International Journal of

S_‘;;} [nformatics Society
-

03/22 Vol. 13 No. 3ISSN 1883-4566

Editor-in-Chief: Hiroshi Inamura, Future University Hakodate

Associate Editors: Katsuhiko Kaji, Aichi Institute of Technology
Yoshia Saito, Iwate Prefectural University
Takuya Yoshihiro, Wakayama University
Tomoki Yoshihisa, Osaka University

Editorial Board

Hitoshi Aida, The University of Tokyo (Japan)

Huifang Chen, Zhejiang University (P.R.China)

Christian Damsgaard Jensen, Technical University of Denmark (Denmark)
Teruo Higashino, Kyoto Tachibana University (Japan)
Tadanori Mizuno, Aichi Institute of Technology (Japan)

Jun Munemori, The Open University of Japan (Japan)

Yuko Murayama, Tsuda University (Japan)

Ken-ichi Okada, Keio University (Japan)

Norio Shiratori, Chuo University / Tohoku University (Japan)
Ian Wakeman, University of Sussex (UK)

Qing-An Zeng, University of Cincinnati (USA)

Tim Ziemer, University of Bremen (Germany)

Justin Zhan, North Carolina A & T State Unversity (USA)
Xuyun Zhang, Macquarie University (Australia)

Aims and Scope
The purpose of this journal is to provide an open forum to publish high quality research papers in the areas of
informatics and related fields to promote the exchange of research ideas, experiences and results.

Informatics is the systematic study of Information and the application of research methods to study Information
systems and services. It deals primarily with human aspects of information, such as its qu ality and value as a
resource. Informatics also referred to as Information science, studies t he structure, algorithms, behavior, and
interactions of natural and a rtificial systems that store, process, access and communicate information. It also
develops its own conceptual and theoretical foundations and utilizes foundations developed in other fields. The
advent of computers, its ubiquity and ease to use has led to th e study of info rmatics that has computational,
cognitive and social aspects, including study of the social impact of information technologies.

The characteristic of informatics' context is amalgamation of technologies. For creating an informatics product,
it is necessary to integrate many technologies, such as mathematics, linguistics, engineering and other emerging

new fields.

International Journal of Informatics Society, VOL.13, NO.3 (2021)

Guest Editor’s Message

Hiroshi Yoshiura

Guest Editor of Thirty-ninth Issue of International Journal of Informatics Society

We are delighted to have the Thirty-ninth issue
of the International Journal of Informatics
Society (IJIS) published. This issue includes
selected papers from the Fourteenth
International ~ Workshop on Informatics
(IWIN2020), which was held online, Sept. 10-
11, 2020. The workshop was the fourteenth
event for the Informatics Society, and was
intended to bring together researchers and
practitioners to share and exchange their
experiences, discuss challenges and present
original ideas in all aspects of informatics and
computer networks. In the workshop 24 papers
were presented in seven technical sessions. The
workshop was successfully finished with
precious experiences provided to the
participants. It highlighted the latest research
results in the area of informatics and its
applications that include networking, mobile
ubiquitous systems, data analytics, business
systems, education systems, design
methodology, intelligent systems, groupware
and social systems.

Each paper submitted IWIN2020 was
reviewed in terms of technical content, scientific
rigor, novelty, originality and quality of
presentation by at least two reviewers. Through
those reviews 17 papers were selected for
publication candidates of 1JIS Journal, and they
were further reviewed as a Journal paper. We
have three categories of 1JIS papers, Regular
papers, Industrial papers, and Invited papers,
each of which were reviewed from the different
points of view. This volume includes three
papers among those accepted papers, which
have been improved through the workshop
discussion and the reviewers’ comments.

We publish the journal in print as well as in an
electronic form over the Internet. We hope that
the issue would be of interest to many
researchers as well as engineers and
practitioners over the world.

Hiroshi Yoshiura received his B.S. and D.Sc.
from the University of Tokyo, Japan in 1981 and
1997. He has been a professor at the Department
of Engineering, Kyoto Tachibana University
since April 2021. He is also a professor emeritus
of the University of Electro-Communications
where he had been a professor until March 2021.
Before joining UEC, he had been at Systems
Development Laboratory, Hitachi, Ltd. He has
been engaged in research and development of
information security science and technology. He
received Annual Best Paper Awards from
Information Processing Society of Japan (IPSJ)
in 2005 and 2011, and Japan Society of Security
Management (JSSM) in 2011, 2016, and 2018,
and also received Specially Selected Paper
Awards of IPSJ Journal in 2018 and 2020. He
received Best Paper Awards of 2006 IEEE IIH-
MSP Conference, 2016 IFIP I3E Conference,
and 2017 INFSOC IWIN Conference. He is a
fellow of IPSJ and is a member of JSSM, The
Institute of Electronics, Information and
Communication Engineers, The Japanese
Society for Artificial Intelligence, The Institute
of Systems, Control and Information Engineers,
and The Institute of Electrical and Electronics
Engineers.

ISSN1883-4566 © 2021 - Informatics Society and the authors. All rights reserved.

105

106

International Journal of Informatics Society, VOL.13, NO.3 (2021) 107-114

Regular Paper

107

Executable Counterexample for Java Model Checker

Chellet Marwan Bernard Hassan, Shinpei Ogata, and Kozo Okano

Shinshu University, Nagano, Japan
19w2074f@shinshu-u.ac.jp,{okano, ogata} @cs.shinshu-u.ac.jp

Abstract - Testing is a mandatory task in the development
of software. Effectively, ensuring the reliability of software
is a major point of work for a developer. Even after soft-
ware has been tested, it is not uncommon to encounter bugs
that can have consequences on the operation of a system. To
improve reliability, developers have started using verification
methods in addition to testing. The basic method of model
checking verifies whether or not the software or a given frag-
ment of program code satisfies properties that can lead to bugs
if they are violated. Model checking has already proved to
be an effective tool for verifying software, but there are still
some inconveniences in using these techniques. When a soft-
ware model checker finds a violated property, it will signal it
by giving a counterexample as output. This usually involves
tracing the path from the initial state to the state that reveals
the violated property. The counterexamples are usually given
in text format and are not always simple to understand as all
of the steps of the process are given with a sequence of ma-
chine instructions. This paper aims to improve a Java model
checker by translating counterexamples into executable Java
code that is more understandable for a developer.

Keywords: Model checking, counterexample, Java, simu-
lation, verification

1 INTRODUCTION

Software testing is one of the best ways to get good soft-
ware reliability. It is practically impossible to use software
without testing it beforehand but with all testing methods, it
is not rare to miss some cases which can result in bugs during
operation. Even a small bug can have real consequences so
software safety becomes a priority. Full coverage of an appli-
cation is hard to achieve even with advanced testing methods.
Such methods are also limited because they use the system it-
self to find errors which makes it difficult to have an overview
of the entire program.

To fill the gaps of testing methods, developers also use
a verification method called “model checking.” [1][2] This
method does not use the system itself, but rather an abstract
model of it which is represented by states and transitions.
It permits developers to automatically try different scenar-
ios and cases and provides a different field of action than the
testing method. Model checking typically works in addition
to testing rather than in place of it. Even if software model
checking [3] is already recognized as a good way to find er-
rors in software, it is still an underused tool because of its
complexity of usability.

One big disadvantage of model checking is the difficulty in
treating counterexamples given for a violated property. Un-
like the testing method in which such output is usually given
in an understandable way by using code, model checking
counterexamples are usually presented as sequences of tran-
sitions that lead to the error state from the initial state. For
software model checking which uses program code as input
instead of state machines, the counterexamples are usually
represented in a sequence of low-level machine codes due to
limitations of the current software model checking tools. For
example, Java model checking tools usually take Java Byte-
codes instead of Java program code which makes it difficult
for people who are not experts in machine language to un-
derstand what is being expressed and can be a problem when
attempting to localize the bug.

It has been a long time since researchers have tried to study
ways to help people to understand the contents of a counterex-
ample [4]. Now we have new technologies and new ways of
using counterexamples emerging such as Visual-Studio plug-
ins [5]. One of the most interesting methods reported was a
way to make an executable counterexample [6] instead of a
complicated list of states in machine language. Our research
was especially inspired by the work of Rocha Herbert, Bar-
reto Raimundo, Cordeiro Lucas, and Neto Arilo and their
way of creating an executable counterexample for ANSI-C
programs [7]. Our paper introduces a method for creating an
executable counterexample for Java programs with the Java
model checker JBMC [8]. This is done by extracting the nec-
essary data from a counterexample and translating it into lines
of Java code to be used in the final version of source code.

This paper is organized as follows: Section 2 introduces the
basic concepts and principles of model checking, the model
checker we used, and the part of model checking on which we
focused. Section 3 explains our proposed method. Section
4 describes our experiments and results. Section 5 presents
our observations during the creation of the proposed method.
Section 6 describes our future work to improve this proposed
method. Section 7 provides all of the existing works related to
this proposed method and finally, Section 8 summarizes this

paper.

2 MODEL CHECKING

In this section, we introduce the principle of model check-
ing and how it works. After that, we explain our Java model
checker choice. The last part focuses on the generation of
counterexamples which is the central part of this paper.

