application layer. The 
final target of this research is to make a complete 
autonomous handover system; however, in this research, the 
server-based handover mechanism is proposed. 

The flowchart in Fig. 10 explains the mechanism of
determining the optimum base station and seamless 
handover. In this handover mechanism, primary inputs are
sensors data (i.e., ultrasonic sensor, accelerometer sensor, 
and voltage sensor) and coordinates of receivers (i.e., a base
and a rover coordinate). From these inputs data, the base 
station availability has checked using the threshold value. 
Suppose the base station is a favorable base station based on 
the input values. In that case, it is considered the optimum 
base station (also called a favorable base station) and 
assigned that base station in the primary RTK engine. Here, 
we introduced an alarm function to check input values 
continuously. The alarm function is not activated until the 
currently assigned base station is fulfilling the condition to
be optimum.

On the other hand, if the base station is out of the baseline 
area or the sensor's value is less than the threshold value, the 
alarm is created, which processes the handover. Thus, the 
currently assigned base station is replaced by the next 
adjacent base station through a secondary RTK engine. At 
that time, a new base station is assigned to the secondary 
RTK engine because the first base station is still operating in 
the primary RTK engine. In secondary RTK, the positioning 
solution is the float for a few seconds; therefore, removing
the base station at the primary RTK engine is done after 
getting the fixed solution in secondary RTK. The removing 
process is done as

rmdist[RTK-engine number][base station's 
IMSI number]

where rmdist is a command to detach the communication 
link between the designated base station and RTK engine; 
after that, the positioning solution is handled from the 
secondary RTK engine. 

Table 1: RTCM message type and description

Message Type Description
RTCM 1005 Stationary RTK reference station 

ARP
RTCM 1077 GPS MSM7
RTCM 1087 GLONASS MSM7
RTCM 1097 Galileo MSM7
RTCM 1127 BeiDou MSM7
RTCM 1230 GLONASS code-phase biases

Figure 10: Flowchart of RuBBSA approach

Figure 11: Seamless handover
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    Thus, the positioning solution at the rover receiver is 
calculated without any interrupted or dropped signal, as 
shown in Fig. 11. These handover algorithms are written in 
the C programming language.

5.6 Multipath Detection Using Kernel SVM

The satellite signal consists of both direct and multipath 
signals. Therefore, the proper classifier is needed to mitigate
multipath signals. This research proposed a multipath 
detection technique by using the classifier method. We have 
acknowledged that many researchers proposed a multipath
signal detection method with different algorithms. They 
proposed a method such as detecting NLOS using 
observation data and existing 3D building data [14].
However, the process of detection is complicated and 
lengthy. Some researchers also proposed multipath detection 
methods using additional sensors [22]; however, those 
methods are complicated in differential positioning 
techniques in the practical field. Therefore, we proposed a
practically implementable classifier without adding any 
additional sensors or hardware devices. 

In order to classify multipath and direct signals, we 
proposed a method that utilizes a classifier based on a
machine learning algorithm. We used machine learning 
algorithms that can deal with linearly separable and non-
separable data, called the kernel-based support vector 
machine (SVM). The reason behind this classifier is that the 
satellite signal may not always be linear. Thus, the data 
might not classify with a simple linear method to 
discriminate correctly.
Therefore, we need an algorithm that can deal with higher 

dimensions to make inseparable to separable form. So, we 
used kernel SVM in this work.
The kernel SVM is a supervised machine learning 

algorithm mainly used for classification purposes because it
tries to learn similarities between datasets, and those become 
support vectors. Those support vectors are the data points 
that define the position and the margin of the hyperplane. 
The optimum hyperplane is the one that maximizes the 
margin, under the constraint that each data point must lie on 
the right side of the margin. Thus, only the support vectors 
are enough to make a classification. Here, multiple features 
data are used while training the classifier. The details of the 
multipath detection using kernel SVM, and features data are 
as follows.

Figure 12: Rover Site location: (a) Site 1, (b) Site 2, (c) 
Google map

Figure 13: Mask Making; (a) Site 1, (b) Site 2

Figure 14: Graphical view of sensors data on webpage

Figure 15: Experimental scenario for handover process
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5.6.1 Differentiate CNR

We used signal strength as one of the major features data.
In GNSS signal, correlations are essential for receivers to 
synchronize with the incoming signal, generate GNSS 
observables data, and retrieve the navigation message.
Therefore, satellite signal strength is related to the 
magnitude of the correlation peak. In general, the signal 
strength of the direct signals is stronger than that of the 
reflected or diffracted signals. Even in a single GNSS, the 
signal strength called Signal to Noise Ratio (SNR) is widely 
used to exclude the multipath signals. Similarly, the signal 
strength called Carrier to Noise Ratio (CNR) is used in the 
RTK system.  However, only considering the CNR value of 
the rover receiver is not practical because in some cases, 
when the satellites are very close to the mask line, we could 
not differentiate easily through fisheye image only. At that 
moment, the signal strength of the NLOS signal may higher 
than the LOS signal due to random errors. Therefore, we 
used the signal strength difference between the base and the 
rover receiver to correct those signals. Here, differentiate 
CNR is calculated by subtracting rover receiver's CNR with 
base station's CNR.

