International Journal of Informatics Society, VOL.13, NO.3 (2021) 107-114

Regular Paper

107

Executable Counterexample for Java Model Checker

Chellet Marwan Bernard Hassan, Shinpei Ogata, and Kozo Okano

Shinshu University, Nagano, Japan
19w2074f@shinshu-u.ac.jp,{okano, ogata} @cs.shinshu-u.ac.jp

Abstract - Testing is a mandatory task in the development
of software. Effectively, ensuring the reliability of software
is a major point of work for a developer. Even after soft-
ware has been tested, it is not uncommon to encounter bugs
that can have consequences on the operation of a system. To
improve reliability, developers have started using verification
methods in addition to testing. The basic method of model
checking verifies whether or not the software or a given frag-
ment of program code satisfies properties that can lead to bugs
if they are violated. Model checking has already proved to
be an effective tool for verifying software, but there are still
some inconveniences in using these techniques. When a soft-
ware model checker finds a violated property, it will signal it
by giving a counterexample as output. This usually involves
tracing the path from the initial state to the state that reveals
the violated property. The counterexamples are usually given
in text format and are not always simple to understand as all
of the steps of the process are given with a sequence of ma-
chine instructions. This paper aims to improve a Java model
checker by translating counterexamples into executable Java
code that is more understandable for a developer.

Keywords: Model checking, counterexample, Java, simu-
lation, verification

1 INTRODUCTION

Software testing is one of the best ways to get good soft-
ware reliability. It is practically impossible to use software
without testing it beforehand but with all testing methods, it
is not rare to miss some cases which can result in bugs during
operation. Even a small bug can have real consequences so
software safety becomes a priority. Full coverage of an appli-
cation is hard to achieve even with advanced testing methods.
Such methods are also limited because they use the system it-
self to find errors which makes it difficult to have an overview
of the entire program.

To fill the gaps of testing methods, developers also use
a verification method called “model checking.” [1][2] This
method does not use the system itself, but rather an abstract
model of it which is represented by states and transitions.
It permits developers to automatically try different scenar-
ios and cases and provides a different field of action than the
testing method. Model checking typically works in addition
to testing rather than in place of it. Even if software model
checking [3] is already recognized as a good way to find er-
rors in software, it is still an underused tool because of its
complexity of usability.

One big disadvantage of model checking is the difficulty in
treating counterexamples given for a violated property. Un-
like the testing method in which such output is usually given
in an understandable way by using code, model checking
counterexamples are usually presented as sequences of tran-
sitions that lead to the error state from the initial state. For
software model checking which uses program code as input
instead of state machines, the counterexamples are usually
represented in a sequence of low-level machine codes due to
limitations of the current software model checking tools. For
example, Java model checking tools usually take Java Byte-
codes instead of Java program code which makes it difficult
for people who are not experts in machine language to un-
derstand what is being expressed and can be a problem when
attempting to localize the bug.

It has been a long time since researchers have tried to study
ways to help people to understand the contents of a counterex-
ample [4]. Now we have new technologies and new ways of
using counterexamples emerging such as Visual-Studio plug-
ins [5]. One of the most interesting methods reported was a
way to make an executable counterexample [6] instead of a
complicated list of states in machine language. Our research
was especially inspired by the work of Rocha Herbert, Bar-
reto Raimundo, Cordeiro Lucas, and Neto Arilo and their
way of creating an executable counterexample for ANSI-C
programs [7]. Our paper introduces a method for creating an
executable counterexample for Java programs with the Java
model checker JBMC [8]. This is done by extracting the nec-
essary data from a counterexample and translating it into lines
of Java code to be used in the final version of source code.

This paper is organized as follows: Section 2 introduces the
basic concepts and principles of model checking, the model
checker we used, and the part of model checking on which we
focused. Section 3 explains our proposed method. Section
4 describes our experiments and results. Section 5 presents
our observations during the creation of the proposed method.
Section 6 describes our future work to improve this proposed
method. Section 7 provides all of the existing works related to
this proposed method and finally, Section 8 summarizes this

paper.