108

2.1 Principle of Model Checking

Model checking has already proven itself as a useful veri-
fication method for software [9][10]. The goal of this method
is to analyze a system translated into an abstract model to find
violated properties. The model is represented as a transition
system in the form of an oriented graph: a vertex represents a
state of the system and each arc represents a transition, i.e., a
possible evolution of the system from a given state to another
state. Each state of the oriented graph is labeled by a set of
atomic propositions true at this point of execution. The prop-
erty to check is written by a temporal logic formula. These
logical expressions are defined on a set of atomic proposi-
tions P or proposition variables. These atomic propositions
are combined with a number of logical connectors, includ-
ing the usual connectors: and, or, not, implication, as well as
other operators which are called modalities.

This method works in three phases. First is the modeling
phase which takes a real system and translates it into an ab-
stract model. The system becomes a set of states and transi-
tions. States give information about the program such as its
variable values. Transitions are used to describe how the sys-
tem works. The model checker also formalizes the properties
to be verified. In the second phase, the model checker evalu-
ates the possible paths of the abstract model to find a violated
property. In this work, we are mainly interested in the final
phase of analysis. There are three different possible outputs
from the second phase. The first possibility is when a prop-
erty is violated and the model checker traces the path to give a
counterexample. The second type of output is when all prop-
erties are verified and not violated in which case the model
checker reports that no bugs were found in the program. The
third type occurs when the software is too complex and the
abstract model is too large in which case the model checker
runs out of memory in handle it. The model checking princi-
ple [1] and its three phases are depicted in Fig. 1.

The model checker we use in this work is a bounded one.
The bounded model checking method [11] is a way to use
model checking by traversing a finite-state machine with a
fixed number of steps k and checking if a property is vio-
lated in this bound. The larger the value of k, the better the
chances of finding a violation. The principal goal is to be
faster and more efficient by giving a limit of the number of
steps. This method is also associated with Boolean satisfi-
ability problem (SAT) solvers [12] which, given a proposi-
tional logic formula, can determine whether or not there is an
assignment of propositional variables that makes a formula
true.

2.2 Software Model Checking

This paper is focused on software model checking which
is slightly different from general model checking. Effectively
the target of software model checking is program code that
cannot be transformed into a finite-state model. Instead, code
is transformed into transitions written in machine languages.
The bounded part is used for program loops where the soft-
ware model checker unrolls loops with a bound k. Figure 2
is a short explanation of how this works in a while loop with

C. M. B. Hassen et al. / Executable Counterexample for Java Model Checker

Requirements Real system
Y
Formalizing Modeling
Y
Properties @t model
Y
Model checking
Y Y Y
Not violated Out of Violated
memory
Tracing
Counterexample

Figure 1: Principle of model checking

a bound of k = 3. The specification of a property in software
model checking is also different. It is not represented by a
temporal logic formula but by an assertion.

2.3 Model Checking with JBMC

JBMC is a bounded Java model checker developed in C++
and is based on the C model checker called CBMC [13]. It
is one of the most efficient model checkers for Java programs
and takes a Java Bytecode program as input. To be more ef-
ficient it also uses an abstract representation of the standard
Java libraries called Java Operational Model. This represen-
tation was made to simplify the standard Java libraries and
speed up the process of model checking. The core of the
checker is managed by the CPROVER framework[14]. It is a

International Journal of Informatics Society, VOL.13, NO.3 (2021) 107-114

109

if (a<10)

while (a<10)

{ o2 i{f(a<10)

Y

y }

if (a<10)

Y

Figure 2: Example of an unrolled loop with a bound of k =3

bounded model checker so the last input will be the number
of bounds k that we want to do.

JBMC works in four steps. The first step is to parse the
Java Bytecode into a parse tree which corresponds to a trans-
lation into a finite-state model. The second step translates the
parse tree into a CPROVER control-flow graph representation
which is called a GOTO program. The goal of this step is to
simplify the Java Bytecode representation and make it easier
to analyze with the CPROVER framework. In the third step
the checker analyzes the model properties. The last step uses
the SAT solver to determine whether or not a property is vio-
lated for a given bound k, and returns a counterexample if it
is the case.

As mentioned above, JBMC uses the CPROVER frame-
work to produce counterexamples. In addition, to verify as-
sertions made by the user, it also covers such properties as
Null Pointer Exception, Division by 0, Index out of bounds,
etc. Figure 3 illustrates a simple example of a Null Pointer
Exception error which can be found by JBMC.

This example is a simple program for printing the values
of an array of strings. The variable ”v” takes a random value
between 1 and 2. If the value is 1, then only the first value
of the array tab” will be printed, and if the value is 2, then
it will also print the second value which is null, and throw a
Null Pointer Exception.

import java.util .Random;

public class NullTest
{

public static void main(String [] args)
{
String [] tab = {”a”,null};
Random r = new Random () ;
int v = r.nextInt((2-1)+1)+1;
for (int i=0;i<v;i++)
{
System.out.println (tab[i].length());
}
}
¥

Figure 3: Code with a Null Pointer Exception error

State 84 function java::java.lang.System.<clinit>:()V thread 0

dynamic_object16={ .@class_identifier="java::;java.io.PrintStream" } ({ ? })

State 91 file NullTest.java function NullTest.main(java.lang.String]]) line 12 thread 0

this=&a
(00000000 00010001 00000000 00000000 00000000 00000000 00000000 00000000)

State 99 file NullTest.java function NullTest.main(java.lang.String]]) line 12 thread 0

this=&dynamic_object16
(00000000 00010011 00000000 00000000 00000000 00000000 00000000 00000000)|

State 100 file NullTest.java function NullTest.main(java.lang.String[]) line 12 thread 0

stub_ignored_arg1=1 (00000000 00000000 00000000 00000001)

State 102 file NullTest.java function NullTest.main(java.lang.String[]) line 10 thread 0

anonlocal::4i=1 (00000000 00000000 00000000 00000001)

Violated property:
file NullTest.java function NullTest.main(java.lang.String[]) line 12 thread 0
Null pointer check
I((struct java.lang.String *)((struct java::array[reference] *)anonlocal::1a)-
>data[anonlocal::4i] == null)

Figure 4: Trace of counterexample from JBMC

2.4 Counterexample

When the model checker finds a violated property in a pro-
gram, a counterexample is given. This output helps devel-
opers localize the bug by giving the behavior which leads to
the bug using such information as variable values. As men-
tioned before, JBMC uses CPROVER which produces coun-
terexamples. The trace example in Fig. 4 is the output given
by the model checker after the verification of the code shown
in Fig. 3.

From the output, we can easily see which property is vio-
lated, but it is difficult to understand how the model checker
found the violation and which path we should take to get the
same behavior. Every state in the counterexample represents
one instruction such as a change of variable value, but this
instruction is given by the CPROVER framework which was
initially made for C and C++ programs. The problem is that
it is difficult to understand these instructions and see what the
Java equivalence is.

3 PROPOSED METHOD

This section describes the method proposed in this work for
translating counterexamples given by JBMC into Java code.
Figure 5 shows the process of the whole system. Step 1 is
simply a transformation of Java code into Java Bytecode be-
fore sending it to the model checker. Step 2 is the running
of the model checker, and if a property is violated we go to
Step 3. Step 3 is the treatment of the counterexample and
this paper focuses on this work. The last step is the report of
the output as a Java code program after the translation of the
counterexample.

3.1 Method Objective

The main objective of our proposed method is to support
developers who want to use model checking for verifying
their software. Since it is an experimental method, the prin-
cipal goal is to be sure that it is possible to get easily un-

110

C. M. B. Hassen et al. / Executable Counterexample for Java Model Checker

Table 1: Experiment results

Execution Time New Assertion New Instructions Fusion
Null Pointer 1.03s OK OK OK
Index Out of Bound 0.50s OK OK OK
Division By 0 0.95s OK OK OK
User Assertion 0.88s NONE OK OK

derstandable code from a counterexample produced by the
JBMC model checker. To achieve this goal, we take data from
a counterexample and put it into the source code in a way that
will be clear to the developer who wrote the source code. The
main objective will be to use simple code and to analyze it
with simple classes. It also has to be adaptive so that we can
extend it for more complex software in the future.

3.2 Method Contribution

The contributions of our proposed method are to (1) pro-
vide a concrete method to build program code that explicitly
shows the source of bugs; and (2) show the effectiveness of
the proposed method through examples.

3.3 Step 1: Analysis of Counterexamples

The method proposed in this work is based on a transforma-
tion algorithm. The first part adds all new instructions result-
ing from the counterexample such as variable changes into the
source code. The most important task is to understand what
property was violated and where it occurred. The last lines
of the counterexample give us the data related to the violated
property. To help the user find the bug, we create a new line
of Java code from this data with an assertion which will fail.
Next we find and translate every state of the counterexample
into lines of code. More than one state can have the same
corresponding line number so in this case, we check if one of
our newly created lines corresponds to this line number and
update it instead of creating a new line.