5.6.2 Elevation Angle

The signal strength is also dependent on the satellite 
elevation angle. The elevation angle of the antenna of a 
ground receiver has a peak value when the satellite is just 
above it and gradually decreasing. After some time, it 
reaches an elevation angle of zero. In the GNSS signal, as 
the elevation angle increases, the received signal strength 
keeps increasing. The signal strength is maximum when the 
satellite is just above the antenna. Previous researchers,
Sheng-Yi Li et al., derived the analytic and mathematical
relation between elevation angle and signal strength in their 
research work [23]. Therefore, we used elevation angle as 
one of the crucial features.

5.6.3 LOS and NLOS State

We also need to know the LOS and NLOS signals to train 
our machine learning model with these features' matrix.
Therefore, a Fisheye camera is used to take a fisheye view
image, which has finally used to determine the satellite LOS
and NLOS state. Here, to find a distinct state between LOS 
and NLOS signals, the following procedures are processed. 

A. GNSS data collection
First of all, we need to collect data from the base and the

rover receiver. Here, A rover receiver is placed in the 
multipath environment to receive both direct and multipath
signals. A base station is placed in an open sky area, such as
the base rover, for direct signals only.

B. Analysis of Fish-eye View Images
After the data collection process, we need to distinguish

the signal state, 0 for NLOS and 1 for LOS signal, of the
rover receiver to use as a training data set. Therefore, the 
fisheye camera is used to capture the sky view from the 

rover receiver. Fisheye image and position of rover station
are shown in Fig. 12. To estimate satellites' orientation (both 
NLOS and LOS satellites), we need to make a mask that 
differentiates an obstacle in a fisheye image. Thus, we need 
to adjust the azimuth of an image with an antenna by using 
an open-source platform called RTKLIB [21]. After that, the 
process of masking is carried out with the corrected 
binarized image, as shown in Fig. 13. The red line is a mask 
line that differentiates the obstacle's clear sky view and 
presence. In our case, obstacles are buildings and trees.

C. Extraction of NLOS features and Labeling
After that, the position of the satellite is estimated. The

satellites found in a clear sky area are considered LOS 
satellites and marked as LOS signals. Similarly, the
satellites which are found other than clear sky area are 
considered NLOS satellites.

Furthermore, the receiver's signal strength is varied by the 
satellite elevation angle due to differences in path loss and 
the antenna gain patterns. Therefore, the elevation angle is 
used as the next feature value while training the classifier.

5.6.4 Outline of Kernel-SVM

In the machine learning process, the data labeling process
is essential to improve accuracy and efficiency. The main 
challenge is to decide which features data are more 
responsible and make the overall performance of a 
predictive model. Our model uses the matrix of features, i.e.,
elevation angle and differentiate CNR value, with dependent 
variable vector, i.e., the NLOS and LOS state by the fisheye 
image as a features data. Here, LOS and NLOS states are 
predefined target attributes used for training the algorithm 
that we will predict satellite states from future satellite data.
We mainly focused on features data, training data ratio, and 
kernel tricks to make the correct label for learning data. First, 
we chose responsible features data, then we classified train 
and test set data in maximum performance ratio, i.e., 80% of 
our data are used for the training process, and the rest are for 
the test process. Finally, we trailed with different algorithms 
such as decision tree, naïve Bayes, K-nearest etc., algorithm;
however, we found the best result in the Gaussian radial 
basis function (RBF) kernel trick technique. SVM uses a 
Gaussian radial basis function (RBF) kernel trick technique 
to transform the input data in this classifier approach.

Figure 16: Result in primary RTK engine
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As a result, the optimal bounds of the target classes are
obtained to classify nonlinear data, which we consider the 
right label for our system. Also, feature scaling is used to 
standardize datasets. The detailed working environments 
and results are described in the next section.

6 RESULTS AND DISCUSSIONS

To test the proposed system's performance, the base station 
was set up and tested in the practical field. A set of task 
actions and obtaining results are described in the following 
sub-section.