2 MODEL CHECKING

In this section, we introduce the principle of model check-
ing and how it works. After that, we explain our Java model
checker choice. The last part focuses on the generation of
counterexamples which is the central part of this paper.



108

2.1 Principle of Model Checking

Model checking has already proven itself as a useful veri-
fication method for software [9][10]. The goal of this method
is to analyze a system translated into an abstract model to find
violated properties. The model is represented as a transition
system in the form of an oriented graph: a vertex represents a
state of the system and each arc represents a transition, i.e., a
possible evolution of the system from a given state to another
state. Each state of the oriented graph is labeled by a set of
atomic propositions true at this point of execution. The prop-
erty to check is written by a temporal logic formula. These
logical expressions are defined on a set of atomic proposi-
tions P or proposition variables. These atomic propositions
are combined with a number of logical connectors, includ-
ing the usual connectors: and, or, not, implication, as well as
other operators which are called modalities.

This method works in three phases. First is the modeling
phase which takes a real system and translates it into an ab-
stract model. The system becomes a set of states and transi-
tions. States give information about the program such as its
variable values. Transitions are used to describe how the sys-
tem works. The model checker also formalizes the properties
to be verified. In the second phase, the model checker evalu-
ates the possible paths of the abstract model to find a violated
property. In this work, we are mainly interested in the final
phase of analysis. There are three different possible outputs
from the second phase. The first possibility is when a prop-
erty is violated and the model checker traces the path to give a
counterexample. The second type of output is when all prop-
erties are verified and not violated in which case the model
checker reports that no bugs were found in the program. The
third type occurs when the software is too complex and the
abstract model is too large in which case the model checker
runs out of memory in handle it. The model checking princi-
ple [1] and its three phases are depicted in Fig. 1.

The model checker we use in this work is a bounded one.
The bounded model checking method [11] is a way to use
model checking by traversing a finite-state machine with a
fixed number of steps k and checking if a property is vio-
lated in this bound. The larger the value of k, the better the
chances of finding a violation. The principal goal is to be
faster and more efficient by giving a limit of the number of
steps. This method is also associated with Boolean satisfi-
ability problem (SAT) solvers [12] which, given a proposi-
tional logic formula, can determine whether or not there is an
assignment of propositional variables that makes a formula
true.

2.2 Software Model Checking

This paper is focused on software model checking which
is slightly different from general model checking. Effectively
the target of software model checking is program code that
cannot be transformed into a finite-state model. Instead, code
is transformed into transitions written in machine languages.
The bounded part is used for program loops where the soft-
ware model checker unrolls loops with a bound k. Figure 2
is a short explanation of how this works in a while loop with

C. M. B. Hassen et al. / Executable Counterexample for Java Model Checker

Requirements Real system
Y
Formalizing Modeling
Y
Properties @t model
Y
Model checking
Y Y Y
Not violated Out of Violated
memory
Tracing
Counterexample

Figure 1: Principle of model checking

a bound of k = 3. The specification of a property in software
model checking is also different. It is not represented by a
temporal logic formula but by an assertion.

2.3 Model Checking with JBMC

JBMC is a bounded Java model checker developed in C++
and is based on the C model checker called CBMC [13]. It
is one of the most efficient model checkers for Java programs
and takes a Java Bytecode program as input. To be more ef-
ficient it also uses an abstract representation of the standard
Java libraries called Java Operational Model. This represen-
tation was made to simplify the standard Java libraries and
speed up the process of model checking. The core of the
checker is managed by the CPROVER framework[14]. It is a



International Journal of Informatics Society, VOL.13, NO.3 (2021) 107-114

109

if (a<10)

while (a<10)

{ o2 i{f(a<10)

Y

y }

if (a<10)

Y

Figure 2: Example of an unrolled loop with a bound of k =3

bounded model checker so the last input will be the number
of bounds k that we want to do.