3.4 Step 2: Transformation of Bytecode
Source Files into Java

The second step of our proposed method is to transform
the source file which is in Bytecode into Java code so that it
can be used later for debugging. To do this, we use a Java
library that transforms bytecode into Java. There are some
good libraries such as Procyon, but for this work we chose
CFR which does not optimize the code by techniques such as
deleting dead code or using variable propagation. This will
permit the user to find the code in its original form before
the compilation in Bytecode and make it easier to localize the
error.

3.5 Step 3: Addition of New Java Code Lines
into the New Source File

The last step of the procedure is the fusion of the two previ-
ous ones. The goal is to produce Java code that reproduces the

behavior of the software at the point where the model checker
found the violation of a property. To accomplish this we read
the new source file line by line and check to see if there is a
new instruction that needs to be added from the counterexam-
ple. If we have a new instruction, we delete the old line and
replace it with the corresponding one created earlier in Step 1.
The variable names from the source file and the counterexam-
ple are different, so we have to be sure to preserve the original
recognizable variable names and only change their values ac-
cording to the information in the counterexample rather than
simply replacing the whole line. When we reach the line of
the violated property, we insert a new line above it with the
new assertion created. Figure 6 represents the final result of
applying the proposed method to the example in Fig. 3.

Model checking
i Search for new
Satisiied property to check

Creation of
counterexample

JBMC

Unsatisfied

|

J
pyiecoce | L}

Proposed solution

Step 2 :
Decompiler Transformation of Step 1 :
- : Transformation of
library source java
counterexample

bytecode

Step 3 : Fusion of
java codes

Output

il

New java code

1
4

Debugging

]

Figure 5: Proposed method process

International Journal of Informatics Society, VOL.13, NO.3 (2021) 107-114

import java.util .Random;

public class NullTest

{

public static void main(String [] args
)
{
String [] tab = {”a”,null };
Random r = new Random () ;
int v = 2;
for (int i=0;i<v;i++)

{

assert (tab[1] !'= null);
System.out. println (tab[i].length ()
)3

Figure 6: New code generated by the proposed method
4 EXPERIMENTS AND RESULTS

To check the efficiency of the proposed method, we tested
it with a number of simple programs with different types of
errors for which JBMC can find a counterexample. We made
one program per error for Null Pointer Exception, Index Out
Of Bounds Exception, Division By Zero Exception, and a
user assertion. For this experiment we chose a bound of k
= 5. Table 1 shows the experiment results for each program
step by step. Figures 7 to 12 show all source codes and gen-
erated codes from the experiment data.

All of the cases were successful and this experiment shows
that it is possible to translate a counterexample into Java code.
New assertions and the new values of variables are useful in
deriving from where an error originates. During this experi-
ment, we realized that it is sometimes difficult to see where
the code has changed so it would be a good idea to add com-

import java.util .Random;

public class IndexTest

{

public static void main(String [] args

)
{
int[] test = {1};
Random r = nmew Random () ;
int v = r.nextInt((2-1)+1)+1;
for (int i=0;i<v;i++)
{
System.out. println (test[i]);
}
}
t

Figure 7: Source code of an Index Out of Bounds Exception

111

import java.util.Random;

public class IndexTest

{

public static void main(String [] args
)
{
int[] test = {1};
Random r = new Random () ;
int v = 2;
for (int i=0;i<v;i++)
{

assert (test.length >1)
System.out. println (test[i]);

}
}
}

Figure 8: New generated code of an Index Out of Bounds
Exception

import java.util .Random;

public class DivisionTest

{

public static void main(String [] args
)
{
int[] test = {1,0};
Random r = new Random () ;
int v = r.nextInt((2-1)+1)+1;
for (int i=0;i<v;i++)

{

}
}
}

System.out. println (10 / test[i]);

Figure 9: Source code of a Division by 0 Exception

ments before new lines of code generated in the output.

This experiment was done with very simple programs, but
it is a good start for the understanding of counterexamples.
One Java code is cut into multiple instructions in a counterex-
ample. Even the translation of CPROVER into Java code is
complicated. Variable names are also not the same as the
source file output. Without this new processing part, the fu-
sion between new Java code instructions and the decompiled
source Java Bytecode cannot be done. The next step will be
to create an algorithm for finding and sorting all related in-
structions of a variable from the counterexample within more
complex programs.

S DISCUSSION

Even with our proposed method, the understanding of
counterexamples from the Java model checker still seems to

112

import java.util .Random;

public class DivisionTest

{

public static void main(String [] args
)
{
int[] test = {1,0};
Random r = new Random () ;
int v = 2;

for (int i=0;i<v;i++)

{
assert (test [1]!= 0)
System.out. println (10 / test[i]);

}
}
}

Figure 10: New generated code of a Division by 0 Exception

import java.util .Random;

public class AssertTest

{

public static void main(String [] args

)
{
int[] test = {10,15};
Random r = new Random () ;
int v = r.nextInt((2-1)+1)+1;
assert test[v] ==10;

Figure 11: Source code of a user assertion

import java.util .Random;

public class AssertTest

{

public static void main(String [] args

)
{
int[] test = {10,15};
Random r = new Random () ;
int v = 2;
assert test[v] ==10;

Figure 12: New generated code of a user assertion

be difficult, but it has opened a way for researchers to think
about model checking in Java and how to improve it. Dur-
ing this research, we saw that Java model checking does not
have many reported solutions as compared to C model check-

C. M. B. Hassen et al. / Executable Counterexample for Java Model Checker

ing, but it is still one of the most used languages for software
development and requires further studies.

The best future direction will be to have a model checker
such as JBMC give developers instructions directly in Java
language which can be directly used inside Java code. This
step of making counterexamples more understandable is an
important one to make model checkers more convenient and
useful.

6 FUTURE WORK

As explained above, the method proposed in this paper
works with small programs, but it has to be more efficient
for use in larger production software. The next step will be
to make this method more adaptive to easily add unexpected
classes and cases. After that, we can add an implementa-
tion for the most used classes including List, Map, etc. This
method also has to be adapted for translating software with
more than one class which uses a lot of different files. To
make the newly generated code more useful, we can directly
generate code in a JUnit test which can be a more efficient
way to find bugs.

Another innovative way to improve this solution can be to
use Al techniques that can directly predict the kind of prop-
erty violated and suggest ways to resolve it. Employing deep
learning by using neural networks can be interesting, but to
use this technique we need a large amount of dataset samples
before starting.

7 RELATED WORK

The work of improving counterexample generation in
model checking is not new ([6], [8], [15]-[19]). One of the
first approaches for generating executable counterexamples
was made by Dirk Beyer [20]. This paper was inspired by the
work of [7] in which a counterexample simplification is done
for ANSI-C software by using the ESBMC model checker
which also uses the CPROVER framework. All of the under-
standing of model checking was based on the book Principles
of Model Checking [1].

8 CONCLUSION

To conclude, the method proposed in this work was cre-
ated to help Java developers who are not experts in verifica-
tion methods to more easily use model checking techniques.
It was tested with simple and small programs and has to im-
prove its efficiency to be used with complex software. The
new method can still be improved and can open doors for fu-
ture work such as using Al techniques to make steps in the
process automatic and efficient. Model checking, especially
for Java programs, is still often underused because of the com-
plexity of use. The method presented in this work can be
the beginning for making model checking a common tool for
software developers.

ACKNOWLEDGEMENT

The research is being partially conducted as Grant-in-Aid
for Scientific Research A (19H01102) and C (21K11826).

International Journal of Informatics Society, VOL.13, NO.3 (2021) 107-114

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

C. Baier and J-P. Katoen: “Principles of Model Check-
ing,” MIT Press (2008).

E. M. Clarke, O. Grumberg, D. Kroening, D. Peled,
and H. Veith: “Model Checking, second edition,” MIT
Press. (2008).

R. Jhala and R. Majumdar, : “Software model check-
ing,” In: ACM Computing Surveys, Vol. 41, No. 4 pp.1-
54 (2009).

A. Groce, D. Kroening, and F. Lerda: “Understanding
counterexamples with explain,” In : International Con-
ference on Computer Aided Verification. CAV 2004,
Lecture Notes in Computer Science, Vol. 3114, pp.453-
456 (2004).

M. N. Seghir and D. Kroening: “A visual studio plug-in
for CProver,” In : 2013 3rd International Workshop on
Developing Tools as Plug-Ins, TOPI, pp.43-48 (2013).
J. Gennari, A. Gurfinkel, T. Kahsai, J. A. Navas, and E.
J. Schwartz: “Executable counterexamples in software
model checking,” In : Working Conference on Verified
Software: Theories, Tools, and Experiments, pp.17-37
(2018).

H. Rocha, R. Barreto, L. Cordeiro, and A. Neto: “Un-
derstanding Programming Bugs in ANSI-C Software
Using Bounded Model Checking Counter-Examples,”
In: International Conference on Integrated Formal
Methods, IFM 2012, pp.128-142 (2012).

L. Cordeiro, D. Kroening, and P. Schrammel: “JBMC:
Bounded Model Checking for Java Bytecode,” In: Beyer
D., Huisman M., Kordon F., Steffen B. (eds) Tools and
Algorithms for the Construction and Analysis of Sys-
tems, TACAS 2019, Lecture Notes in Computer Sci-
ence, Vol. 11429, pp.219-223 (2019).