6.1 Discussion of Monitoring System and Its
Performance

Base stations are equipped with digital sensor network 
systems that were deployed throughout all base stations. We 
have considered three significant problems in the mountain 
and snowy regions that affect the base station conditions. 
These problems are (1) snow accumulation, (2) natural 
disasters, and (3) power outage problems. Various cost-
effective and easily applicable sensors are used to address 
these problems concretely. To check the monitoring 
system's performance, we have done our experiment in the 
dense snowy placed named Wakkanai, Hokkaido, where 
there was heavy snowfall, dense fog, and cold weather. We
have done that experiment to check the performance of the 
prototype on the snowy area that consists of multiple sensors 
with a cellular RTK receiver. The main goals of this 
experiment are (1) remotely monitor the base stations'
conditions (such as snow level on antenna, antenna's
orientation, power supply status, etc.) in real-time, (2) send 
the satellite signal of the base receiver to the server system 
using a cellular network.

In our system, the microcontroller works with a sketch 
file that creates a data feed from the ultrasonic sensor, 
accelerometer sensor, and voltage sensor. Here, an 
ultrasonic sensor provides snow height levels. Similarly, the 
accelerometer uses for detecting the orientation, gesture, and 
motion of the antenna. Those are the ground data that we
used to monitor the base station. Similarly, the GNSS 
receiver, which is supposed to work as a base station, is 
embedded with a cellular LTE model to send the satellite 

signal to the server using a cellular network. Those sensors'
data are sent to web-based applications and displays on a 
web page correctly.

These data are received as byte-type data. Therefore, byte 
type data is decoded in Harvest's GUI and displayed as a 
column of primarily processed data. These data can be saved 
to the local file or own server system. Finally, those data are
displayed in graphical form were shown in Fig. 14. Also, the 
sensors' data are used to detect the healthy or unhealthy state 
of the base station.

As a result, the optimum base station could be assigned 
to a rover receiver. From this experiment, we checked
hardware and software performance regarding sensors-based 
base stations. We concluded some bits of knowledge such as
sensors accuracy and its real-time performance.

First of all, our monitoring system in the snowy region is 
perfectly worked. We were able to collect data and monitor 
it in real-time through the sensors. Secondly, the wireless 
data collection using the cellular network to server system is 
smoothly done for both cases, sensors and GNSS signal.

6.2 Discussion of Seamless Handover and Its
Performance

In order to make a robust RTK infrastructure, we need to 
address the networking mechanism of the base station. 
Therefore, we proposed a seamless handover mechanism
between two or more base stations in network cellular RTK. 
After the monitoring system, proposed algorithm, its
practical use, and performance evaluation were done with
static and kinematic rover receivers, as shown in Fig. 15.

We tested the handover process, system's functionality, 
and performance concerning the RTK accuracy. To test the 
performance of the proposed algorithm, we have done our 
field test experiment in Hamamatsu, Japan, where the 
surrounding environment contains tall buildings and dense 
traffic. In our experimental kinematic scenario, two static
base stations and one kinematic rover receiver are used. For 
this experiment, the base station assignment process was
computed manually through a server system.

At first, we have connected all base stations in the control 
server system where available base stations are displayed 
with their unique identity. As every base station consists of a 
cellular module as an internet provider, the unique IMSI 
(International Mobile Subscriber Identity) number is used 
for base station identity. Basically, a base station is assigned 
to the primary RTK engine. 

Figure 17: Results in secondary RTK engine

Figure 18: Experimental results of site 1
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This selected base station started a connection to the rover 
receiver and got a fixed solution after a few seconds, as
shown in Fig. 16. After getting a fixed solution in the RTK 
engine, the positioning information is ready to use by 
applications. At the time of handover, the new base station 
is assigned through the server system to the user end. The 
communication link is established to the secondary RTK 
engine because the first base station is still operating in the 
primary end. 

In this case, the secondary RTK engine receives 
correctional information from a base station and provides
the fixed solution, as shown in Fig. 17. After getting a fixed
solution in the secondary RTK engine, the primarily selected 
RTK engine went to ideal mode. The secondary RTK engine
starts its positioning solution and becomes the default RTK 
engine. An open-source program package of RTKLIB 
library with a program package is used as RTK engines.

In our experiment, we used two base stations at a fixed 
location and near each other. However, those two base 
stations might not be consistent; thus, the precise positioning 
solution could be different in the primary RTK engine and 
the secondary one. Therefore, to make a seamless handover 
on that condition, we need to calculate the positioning error 
in both RTK-engine, such that at a point, the positioning 
error is conceding and become minimum; thus, handover 
could be done continuously. For instance, if we plot the
positioning solution of the primary RTK-engine with the 
positioning solution of the secondary RTK-engine, the 
difference in positioning solution can be calculated and vice
versa.