JBMC works in four steps. The first step is to parse the
Java Bytecode into a parse tree which corresponds to a trans-
lation into a finite-state model. The second step translates the
parse tree into a CPROVER control-flow graph representation
which is called a GOTO program. The goal of this step is to
simplify the Java Bytecode representation and make it easier
to analyze with the CPROVER framework. In the third step
the checker analyzes the model properties. The last step uses
the SAT solver to determine whether or not a property is vio-
lated for a given bound k, and returns a counterexample if it
is the case.

As mentioned above, JBMC uses the CPROVER frame-
work to produce counterexamples. In addition, to verify as-
sertions made by the user, it also covers such properties as
Null Pointer Exception, Division by 0, Index out of bounds,
etc. Figure 3 illustrates a simple example of a Null Pointer
Exception error which can be found by JBMC.

This example is a simple program for printing the values
of an array of strings. The variable ”v” takes a random value
between 1 and 2. If the value is 1, then only the first value
of the array tab” will be printed, and if the value is 2, then
it will also print the second value which is null, and throw a
Null Pointer Exception.

import java.util .Random;

public class NullTest
{

public static void main(String [] args)
{
String [] tab = {”a”,null};
Random r = new Random () ;
int v = r.nextInt((2-1)+1)+1;
for (int i=0;i<v;i++)
{
System.out.println (tab[i].length());
}
}
¥

Figure 3: Code with a Null Pointer Exception error

State 84 function java::java.lang.System.<clinit>:()V thread 0

dynamic_object16={ .@class_identifier="java::;java.io.PrintStream" } ({ ? })

State 91 file NullTest.java function NullTest.main(java.lang.String]]) line 12 thread 0

this=&a
(00000000 00010001 00000000 00000000 00000000 00000000 00000000 00000000)

State 99 file NullTest.java function NullTest.main(java.lang.String]]) line 12 thread 0

this=&dynamic_object16
(00000000 00010011 00000000 00000000 00000000 00000000 00000000 00000000)|

State 100 file NullTest.java function NullTest.main(java.lang.String[]) line 12 thread 0

stub_ignored_arg1=1 (00000000 00000000 00000000 00000001)

State 102 file NullTest.java function NullTest.main(java.lang.String[]) line 10 thread 0

anonlocal::4i=1 (00000000 00000000 00000000 00000001)

Violated property:
file NullTest.java function NullTest.main(java.lang.String]]) line 12 thread 0
Null pointer check
I((struct java.lang.String *)((struct java::array[reference] *)anonlocal::1a)-
>data[anonlocal::4i] == null)

Figure 4: Trace of counterexample from JBMC

2.4 Counterexample

When the model checker finds a violated property in a pro-
gram, a counterexample is given. This output helps devel-
opers localize the bug by giving the behavior which leads to
the bug using such information as variable values. As men-
tioned before, JBMC uses CPROVER which produces coun-
terexamples. The trace example in Fig. 4 is the output given
by the model checker after the verification of the code shown
in Fig. 3.

From the output, we can easily see which property is vio-
lated, but it is difficult to understand how the model checker
found the violation and which path we should take to get the
same behavior. Every state in the counterexample represents
one instruction such as a change of variable value, but this
instruction is given by the CPROVER framework which was
initially made for C and C++ programs. The problem is that
it is difficult to understand these instructions and see what the
Java equivalence is.

3 PROPOSED METHOD

This section describes the method proposed in this work for
translating counterexamples given by JBMC into Java code.
Figure 5 shows the process of the whole system. Step 1 is
simply a transformation of Java code into Java Bytecode be-
fore sending it to the model checker. Step 2 is the running
of the model checker, and if a property is violated we go to
Step 3. Step 3 is the treatment of the counterexample and
this paper focuses on this work. The last step is the report of
the output as a Java code program after the translation of the
counterexample.