D. Beyer: “Software verification with validation of re-
sults - (report on SV-COMP 2017),” In : Tools and Al-
gorithms for the Construction and Analysis of Systems
- 23rd International Conference. TACAS 2017, Lecture
Notes in Computer Science, Vol. 10206, pp.331-349
(2017).

D. Beyer and T. Lemberger: “Software Verification:
Testing vs. Model Checking A Comparative Evaluation
of the State of the Art,” In : 13th International Haifa
Verification Conference, HVC 2017, pp.99-114 (2017).
A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu: “Bounded model checking,” In : Advances in
computers, Vol. 58, No. 11, pp.117-148 (2003).

O. Strichman: “Tuning SAT Checkers for Bounded
Model Checking,” In : Computer Aided Verification,
CAV 2000, Lecture Notes in Computer Science, Vol.
1865, pp.480-494 (2000).

E. M. Clarke, D. Kroening, and F. Lerda: “A tool for
checking ANSI-c programs,” In: International Confer-
ence on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2004, Lecture Notes in
Computer Science, Vol. 2988, pp.168-176 (2004).

D. Kroening and E.M. Clarke: “The CPROVER User
Manual,”
https://www.cprover.org/cbmc/doc/manual.pdf (2001)

[15]

[16]

[17]

[18]

[19]

[20]

113

(06 July 2021 accessed).

N. Shankar and M. Sorea: “Counterexample-driven
model checking,” In : Technical Report SRI-CSL-03-
04, SRI International Computer Science Laboratory
(2003).

T. Ball, M. Naik, and S. Rajamani: “From Symptom
to Cause: Localizing Errors in Counterexample Traces,”
In : Conference Record of the Annual ACM Sympo-
sium on Principles of Programming Languages, pp.97-
105 (2003).

P. Miiller and J. N. Ruskiewicz: “Using Debuggers to
Understand Failed Verification Attempts,” In : Formal
Methods - 17th International Symposium on Formal
Methods, FM 2011, pp.73-87 (2011).

D. Kroening, A. Groce, and E. M. Clarke: “Counterex-
ample Guided Abstraction Refinement Via Program Ex-
ecution,” In : Formal Methods and Software Engineer-
ing, ICFEM 2004, Lecture Notes in Computer Science,
Vol. 3308, pp.224-238 (2004).

K. Rustan, M. Leino, T. Millstein, and J. B. Saxe: “Gen-
erating error traces from verification-condition coun-
terexamples,” In : Science of Computer Programming,
Vol. 55, pp.209-226 (2005).

D. Bayer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar: “Generating Tests from Counterexam-
ples,” In : Proceedings of the 26th International Con-
ference on Software Engineering, ICSE 04, IEEE Com-
puter Society, pp.326-335 (2004).

(Received November 4, 2021)
(Accepted June 9, 2021)

Marwan Bernard Hassan Chellet received his
associate degree in computer science from La
Rochelle Institute of Technology, France in 2017.
One year after, he received his BE in computer
science from La Rochelle University, France. Cur-
rently, he is a second year student in the master’s
program at Shinshu Uniersity, Japan majoring in
computer science. His current research interests
are in verification methods and software model
checking.

Shinpei Ogata is an Associate Professor of the
Graduate School of Science and Technology in
Shinshu University, Japan. He received a PhD
from Shibaura Institute of Technology, Japan
in 2012. His current research interests include
model-driven engineering for information system
development. He is a member of IEEE, ACM, IE-
ICE, and IPSJ.

114

Kozo Okano received his BE, ME, and PhD de-
grees in Information and Computer Sciences from
Osaka University in 1990, 1992, and 1995, respec-
tively. From 2002 to 2015, he was an Associate
Professor at the Graduate School of Information
Science and Technology of Osaka University. In
2002 and 2003, he was a visiting researcher at the
Department of Computer Science of the Univer-
sity of Kent in Canterbury, and a visiting lecturer
at the School of Computer Science of the Univer-
sity of Birmingham, respectively. Since 2020, he
has been a Professor at the Department of Electrical and Computer Engi-
neering, Shinshu University. His current research interests include formal
methods for software and information system design. He is a member of
IEEE, IEICE, and IPSJ.

C. M. B. Hassen et al. / Executable Counterexample for Java Model Checker

International Journal of Informatics Society, VOL.13, NO.3 (2021) 115-128

Regular Paper

115

Building a Robust RTK-GNSS Infrastructure with Seamless Handover and a
Multipath Detection Approach

Bhagawan Rokaha®, Bishnu Prasad Gautam™ , and Tomoya Kitani"

*Graduate School of Integrated Science and Technology, Shizuoka University, Japan
“The Department of Economic Informatics, Kanazawa Gakuen University, Japan
b-rokaha@kitanilab.org, gautam@kanazawa-gu.ac.jp, t-kitani@kitanilab.org

Abstract - RTK-GNSS is a promising positioning technique
to achieve centimeter-level accuracy. In this technique, a
stationary base station plays a vital role in correcting the
positioning results of a movable user receiver; however, the
base station correction signals are often interrupted, or
delayed due to single-base line area, hardware biases,
environmental factors, and multipath errors. Therefore, we
propose three major new components to improve a user
receiver's positioning accuracy and precision. The first
component detects the status (i.e., healthy or unhealthy
state) of the base station through the internet. The second
component assigns the most favorable base station from
multiple base stations in a seamless approach. The final
component detects the multipath signal using a machine-
learning classifier model. After analyzing the experimented
results, our approach maintained the rover receiver
positioning accuracy within the centimeter-level even after
the base station handover. Similarly, in multipath detection,
around 98% of NLOS and around 95% of the LOS signals
are correctly discriminated. By combining all three
components, we achieved high reliability of RTK-GNSS
positioning in different areas by using continuous correction
signals from the base station and considering only the
visible satellites.

Keywords. RTK-GNSS, Seamless handover, Web-based
monitoring, Reliable infrastructure, Multipath detection

1 INTRODUCTION

Global Navigation Satellite System (GNSS) is an active
research area for navigation, mapping, positioning, and
many other areas that need monitoring and controlling their
location-based services. In the conventional single-point
positioning system, the user's position can be instantly
determined using a pseudorange between the satellite and
the user's receiver. For this, the receivers need a signal from
four or more satellites. In this single-point positioning, the
positioning accuracy ranges from 10m to 30m, as various
factors caused errors in the GPS observation [1]. However,
many applications, including autonomous driving and flying,
precision agriculture, and weather forecasting, require
centimeter-level accuracy, which 1is called precise
positioning. Therefore, we need advanced positioning
techniques to provide highly accurate positioning and
navigation functionalities in those applications. One of the
famous differential positioning systems is the Real-Time

Kinematics-Global Navigation Satellite System (RTK-
GNSS).

A higher resolution distance information called a phase
pseudorange is used instead of the code pseudorange. As
shown in Fig. 1, the precise position, also called fixed
position, of a rover receiver, i.e., user receiver, is calculated
through the received signal from satellites and the correction
signal from the base or reference station.

However, rover receiver position accuracy is degraded
severely because of the interrupted, delayed, or
discontinuous base station's correction data as well as
communication link. In this differential system, correction
data from the base station is affected by a number of factors:
such as coordinate errors, environmental factors, the
reflected or diffracted signals, which results in a less
accurate position (i.e., within a few meters of accuracy),
called a float solution.

Therefore, challenging environments, including snowy,
mountain, forest, and urban areas, are crucial for precise
positioning in RTK-GNSS. Errors that occurred due to these
factors are extremely difficult to solve through differential
correction techniques. For instance, the precise positioning
applications like the drone carrying medicines and
equipment service, aiming to provide medical care to the
remote mountain communities and precisely measuring the
altitude of the mountain, including Mt. Everest, is the
subject of attention in the Himalayan country, Nepal [2], [3].
Similarly, applications like precision agriculture, mapping,
and survey, weather forecasting are gradually increasing in
many countries.

i %,
P satellites &2) @?&
N % N 4
>) N Z
G <%
b §42 &2
2
s b %%
Qr @
S
Op
. ZH)% Baseline vector (V) = o
b Send correction signal En Yo Zy)
— A user/rover
A base/reference /
. station
station

Figure 1: Principle of differential positioning

116 B. Rokaha et al. / Building a Robust RTK-GNSS Infrastructure with Seamless Handover and a Multipath Detection Approach

However, service disruption and false assumptions
caused by different error factors in the base station may lead
a rover receiver to use unreliable correction information
from unhealthy base stations. As a result, it will mislead the
rover receiver as well as degrade the reliability and accuracy
of the base station data.

Furthermore, the base receiver's differential correction
signal is valid for the short-baseline range only, i.e.,
generally considered the area within 10km. Therefore, the
conventional RTK technique is inefficient and cannot ensure
the continuity of the GNSS signal for a moving object that
may operate beyond a base operating range. Besides, no
redundancy of the base station is usually available if the
active base station experiences any malfunctioning or
hardware bias errors.