Table 2: Processing components

From this experiment and result analysis, we concluded 
that the seamless handover is possible with two RTK 
engines in a simply smart way. If we combine both the 
monitoring and seamless handover mechanism, this 
development may upgrade the performance of network RTK 
to a new level.

6.3 Multipath Detection and Its Performance

The classification results of the kernel SVM-based
classifier are shown in Fig. 18 and Fig. 19. We have chosen 
those satellites for both experiment areas, which had 
changed their position from being LOS to NLOS or vice 
versa. Observation data from the rover receiver and base 
receiver is converted into an excel file to prepare a dataset
for training. Data and time, satellite number, azimuth, 
elevation angle, differential CNR and the distinction state 
for LOS and NLOS signal are used as the training dataset.
Here, the distinction set is marked 0 for NLOS and 1 for the 
LOS satellite. The processing components are shown in 
Table 2. To split the dataset into the train and test set, we 
used a test set value of 0.20 (i.e., 80% sample data are used 
for the training set, and 20% existing data is set for the test 
set).

After that, feature scaling is applied to normalize the 
features data (i.e., independent variable) with a particular 
range and also helps in speeding up the calculations in an 
algorithm. After that, we applied the kernel SVM model is 
created and applied to the training data set. The
experimental results in Site 1 and Site 2 are described in the 
following section.

A. Experimental results in Site 1

After sufficiently train our kernel SVM model, the test
experiment is done for an hour of data (excluding 
observation data for the same elevation angle). The result of 
the classifier is shown in Fig. 18. To analyze the result, we 
used a graphical view and confusion Metrix. We found that 
98% of NLOS data and 90% of LOS signals are predicted 
correctly.

B. Experimental results in Site 2

Similarly, the experiment is carried out on Site 2. For this
experiment, three hours of data are used to train the model. 
The experimental result is quite improved while using all 
experiment data (i.e., every CNR value is used regardless of 
the same elevation angle) shown in Fig. 19. After analyzing 
the results through the confusion matrix, we found that 99% 
NLOS and 97% LOS signals are predicted correctly. Also, 
multiple experiments were conducted to analyze the 
accuracy of the prediction. On average, 98% NLOS and
95% LOS signals are predicted accurately.

7 CONCLUSION

This research has presented the novel perspective to build 
a reliable RTK infrastructure that is applicable in
snowy/mountain and urban areas. We proposed three new
components into the system to address the issues of those

Name Description
Features

data
Differential CNR, elevation angle, 

azimuth angle, distinct state of
NLOS(0) and LOS(1)

Programming 
language

Python (V. 3.7.7)

Libraries NumPy (v. 1.16.4), Matplotlib (v. 
3.1.0), and Pandas (v. 0.24.2)

Test set value 0.20
kernel Radial basis function (RBF)

Computer 
environment

Windows 10, 16GB RAM, i7-8550

Figure 19: Experimental results of site 2
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areas, especially targeting the reliability and higher 
positioning accuracy for movable objects. 

Firstly, we practically implemented a mechanism of
detecting an unhealthy base station in order to monitor its 
availability. We have practically checked the performance 
of sensors embedded cellular RTK base station in Hokkaido,
Japan. We used different sensors in the base site to monitor 
its status through the internet. Those data are used for web-
based monitoring purposes, such that a base station's state 
(i.e., healthy, or unhealthy) is easily noticeable on the user 
side. Experimental results confirmed that the base station's
availability is regularly ensured in real-time.

Secondly, we proposed an algorithm to assign the 
optimum base station from multiple base stations in order to 
provide continuous and high accurate positioning for a 
portable rover receiver. The actual field experiment was 
done in a network RTK system to explore a seamless 
handover mechanism in Hamamatsu, Japan. The concept of
assigning optimal base station is based on two factors: base-
rover distance and sensors value. For the seamless handover,  
we proposed the usage of two RTK engines on the user side, 
such that the positioning accuracy was maintained at 
centimeter-level before and after handover.

Thirdly, the multipath detection model is proposed as a 
final component of our robust infrastructure. A new method
of distinguishing the LOS and the NLOS multipath signals
was developed to improve RTK-GNSS positioning accuracy
in urban environments. A classifier based on the kernel 
SVM technique is proposed using receiver signal strength 
and its elevation angle. As a result, around 98% of the 
NLOS multipath signals and 95% of the LOS signals were 
correctly classified. From the experimental results, we have 
confirmed that the proposed technique can effectively 
predict future CNR and helps to mitigate multipath signals.

By combining these three components' results, we have 
confirmed that our approaches significantly impact building
a robust RTK-GNSS infrastructure for continuous and 
precise positioning. Also, we have verified that continuous 
correctional signals and precise positioning in challenging 
environments can be achieved from our method for a 
movable object.
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