3.1 Method Objective

The main objective of our proposed method is to support
developers who want to use model checking for verifying
their software. Since it is an experimental method, the prin-
cipal goal is to be sure that it is possible to get easily un-



110

C. M. B. Hassen et al. / Executable Counterexample for Java Model Checker

Table 1: Experiment results

Execution Time New Assertion New Instructions Fusion
Null Pointer 1.03s OK OK OK
Index Out of Bound 0.50s OK OK OK
Division By 0 0.95s OK OK OK
User Assertion 0.88s NONE OK OK

derstandable code from a counterexample produced by the
JBMC model checker. To achieve this goal, we take data from
a counterexample and put it into the source code in a way that
will be clear to the developer who wrote the source code. The
main objective will be to use simple code and to analyze it
with simple classes. It also has to be adaptive so that we can
extend it for more complex software in the future.

3.2 Method Contribution

The contributions of our proposed method are to (1) pro-
vide a concrete method to build program code that explicitly
shows the source of bugs; and (2) show the effectiveness of
the proposed method through examples.

3.3 Step 1: Analysis of Counterexamples

The method proposed in this work is based on a transforma-
tion algorithm. The first part adds all new instructions result-
ing from the counterexample such as variable changes into the
source code. The most important task is to understand what
property was violated and where it occurred. The last lines
of the counterexample give us the data related to the violated
property. To help the user find the bug, we create a new line
of Java code from this data with an assertion which will fail.
Next we find and translate every state of the counterexample
into lines of code. More than one state can have the same
corresponding line number so in this case, we check if one of
our newly created lines corresponds to this line number and
update it instead of creating a new line.

3.4 Step 2: Transformation of Bytecode
Source Files into Java

The second step of our proposed method is to transform
the source file which is in Bytecode into Java code so that it
can be used later for debugging. To do this, we use a Java
library that transforms bytecode into Java. There are some
good libraries such as Procyon, but for this work we chose
CFR which does not optimize the code by techniques such as
deleting dead code or using variable propagation. This will
permit the user to find the code in its original form before
the compilation in Bytecode and make it easier to localize the
error.

3.5 Step 3: Addition of New Java Code Lines
into the New Source File

The last step of the procedure is the fusion of the two previ-
ous ones. The goal is to produce Java code that reproduces the

behavior of the software at the point where the model checker
found the violation of a property. To accomplish this we read
the new source file line by line and check to see if there is a
new instruction that needs to be added from the counterexam-
ple. If we have a new instruction, we delete the old line and
replace it with the corresponding one created earlier in Step 1.
The variable names from the source file and the counterexam-
ple are different, so we have to be sure to preserve the original
recognizable variable names and only change their values ac-
cording to the information in the counterexample rather than
simply replacing the whole line. When we reach the line of
the violated property, we insert a new line above it with the
new assertion created. Figure 6 represents the final result of
applying the proposed method to the example in Fig. 3.

Model checking
i Search for new
Satisiied property to check

Creation of
counterexample

JBMC

Unsatisfied

|

J
pyiecoce | L}

Proposed solution

Step 2 :
Decompiler Transformation of Step 1 :
- : Transformation of
library source java
counterexample

bytecode

Step 3 : Fusion of
java codes

Output

il

New java code

1
4

Debugging

]

Figure 5: Proposed method process



International Journal of Informatics Society, VOL.13, NO.3 (2021) 107-114

import java.util .Random;

public class NullTest

{

public static void main(String [] args
)
{
String [] tab = {”a”,null };
Random r = new Random () ;
int v = 2;
for (int i=0;i<v;i++)

{

assert (tab[1] !'= null);
System.out. println (tab[i].length ()
)3

Figure 6: New code generated by the proposed method
4 EXPERIMENTS AND RESULTS

To check the efficiency of the proposed method, we tested
it with a number of simple programs with different types of
errors for which JBMC can find a counterexample. We made
one program per error for Null Pointer Exception, Index Out
Of Bounds Exception, Division By Zero Exception, and a
user assertion. For this experiment we chose a bound of k
= 5. Table 1 shows the experiment results for each program
step by step. Figures 7 to 12 show all source codes and gen-
erated codes from the experiment data.