On the other hand, satellite positioning is still challenging

in urban areas due to signal reflections by buildings or
skyscrapers, so-called multipath error. As a result,
positioning accuracy is severely degraded.
Therefore, focusing on those errors factor of snowy areas
and multipath areas, this paper presents a modality of a
robust RTK-GNSS infrastructure that guarantees continuity
and reliability for precise positioning.

This paper is divided into seven sections. After the first
introductory section, the second section clearly describes the
problem statement, where we discuss the necessity of this
research work. Section 3 gives a brief overview of the past
researches and the preliminary works. Section 4 is an
important section, where we discuss the system approach
with theoretical dimensions of the research. Section 5 and 6
describe the design, methodology, working principle,
characterization, result, and evaluation of this research.

Finally, the last section of this paper gives a brief conclusion.

2 PROBLEM STATEMENT

The reliability and continuity are major concerns in RTK-
GNSS, even though it is widely used in various applications.
Notably, while doing RTK-GNSS experiments in dense
snowfall or high buildings areas, various limitations were
encountered. Therefore, to address the specific problem
through a new approach, the authors mainly focus on three
dominant problems that should be addressed for continuous
and precise positioning.

Receiver

Figure 2: Multipath signals

Time To First Fix Solution

uWith Snow = Without Snow

Mean value
With Snow: 88 sec
Without Snow: 40sec

8

Time (in Seconds)
eoNo
g 8

@
-1

I’
3

-
N
s
AT T
T

10 11 12 13 14 15 16 17 18 19 20 21 22
No. of Experiments

n
- =

o -
-

- u

- T

-

- ﬂﬂ_”_
o NmE—

- S—

Figure 3: Snow effects in time to first fix solution
2.1 Unknown Status of The Base Station

Any problems or errors in the base station affect the
corrective signal used to calculate the rover receiver's
precise positioning. For example, in the mountain or snowy
area with the uneven landscape, hard frost weather, and
chances of heavy snowfall, landslide, earthquake, and
volcanic eruption caused significant errors. Mainly, when
the bunch of snow covered the base station's antenna, the
signal strength was degraded because of the multipath error
induced by the snow surface [4]. Also, if the coordinate of
the base station changed because of landslides or by other
factors, the positioning accuracy of the rover receiver would
degrade due to the inaccurate base station's coordinate.
Similarly, if the running base station experienced any
malfunctioning or hardware errors, no redundancy solution
would be available to detect the base site's status from the
rover end. In addition, when the base station interrupted by
some errors, the recovery time was often several minutes or
even a few hours. Hence, the rover receiver ends up using a
correction signal from that unstable or unhealthy base
station. As a result, positioning accuracy is severely
degraded.

On the other hand, if there is no correction signal from the
base station, we need to visit the actual field to confirm a
base station's state; however, this is not a cost-effective,
reliable, and appropriate solution for real-time applications.
Therefore, ensuring the data continuity and reliability of the
base station under challenging environments is very
important.

Comparing CNR value in snow and without snow case

L —— A =
35
=& CNR With Snow(R13)
CNR_Without_Snow(R13)

- =& CNR_With_Snow(G29)
mWMMﬂM e

e CNR_Without_Snow(G29)

=

CNR (in dB)
B

o

=& (CNR With Snow(E24)
=8 CNR_Without_Snow(E24)

=
=

Figure 4: Snow effects in Carrier to Noise Ratio

International Journal of Informatics Society, VOL.13, NO.3 (2021) 115-128

2.2 Limitation of Base-to-Rover Operating
Range

In the conventional RTK-GNSS, the base and the rover
station need to operate in the same environmental area (i.e.,
generally considered 10km from the base station). Beyond
this range, distance errors and atmospheric conditions at the
base and the rover receiver may significantly vary. These
error factors cannot cancel out through differential
processing. Therefore, the base station data outage is one of
the major concerns, particularly for the moving object. In
the past few years, many researchers have proposed a multi-
network base station adjustment process for the wide area
[5]; however, those methods are challenging to implement in
the actual field and for a smooth handover, i.e., handover to
another base station without dropped signal. Thus, to
provide a continuous correctional signal in a wide area for a
moving object, the authors are concerned with this problem.

2.3 Multipath Error on The Rover Receiver

GNSS satellite signals are subject to reflection and
diffraction, like any other type of electromagnetic wave.
Therefore, in an urban area where the grounds are
surrounded by tall buildings, skyscrapers, or trees, the rover
receiver often faced multipath error. Notably, the reflected
or diffracted signal from those objects causes multipath
errors. In general, the receivers receive both direct and
reflected (or diffracted) signals. As the multipath signal
takes a longer path than the direct signal, an error was
caused in pseudorange measurement, which severely
degrading the GNSS accuracy to several meters [6].

There are mainly two types of multipath signals: Line of
Sight (LOS) multipath signals and Non-Line of Sight
(NLOS) multipath signals, as demonstrated in Fig. 2. For
LOS multipath error, various signal correlation techniques
were proposed to mitigate or minimize the LOS multipath
signal by many past researchers.

However, there is no reliable technique for the NLOS
multipath. Also, it is more crucial than LOS multipath
signals because of the reflected signals. As a result, a broad
range of positioning errors happens. Hence, NLOS
multipath detection and mitigation techniques are required.

Result

Actual Position

Without Snow § T

S

{ ~7.5m Py

m__’O Positioning error

Figure 5: Positioning error caused by Snow accumulation

117

iz)
[=
Server JLotssesodd (1) Monitoring
ystem femecand N Base Station
Pz
| [IS

GNSS Signal |

RuBBSA
Approach
13

2)Base Station
Handover
N Base station

: eceiver
Base Stations Network ased'\é?gel €
R Precise Positioning
Receiver || petoatia | Skdion

Figure 6: System architecture

In summary, to increase the overall performance and
build a robust RTK infrastructure in the mountain and urban
areas, multi-base stations with seamless handover
mechanisms and NLOS multipath detection mechanisms are
essential parameters.

3 BACKGROUND

3.1 Preliminary Research

Our preliminary research proposed a cost-effective and
reliable system that overcomes the conventional RTK-
GNSS infrastructure to enhance positioning solutions [7].

The goal of that research was to evaluate the low-cost
receiver's capability in the harsh receiving condition (such
as challenging weather, multipath, obstruction, etc.) and find
the major problems that happen in the base site [8].
Therefore, we conducted our experiment in two different
weather and geographical regions to demonstrate
positioning accuracy, reliability, and feasibility of the
system's architecture.

Nonetheless, the major problem encountered while doing
an experiment in the heavy snowfall region.

The snow accumulation problem, the signal strength, and
time to first fix solution (TFFS) are negatively affected, as
shown in Fig. 3. Here, TFFS means the time need to get the
first fix solution from the float solution. Similarly, a
significant difference was found while comparing the value
of Carrier to Noise Ratio (CNR) between snow and without
snow state, as shown in Fig. 4. The difference of carrier to
noise ratio is more than 8dB because of the reflected or a
diffracted signal when the snow height on the antenna is
around 15cm.

In the second experiment scenario, we have done our
experiment where GNSS signals are often obstructed by
buildings leading to reflected and diffracted signals. The
observation shows the tendency of a drop in SNR when the
receiver is in the multipath environment. SNR
measurements are smoother when the receiver is in an
obstruction-free environment, as shown in Fig. 5.

We concluded that conventional RTK-GNSS is still
insufficient to provide continuous, reliable, and precise
positioning in those areas from these experimental scenarios
and results. Thus, this research focused on cost-effectively
building a robust RTK-GNSS infrastructure.

118 B. Rokaha et al. / Building a Robust RTK-GNSS Infrastructure with Seamless Handover and a Multipath Detection Approach

00 L Ultrasonic Sensor

=

“w—— Snow height on antenna

Snow height above ground

N /’\“

Figure 7: Snow height measurement scenario

3.2 Related Research

Several previous studies enhance the reliability and
accuracy of the RTK-GNSS technique using different
methods. In RTK positioning, the rover receiver needs to
work within a base operating range, which is a major
constraint for a moving object that works beyond the
operating range. Therefore, many networking techniques

that use multiple base stations were practiced in recent years.

Some of the networking techniques are Master-Auxiliary
(MAC), Virtual Reference Station (VRS), Pseudo-Reference
Station (PRS), which operate with multiple base stations and
provide precise positioning [9]. Quan et al. proposed a
Network RTK system using observations from numerous
continuously operating base stations [10]. Similarly, VRS
based RTK system was also proposed to provide continuous
observations in Malaysia [11]. However, these methods are
challenging to implement, need active communication links,
demanding control center operation, stability issues, and
expensive operating costs. Also, a continuous handover
could be the limitation of these Network RTK systems.
Generally, accuracy drops to float solution from the fixed
solution in the handover process.

Similarly, to mitigate the NLOS multipath error, it is
crucial to identify the NLOS signal from all received GNSS
signals. A new research stream dealing with multipath
detection utilizes an additional sensor, 3D mapping, or
image processing technique. Suzuki et al. proposed a fisheye
camera and omnidirectional infrared camera techniques to
detect multipath signals [12]. However, these detection
techniques are affected by weather, light conditions. The
method of integrating multi-sensors might be helpful in
some conditions but could not solve entirely.

Also, a laser scanner to differentiate visible and invisible
satellites was proposed by Maier et al. [13]. Also, multipath
detection using 3D maps and Aerial LiDAR data were also
practiced in few researches [14]. However, these were
complicated to apply for the moving object and challenging
to integrate in real-time. Some researchers worked on
multiple GNSS signal correlators in a software GNSS
receiver; however, it is challenging to design a special
correlator in the practical field effectively. Therefore, to
address the station-based errors and the base station
handover issue, we felt the necessity of reliable, smoothly
operable, easily applicable, and cost-effective RTK-GNSS

used in different places and scenarios, including Himalayan
and snowy regions.

Thus, we have primarily done our research [15] to analyze
the system architecture and introduced the handover scheme
and multipath detection approach in this research paper.

4 SOLUTION APPROACHES

This section explicitly describes our approaches to
solving conventional ~ RTK-GNSS, especially in
mountain/snowy areas and urban areas, as shown in Fig. 6.
Firstly, to know the base station's status from the rover side
(as described in subsection 2.1), we proposed a base station
monitoring system such that an unhealthy base station could
be detected in the rover end. Secondly, we proposed a
seamless handover mechanism with a multi-base network to
solve the single base-rover range problem (as described in
subsection 2.2). Finally, to solve the multipath error on the
rover receiver (described in subsection 2.3), we proposed
LOS and NLOS multipath detection mechanisms. The
detailed explanations are as follows:

4.1 Detecting an Unhealthy Base Station

The first approach is knowing the base station's status
from the rover end in real-time. When different limiting
factors obstruct the base station, the correctional signal from
that base station consists of many errors. As a result, the
positioning solution in the rover receiver degraded.
Therefore, to make a proper decision and constant alert for
future trouble prevention, we proposed detecting unhealthy
base stations through the internet. Different kinds of sensors
require in this proposed system. For example, we used
ultrasonic sensors and accelerometer sensors, which are
used for snow height measurement and antenna movement
detection, respectively.

After collecting data on the server, sensors' data are used
for two purposes: web-based monitoring and the optimum
base station selection process. Here, we proposed a web-
based base station monitoring technique to monitor the base
station's status manually. Sensors' data are visualized on a
web page and monitored from anywhere, provided that an
internet connection is available. Similarly, a handover
process is needed for the kinematic rover receiver beyond a
base station's baseline area.

Micro-controller with

cellular modem GNSS receiver

i e -Blox ZED Fol
Solar Panel, Controller “GNSS
T B receiver +
Antenna

Power supply

Figure 8: Block diagram of the base station

International Journal of Informatics Society, VOL.13, NO.3 (2021) 115-128

In such conditions, the optimum base station (i.e., a
favorable base station among available base stations) is
needed in the rover receiver to calculate precise positioning.
Therefore, the base station's sensors data are used with the
base-rover range to detect the base station's state. If the
particular sensor data is less than the respective threshold
value, the base station is considered unhealthy. For instance,
the threshold value of snow height is Scm because the signal
strength is decreased faster after that height. For a reliable
system, the physical hardware and data processing method
also have a significant impact. Therefore, we proposed
compact hardware and reliable data processing.

4.2 Seamless Handover

The second component is a processing component, an
algorithm specially designed to assign the most favorable
base station from the list of multiple base stations in a
seamless manner. To achieve precise positioning, we
proposed a Rule-Based Base Station Assignment (hereafter,
RuBBSA) algorithm. In this algorithm, the rule is based on
two major factors: sensors' value and the distance between
the rover receiver and the corresponding base station
(explicitly explained in section 5.5). The first rule ensures
that the sensor's measurement is used to monitor the base
station's physical condition, such as snow accumulation,
battery power supply outage, and the base station's
coordinate. The second rule ensures the operational range of
the receiver.

For instance, when the user moves out from the functional
baseline area and or conditions when the base station cannot
send differential correction information to the rover receiver,
this algorithm assigns a new base station. This processing of
choosing an optimum base station from multiple base
stations is the main target of this algorithm. The next
available optimum base station is assigned by the proposed
algorithm seamlessly and dynamically.

We used two RTK engines on the rover side for this
handover process. In the RTK system, fixed positioning
solution is obtained by using carrier-phase measurements
rather than just pseudorange. However, the processing of
carrier phase measurements is subject to so-called carrier
phase ambiguity, an unknown integer number of times the
carrier wavelength that needs to be fixed. The ambiguity
resolution, which is the crucial factor for precise positioning,
is the process of resolving the unknown cycle ambiguities of
double-difference carrier phase data as integers. There are
mainly three steps to determine ambiguities resolution:
estimating float-valued ambiguities, finding the best integer
ambiguity set, and validating the best ambiguity set. After
validating the ambiguity set, a fixed solution is calculated in
the RTK engine. However, when one base station is changed
to another base station in the same RTK engine while doing
handover, validating the ambiguity set is difficult. Only
float-valued ambiguity occurred for few seconds. As a result,
the positioning solution is dropped into a float solution.
Therefore, to make a handover without losing the fixed
positioning solution, two RTK-engines are needed. Thus,
the proposed mechanism has two RTK-engines to provide
continuous and precise positioning.

119

4.3 Multipath Detection

In order to increase the positioning accuracy of the rover
receiver in a multipath environment, this research also aims
to develop a multipath detection technique. Here, multipath
detection proposed by using different satellite signal features
by differentiating LOS signal and NLOS multipath signal. In
the last decade, many methods have been proposed to detect
multipath signals. Most of the research focuses on a single-
point conventional positioning system by using different
algorithms [16], [17].

Only one receiver is used to calculate its own position in
single-point positioning; therefore, differentiating LOS
signals and NLOS multipath signals are comparatively more
straightforward. However, we need to consider the rover and
the base station's observation data in the RTK-GNSS
technique. Therefore, to classify the LOS and NLOS
multipath signals with high accuracy, we proposed a
machine-learning-based classifier that can differentiate LOS
signals and NLOS multipath signals using significant
features values.

Here, the kernel-based support vector machine (SVM)
classifier is used to differentiate multipath signals. It is
essential to train our data with accurate classification
because, based on the training data, a machine learning
model learned the features and predicts the output
accordingly. Based on the characteristic of CNR, which
says that the signal fluctuates under static conditions; thus,
the differential CNR value (i.c., the difference between base
CNR and a rover CNR value) has been used to detect NLOS
signals. These featured values are applied to the training
process in machine learning.

5 METHODOLOGY

5.1 Building a Compact Hardware

This research has been conducted by building a base
station prototype module consisting of a GNSS receiver
with antenna, micro-controller, and sensors network. In the
rural and the Himalayan region, the continuous power
supply is one of the significant problems. Therefore, a solar
energy source- an easily movable, self-sustainable, and
reliable power source- is used. A micro-controller called
Wio-LTE is used to process GNSS receiver and other
sensors data, which is a prototyping development board with
LTE(4G) communication version of Wio Tracker (Wireless
Input-output) that enables faster IoT GNSS solutions [18].
To monitor each base station's physical condition, we used
various sensors modules in respective base stations. For
instance, ultrasonic sensors are used to predict the base
antenna's snow height, as shown in Fig. 7.

During this process, temperature fluctuation affects the
transmitted sound wave from an ultrasonic sensor. Thus, the
temperature sensor is used to correct the temperature-related
distortion of the measured value. Also, to precisely monitor
the base station coordinate, we used a 3-axis digital
accelerometer sensor that detects orientation, gesture, and
motion in case of natural disasters. Besides that, to check

120 B. Rokaha et al. / Building a Robust RTK-GNSS Infrastructure with Seamless Handover and a Multipath Detection Approach

battery voltage level and charging level, a battery state
sensor is used. To make a compact hardware system, all
sensors are connected to the microcontroller board that
consists of a cellular modem, as shown in Fig. 8. All data
are sent to our server system in real-time. The base station
antenna is fixed correctly in the accurate position.

Similarly, to overcome the multipath errors and fully
receive all visible satellite signals, the antenna is placed in
an open sky environment such that all satellite signals are
received as a Line Of Sight (LOS) signal. This compact
infrastructure consumes deficient power. The base station
system needs 600mA to 2A current with a 5V power supply
at regular communication, making the system operation
longer.

Moreover, the system consists of a low-cost receiver and
digital sensors. The total cost is around $1500. In contrast,
survey-grade receivers cost around $10,000, for instance.
Therefore, our system can be comparatively cost-effective,
movable, and easily installable in regular and challenging
weather areas.

5.2 Data Processing and Management System

In our proposed system, collected sensors data from each
base station is sent to the server system through the internet
connection. Here, we need a proper and continuous
communication link between a base station and a user
receiver for the real-time application. Therefore, we should
select effective communication to provide reliable internet
connection continuously. Considering those factors,
including operational cost, maintenance cost, and the
number of computations needed by the rover and the
processing center, we found that a cellular modem is one of
the appropriate methods in the mountain region. We used
cellular connectivity Soracom, which provides the IoT
network platforms [19].