All of the cases were successful and this experiment shows
that it is possible to translate a counterexample into Java code.
New assertions and the new values of variables are useful in
deriving from where an error originates. During this experi-
ment, we realized that it is sometimes difficult to see where
the code has changed so it would be a good idea to add com-

import java.util .Random;

public class IndexTest

{

public static void main(String [] args

)
{
int[] test = {1};
Random r = new Random () ;
int v = r.nextInt((2-1)+1)+1;
for (int i=0;i<v;i++)
{
System.out. println (test[i]);
}
}
t

Figure 7: Source code of an Index Out of Bounds Exception

111

import java.util.Random;

public class IndexTest

{

public static void main(String [] args
)
{
int[] test = {1};
Random r = new Random () ;
int v = 2;
for (int i=0;i<v;i++)
{

assert (test.length >1)
System.out. println (test[i]);

}
}
}

Figure 8: New generated code of an Index Out of Bounds
Exception

import java.util .Random;

public class DivisionTest

{

public static void main(String [] args
)
{
int[] test = {1,0};
Random r = new Random () ;
int v = r.nextInt((2-1)+1)+1;
for (int i=0;i<v;i++)

{

}
}
}

System.out. println (10 / test[i]);

Figure 9: Source code of a Division by 0 Exception

ments before new lines of code generated in the output.

This experiment was done with very simple programs, but
it is a good start for the understanding of counterexamples.
One Java code is cut into multiple instructions in a counterex-
ample. Even the translation of CPROVER into Java code is
complicated. Variable names are also not the same as the
source file output. Without this new processing part, the fu-
sion between new Java code instructions and the decompiled
source Java Bytecode cannot be done. The next step will be
to create an algorithm for finding and sorting all related in-
structions of a variable from the counterexample within more
complex programs.

S DISCUSSION

Even with our proposed method, the understanding of
counterexamples from the Java model checker still seems to



112

import java.util .Random;

public class DivisionTest

{

public static void main(String

)
{

int[] test = {1,0};

Random r = new Random () ;

int v = 2;

for (int i=0;i<v;i++)

{
assert (test [1]!= 0)
System.out. println (10 / test[i]);

}

[1 args

}
}

Figure 10: New generated code of a Division by 0 Exception

import java.util .Random;

public class AssertTest

{

public static void main(String [] args

)
{
int[] test = {10,15};
Random r = new Random () ;
int v = r.nextInt((2-1)+1)+1;
assert test[v] ==10;

Figure 11: Source code of a user assertion

import java.util .Random;

public class AssertTest

{

public static void main(String [] args

)
{
int[] test = {10,15};
Random r = nmew Random () ;
int v = 2;
assert test[v] ==10;

Figure 12: New generated code of a user assertion

be difficult, but it has opened a way for researchers to think
about model checking in Java and how to improve it. Dur-
ing this research, we saw that Java model checking does not
have many reported solutions as compared to C model check-

C. M. B. Hassen et al. / Executable Counterexample for Java Model Checker

ing, but it is still one of the most used languages for software
development and requires further studies.

The best future direction will be to have a model checker
such as JBMC give developers instructions directly in Java
language which can be directly used inside Java code. This
step of making counterexamples more understandable is an
important one to make model checkers more convenient and
useful.