JavaScript Object Notation (JSON) format is used to
transmit these data in web-based applications such that those
data could be displayed on a web page correctly. The time-
series data shows the base station's past conditions and
present conditions, such that the changing state is visible
and easily compared to the respective sensors' threshold
value. Thus, detecting unhealthy base stations is done before
assigning a base station in a rover receiver. The web-based
graph is plotted on the web browser, which shows that each
sensor's data is being updated with time-lapse. This process
of monitoring the actual state of data is adequate, especially
when the base stations' knowledge is manually needed for
the assignment process.

5.3 Determining of an Optimum Base Station

In this section, the mechanism of relative positioning is
briefly introduced along with the sorting mechanism to
determine the optimum base station.

As shown in Fig. 1, the code pseudorange pp and phase
pseudorange ¢ at base station b to satellite s measured at
epoch to can be modeled by

PB(t0)=25(t0)+2Q5(t0)+AQ° (t0)+A2x(10) (1)

A2 (t0)=0p (to)HAQp (o) TAR* (to) ARy (o) TA° N} @

Where 03 (to), Agj (to), Ae® (to) , Agyp (to), Nj are the
geometric range, orbital errors, satellite-dependent errors,
receiver-dependents errors, and phase ambiguity,
respectively [20]. Also A® is the wavelength, defined as A° =
c/f%, where c is the speed of light and f* is the frequency of
satellite carrier. In relative positioning, the code and phase
correction of the base station for the same satellite at base
epoch tois calculated as

PRC* (o) =03 (to -R3 (to) 3)
PRC (to)=@p(to)-A* P (to) “)

Similarly, in the rover receiver 'r', the code pseudorange pr,
and phase pseudorange ¢r are calculated for the observation
epoch t because the range and range rate correction (RRC)
referring to the base epoch t; are transmitted to the rover
receiver in real-time. At r, the pseudorange, carrier phase,
and the pseudorange correction (PRC) for the observation
epoch t is modeled by

pr(t) = @r (D) +Agy(t) +4e°(1) + Agx(t) (5)
ADi(t) =or(t) +Agr(t) +AQ°(t) + A () +A'NE - (6)
PRC (t) = PRC* (t) + RRCS (to) (t- to) (7

where (t-t0) is defined as latency. After applying the
predicated pseudorange correction PRC® (t) to the measured
pseudorange of the rover receiver, the satellite-dependent
bias has canceled out. Also, the base and the rover receiver
have highly correlated satellite-receiver-specific biases in a
short baseline area. Neglecting these biases, the corrected
code and the phase pseudorange are calculated in the rover
receiver as

AEDT (eorr = Q7(t) + Ay (1) + AN, ®)
Pr(Deorr = p7 (1) + PRC(1) ©

Where Ag3,- () = Ag,(t) - Agy(t) and N3,.= N7 - Nj are the
difference of phase ambiguities [20]. To determine the
coordinate of an unknown point concerning a known point.
Thus, the baseline vector between the base and the rover is
calculated with corresponding position vectors X», and X:
formulated as

X = Xp + Xor (10)
X?’ - Xb .ﬂxbr

Vir = | Y = Yp [= | 2Ypy (11)
Zr T Zb ":"Zbr

Here, the base point coordinates must be accurately
known to calculate the rover receiver coordinate with high
precision. In the case of a kinematic rover receiver, it is

International Journal of Informatics Society, VOL.13, NO.3 (2021) 115-128

continuously moving from one place to another. Therefore,
the positioning information of the rover receiver is updated
in the control unit regularly. Then, the distance between the
rover and each base station is calculated and list out all
neighboring base stations. The least distance is in the
highest priority order. The distance between the rover and
all neighbor base stations is calculated as follows

AD,, = E - arccos[(sin(lat,) - sin(laty)) + cos(lat,) -
cos(laty) - cos(longy,— long,)] 12)

Where lat:, lats, long:, longy are latitude of a rover, latitude
of a base, longitude of a rover, and longitude of a base,
respectively. All values in radians. E is the equatorial radius
of earth and AD,y, is the distance between the rover and a
base station.

Furthermore, the availability of the base station is also
measured through sensors data. For instance, ultrasonic
sensors, voltage sensors, and 3-axis accelerometer sensors
are used in this research. Besides these sensors, the other
sensors can be wused based on geographical and
environmental conditions. The threshold values need to be
entered at the starting time. In this rule of the assignment
process, there are the following three cases.

Case I: Si = Stuand Di < Di+1; optimum base station

Where Si is the output of a cumulative function of sensors
values, the threshold value of Srtu is needed to set after
various experiments. Also, Djis the least distance between
the rover, for ith base station. Similarly, Di+1 is the distance
between the next adjacent base station and rover. In the
above scenarios, if the base station satisfies case I, this base
station is considered as an optimum base station and assign
this base station till the subsequent handover is needed.

Case II: S; < Sty and D; > D;+,; keep and hold (OK)

If the base station satisfies case II, the base station is
considered as an acceptable base station or the next potential
base station. Thus, these base stations are kept and hold for
the next handover. Handover may require while the rover
moved far from the earlier base station and approaches the
adjacent base station. In this case, the earlier base station
will be dropped off, and the adjacent base station will be
handover for the operating base station.

Case II: S; < St ; remove from the list (NG)

If the base station satisfies case III, it is considered
functionless or not a referenceable base station. Therefore,
this base station is removed from the list until it satisfies
cases I or II. This situation may arise due to various reasons
such as due to the accumulation of snow, increase of
distance between rover and base station etc.

5.4 Base Station Assignment Process

121

After successfully determining the optimum base station
through sensors' value and distance measurement, the
handover mechanism is processed. We need to make
configurations for this process such that the correction data
and base station coordinate are streamed in both RTK
engines.

In the RTK system, the base station sends corrections to
the rover via a communication link. This correction signal
enables the rover receiver to compute its position relative to
the base with high accuracy. Radio Technical Commission
for Maritime (RTCM) is the standard format with a binary
data protocol for communication. The output stream should
be changed in RTCM format to send standard messages and
the real base antenna reference point (ARP). Therefore, a
resident type application, str2str of RTKLIB [21], is used to
input and output stream path. The input command seems as

./str2str—intcpsvr://localhost:60021#ubx
-out tcpcli://localhost:52081#rtcm3 -s 0
msg 1005,1077,1087,1097, 1127 -p
34.726598357 137.718089538 97.398

The data from the TCP server in the u-blox format (i.e., the
message format type received by the u-blox receivers and
fully configurable with UBX protocol configuration
messages) as input stream outputs in the RTCM3 format.

Besides that, the coordinate of the base station (i.e.,
latitude, longitude, and height of the base station) and
RTCM messages are streamed. These multiple signal
messages (MSM), as shown in Table 1, are streamed as soon
as they are configured for the corresponding GNSS.

In this approach, the base station's coordinates are changed
when the base station is assigned dynamically. As every
base station consists of a cellular SIM (subscriber
identification module), the unique IMSI (International
Mobile Subscriber Identity) number is used for the
identification of each base station. Here, the base station is
assigned as follows:

Chdist [RTK-engine number] [base station’s
IMSI number]

where chdist is a command to query the status of a
package of a base station to the designated RTK engine;
thus, the RTK engine at the rover side receives the
observation data from that assigned base station, and finally
assigned to the application layer for precise positioning.

B

Primary

»
nsannn®

RTK
: Data Control and : Engine
i Management ¥ processing |4 ﬁ
: Unit e Cotiimitii- Secondary
‘: cation RT_K
: Link Enginc

“,, Server Network System &

Server-side User-side

Figure 9: RuBBSA approach

122 B. Rokaha et al. / Building a Robust RTK-GNSS Infrastructure with Seamless Handover and a Multipath Detection Approach

5.5 Base Station Handover Mechanism

This section explains the principle of the RuBBSA
algorithm and its approach for seamless handover. There are
server backend and user end, as shown in Fig. 9. The server-
side server network consists of two primary units: the data
management and a control unit. The data management unit
is designed to manipulate and manage data. Generally, all
physical sensors data, all base stations coordinate data, and
real-time differential correction data of corresponding base
stations are collected and then manipulated. These data are
processed to the central unit called as control and processing
unit, where the rule is created to specify the most favorable
base station from multiple base stations.

The RTK processing engine is placed on the user side,
where the processing of differential correction signals from
the base station and positioning observation from the rover
receiver is carried. In this proposed system, two RTK
engines named primary and secondary RTK engines are
used to make a seamless handover operation. The primary
RTK engine operates as a default RTK engine that runs until
the handover is needed. The assigned base station from a
control panel is linked with the primary RTK engine to
provide precise positioning in the application layer. The
final target of this research is to make a complete
autonomous handover system; however, in this research, the
server-based handover mechanism is proposed.

System
Initialization
/; N
oSN
No <'ihe system™,
“enabled?”
NS

Read coordinates, sensors data and

execute program
P g ‘\‘-_
/Favorable. No
4 base > Update List
“'_E;laiicn?/'

.

I Yes

-)gtpdare inputs and ontput reading]

_~"Any S, __Yes
. alarms?