6 FUTURE WORK

As explained above, the method proposed in this paper
works with small programs, but it has to be more efficient
for use in larger production software. The next step will be
to make this method more adaptive to easily add unexpected
classes and cases. After that, we can add an implementa-
tion for the most used classes including List, Map, etc. This
method also has to be adapted for translating software with
more than one class which uses a lot of different files. To
make the newly generated code more useful, we can directly
generate code in a JUnit test which can be a more efficient
way to find bugs.

Another innovative way to improve this solution can be to
use Al techniques that can directly predict the kind of prop-
erty violated and suggest ways to resolve it. Employing deep
learning by using neural networks can be interesting, but to
use this technique we need a large amount of dataset samples
before starting.

7 RELATED WORK

The work of improving counterexample generation in
model checking is not new ([6], [8], [15]-[19]). One of the
first approaches for generating executable counterexamples
was made by Dirk Beyer [20]. This paper was inspired by the
work of [7] in which a counterexample simplification is done
for ANSI-C software by using the ESBMC model checker
which also uses the CPROVER framework. All of the under-
standing of model checking was based on the book Principles
of Model Checking [1].

8 CONCLUSION

To conclude, the method proposed in this work was cre-
ated to help Java developers who are not experts in verifica-
tion methods to more easily use model checking techniques.
It was tested with simple and small programs and has to im-
prove its efficiency to be used with complex software. The
new method can still be improved and can open doors for fu-
ture work such as using Al techniques to make steps in the
process automatic and efficient. Model checking, especially
for Java programs, is still often underused because of the com-
plexity of use. The method presented in this work can be
the beginning for making model checking a common tool for
software developers.

ACKNOWLEDGEMENT

The research is being partially conducted as Grant-in-Aid
for Scientific Research A (18H04094) and C (21K11826).



International Journal of Informatics Society, VOL.13, NO.3 (2021) 107-114

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

C. Baier and J-P. Katoen: “Principles of Model Check-
ing,” MIT Press (2008).

E. M. Clarke, O. Grumberg, D. Kroening, D. Peled,
and H. Veith: “Model Checking, second edition,” MIT
Press. (2008).

R. Jhala and R. Majumdar, : “Software model check-
ing,” In: ACM Computing Surveys, Vol. 41, No. 4 pp.1-
54 (2009).

A. Groce, D. Kroening, and F. Lerda: “Understanding
counterexamples with explain,” In : International Con-
ference on Computer Aided Verification. CAV 2004,
Lecture Notes in Computer Science, Vol. 3114, pp.453-
456 (2004).

M. N. Seghir and D. Kroening: “A visual studio plug-in
for CProver,” In : 2013 3rd International Workshop on
Developing Tools as Plug-Ins, TOPI, pp.43-48 (2013).
J. Gennari, A. Gurfinkel, T. Kahsai, J. A. Navas, and E.
J. Schwartz: “Executable counterexamples in software
model checking,” In : Working Conference on Verified
Software: Theories, Tools, and Experiments, pp.17-37
(2018).

H. Rocha, R. Barreto, L. Cordeiro, and A. Neto: “Un-
derstanding Programming Bugs in ANSI-C Software
Using Bounded Model Checking Counter-Examples,”
In: International Conference on Integrated Formal
Methods, IFM 2012, pp.128-142 (2012).

L. Cordeiro, D. Kroening, and P. Schrammel: “JBMC:
Bounded Model Checking for Java Bytecode,” In: Beyer
D., Huisman M., Kordon F., Steffen B. (eds) Tools and
Algorithms for the Construction and Analysis of Sys-
tems, TACAS 2019, Lecture Notes in Computer Sci-
ence, Vol. 11429, pp.219-223 (2019).

D. Beyer: “Software verification with validation of re-
sults - (report on SV-COMP 2017),” In : Tools and Al-
gorithms for the Construction and Analysis of Systems
- 23rd International Conference. TACAS 2017, Lecture
Notes in Computer Science, Vol. 10206, pp.331-349
(2017).

D. Beyer and T. Lemberger: “Software Verification:
Testing vs. Model Checking A Comparative Evaluation
of the State of the Art,” In : 13th International Haifa
Verification Conference, HVC 2017, pp.99-114 (2017).
A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu: “Bounded model checking,” In : Advances in
computers, Vol. 58, No. 11, pp.117-148 (2003).

O. Strichman: “Tuning SAT Checkers for Bounded
Model Checking,” In : Computer Aided Verification,
CAV 2000, Lecture Notes in Computer Science, Vol.
1865, pp.480-494 (2000).

E. M. Clarke, D. Kroening, and F. Lerda: “A tool for
checking ANSI-c programs,” In: International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2004, Lecture Notes in
Computer Science, Vol. 2988, pp.168-176 (2004).

D. Kroening and E.M. Clarke: “The CPROVER User
Manual,”
https://www.cprover.org/cbmc/doc/manual.pdf (2001)

[15]

[16]

[17]

[18]

[19]

[20]

113

(06 July 2021 accessed).

N. Shankar and M. Sorea: “Counterexample-driven
model checking,” In : Technical Report SRI-CSL-03-
04, SRI International Computer Science Laboratory
(2003).

T. Ball, M. Naik, and S. Rajamani: “From Symptom
to Cause: Localizing Errors in Counterexample Traces,”
In : Conference Record of the Annual ACM Sympo-
sium on Principles of Programming Languages, pp.97-
105 (2003).

P. Miiller and J. N. Ruskiewicz: “Using Debuggers to
Understand Failed Verification Attempts,” In : Formal
Methods - 17th International Symposium on Formal
Methods, FM 2011, pp.73-87 (2011).

D. Kroening, A. Groce, and E. M. Clarke: “Counterex-
ample Guided Abstraction Refinement Via Program Ex-
ecution,” In : Formal Methods and Software Engineer-
ing, ICFEM 2004, Lecture Notes in Computer Science,
Vol. 3308, pp.224-238 (2004).

K. Rustan, M. Leino, T. Millstein, and J. B. Saxe: “Gen-
erating error traces from verification-condition coun-
terexamples,” In : Science of Computer Programming,
Vol. 55, pp.209-226 (2005).

D. Bayer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar: “Generating Tests from Counterexam-
ples,” In : Proceedings of the 26th International Con-
ference on Software Engineering, ICSE 04, IEEE Com-
puter Society, pp.326-335 (2004).

(Received November 4, 2021)
(Accepted June 9, 2021)

Marwan Bernard Hassan Chellet received his
associate degree in computer science from La
Rochelle Institute of Technology, France in 2017.
One year after, he received his BE in computer
science from La Rochelle University, France. Cur-
rently, he is a second year student in the master’s
program at Shinshu Uniersity, Japan majoring in
computer science. His current research interests
are in verification methods and software model
checking.

Shinpei Ogata is an Associate Professor of the
Graduate School of Science and Technology in
Shinshu University, Japan. He received a PhD
from Shibaura Institute of Technology, Japan
in 2012. His current research interests include
model-driven engineering for information system
development. He is a member of IEEE, ACM, IE-
ICE, and IPSJ.



114

Kozo Okano received his BE, ME, and PhD de-
grees in Information and Computer Sciences from
Osaka University in 1990, 1992, and 1995, respec-
tively. From 2002 to 2015, he was an Associate
Professor at the Graduate School of Information
Science and Technology of Osaka University. In
2002 and 2003, he was a visiting researcher at the
Department of Computer Science of the Univer-
sity of Kent in Canterbury, and a visiting lecturer
at the School of Computer Science of the Univer-
sity of Birmingham, respectively. Since 2020, he
has been a Professor at the Department of Electrical and Computer Engi-
neering, Shinshu University. His current research interests include formal
methods for software and information system design. He is a member of
IEEE, IEICE, and IPSJ.

C. M. B. Hassen et al. / Executable Counterexample for Java Model Checker