S

Read base station coordinate,
sensor data and execute program

[Base station assignment pmcess] F__/-' \\r .
is done ~Favorable. NO
\“-.stnrian'.?..’
Provide positioning T
information through a ‘*‘795
primary RTK engine
Base station is assigned for]
[secondary RTK engine l] s
[Continue the process *
and update informati A

bt

A BRTK ™ o

-

/" engine have m
>

“\ fix solution?

*'Yes

Connection| [Precise AT
st positioning| | needed |
= W \ /S o - ‘

| Primary RTK Engine | das.
Float Fig -------- - Fix Float
Lo
A A T A (Time)
3 Float Fix

Figure 11: Seamless handover

The flowchart in Fig. 10 explains the mechanism of
determining the optimum base station and seamless
handover. In this handover mechanism, primary inputs are
sensors data (i.e., ultrasonic sensor, accelerometer sensor,
and voltage sensor) and coordinates of receivers (i.e., a base
and a rover coordinate). From these inputs data, the base
station availability has checked using the threshold value.
Suppose the base station is a favorable base station based on
the input values. In that case, it is considered the optimum
base station (also called a favorable base station) and
assigned that base station in the primary RTK engine. Here,
we introduced an alarm function to check input values
continuously. The alarm function is not activated until the
currently assigned base station is fulfilling the condition to
be optimum.

On the other hand, if the base station is out of the baseline
area or the sensor's value is less than the threshold value, the
alarm is created, which processes the handover. Thus, the
currently assigned base station is replaced by the next
adjacent base station through a secondary RTK engine. At
that time, a new base station is assigned to the secondary
RTK engine because the first base station is still operating in
the primary RTK engine. In secondary RTK, the positioning
solution is the float for a few seconds; therefore, removing
the base station at the primary RTK engine is done after
getting the fixed solution in secondary RTK. The removing
process is done as

rmdist [RTK-engine number] [base station's
IMSI number]

where rmdist is a command to detach the communication
link between the designated base station and RTK engine;
after that, the positioning solution is handled from the
secondary RTK engine.

Table 1: RTCM message type and description

RTK engine updated and
become primary engine

Figure 10: Flowchart of RuBBSA approach

Message Type Description

RTCM 1005 Stationary RTK reference station
ARP

RTCM 1077 GPS MSM7

RTCM 1087 GLONASS MSM7

RTCM 1097 Galileo MSM7

RTCM 1127 BeiDou MSM7

RTCM 1230 GLONASS code-phase biases

International Journal of Informatics Society, VOL.13, NO.3 (2021) 115-128

i Rover receiver | |
Base coordinates:34.7. Position |
lmwer coordinates: | = -

itel: 34.726363422 137.718337664 76.705!
ite2: 34.726343160 137.719244709 76.38118%
. o x .

Figure 12: Rover Site location: (a) Site 1, (b) Site 2, (c)
Google map

Thus, the positioning solution at the rover receiver is
calculated without any interrupted or dropped signal, as
shown in Fig. 11. These handover algorithms are written in
the C programming language.

5.6 Multipath Detection Using Kernel SVM

The satellite signal consists of both direct and multipath
signals. Therefore, the proper classifier is needed to mitigate
multipath signals. This research proposed a multipath
detection technique by using the classifier method. We have
acknowledged that many researchers proposed a multipath
signal detection method with different algorithms. They
proposed a method such as detecting NLOS using
observation data and existing 3D building data [14].
However, the process of detection is complicated and
lengthy. Some researchers also proposed multipath detection
methods using additional sensors [22]; however, those
methods are complicated in differential positioning
techniques in the practical field. Therefore, we proposed a
practically implementable classifier without adding any
additional sensors or hardware devices.

Figure 13: Mask Making; (a) Site 1, (b) Site 2

123

Amauhum!!eum _ Itemsperpage 1000 Y
Select the relevant sensors data

oHn @b Wo @k Bk @sousgn @i

| 20200030 19:26:56
N [
W Temp. E
B— e 0
| e a1
I Acxz o1
W SoouHeg! 281
W 83

@
=
@
4
%
<]
@
14
@
@
@
=
@
@
(-3

Figure 14: Graphical view of sensors data on webpage

In order to classify multipath and direct signals, we
proposed a method that utilizes a classifier based on a
machine learning algorithm. We used machine learning
algorithms that can deal with linearly separable and non-
separable data, called the kernel-based support vector
machine (SVM). The reason behind this classifier is that the
satellite signal may not always be linear. Thus, the data
might not classify with a simple linear method to
discriminate correctly.

Therefore, we need an algorithm that can deal with higher
dimensions to make inseparable to separable form. So, we
used kernel SVM in this work.

The kernel SVM is a supervised machine learning
algorithm mainly used for classification purposes because it
tries to learn similarities between datasets, and those become
support vectors. Those support vectors are the data points
that define the position and the margin of the hyperplane.
The optimum hyperplane is the one that maximizes the
margin, under the constraint that each data point must lie on
the right side of the margin. Thus, only the support vectors
are enough to make a classification. Here, multiple features
data are used while training the classifier. The details of the
multipath detection using kernel SVM, and features data are
as follows.

Figure 15: Experimental scenario for handover process

124 B. Rokaha et al. / Building a Robust RTK-GNSS Infrastructure with Seamless Handover and a Multipath Detection Approach

5.6.1 Differentiate CNR

We used signal strength as one of the major features data.
In GNSS signal, correlations are essential for receivers to
synchronize with the incoming signal, generate GNSS
observables data, and retrieve the navigation message.
Therefore, satellite signal strength is related to the
magnitude of the correlation peak. In general, the signal
strength of the direct signals is stronger than that of the
reflected or diffracted signals. Even in a single GNSS, the
signal strength called Signal to Noise Ratio (SNR) is widely
used to exclude the multipath signals. Similarly, the signal
strength called Carrier to Noise Ratio (CNR) is used in the
RTK system. However, only considering the CNR value of
the rover receiver is not practical because in some cases,
when the satellites are very close to the mask line, we could
not differentiate easily through fisheye image only. At that
moment, the signal strength of the NLOS signal may higher
than the LOS signal due to random errors. Therefore, we
used the signal strength difference between the base and the
rover receiver to correct those signals. Here, differentiate
CNR is calculated by subtracting rover receiver's CNR with
base station's CNR.

5.6.2 Elevation Angle

The signal strength is also dependent on the satellite
elevation angle. The elevation angle of the antenna of a
ground receiver has a peak value when the satellite is just
above it and gradually decreasing. After some time, it
reaches an elevation angle of zero. In the GNSS signal, as
the elevation angle increases, the received signal strength
keeps increasing. The signal strength is maximum when the
satellite is just above the antenna. Previous researchers,
Sheng-Yi Li et al., derived the analytic and mathematical
relation between elevation angle and signal strength in their
research work [23]. Therefore, we used elevation angle as
one of the crucial features.

5.6.3 LOS and NLOS State

We also need to know the LOS and NLOS signals to train
our machine learning model with these features' matrix.
Therefore, a Fisheye camera is used to take a fisheye view
image, which has finally used to determine the satellite LOS
and NLOS state. Here, to find a distinct state between LOS
and NLOS signals, the following procedures are processed.

A. GNSS data collection

First of all, we need to collect data from the base and the
rover receiver. Here, A rover receiver is placed in the
multipath environment to receive both direct and multipath
signals. A base station is placed in an open sky area, such as
the base rover, for direct signals only.

B. Analysis of Fish-eye View Images

After the data collection process, we need to distinguish
the signal state, 0 for NLOS and 1 for LOS signal, of the
rover receiver to use as a training data set. Therefore, the
fisheye camera is used to capture the sky view from the

rover receiver. Fisheye image and position of rover station
are shown in Fig. 12. To estimate satellites' orientation (both
NLOS and LOS satellites), we need to make a mask that
differentiates an obstacle in a fisheye image. Thus, we need
to adjust the azimuth of an image with an antenna by using
an open-source platform called RTKLIB [21]. After that, the
process of masking is carried out with the corrected
binarized image, as shown in Fig. 13. The red line is a mask
line that differentiates the obstacle's clear sky view and
presence. In our case, obstacles are buildings and trees.

C. Extraction of NLOS features and Labeling

After that, the position of the satellite is estimated. The
satellites found in a clear sky area are considered LOS
satellites and marked as LOS signals. Similarly, the
satellites which are found other than clear sky area are
considered NLOS satellites.

Furthermore, the receiver's signal strength is varied by the
satellite elevation angle due to differences in path loss and
the antenna gain patterns. Therefore, the elevation angle is
used as the next feature value while training the classifier.

5.6.4 Outline of Kernel-SVM

In the machine learning process, the data labeling process
is essential to improve accuracy and efficiency. The main
challenge is to decide which features data are more
responsible and make the overall performance of a
predictive model. Our model uses the matrix of features, i.e.,
elevation angle and differentiate CNR value, with dependent
variable vector, i.e., the NLOS and LOS state by the fisheye
image as a features data. Here, LOS and NLOS states are
predefined target attributes used for training the algorithm
that we will predict satellite states from future satellite data.
We mainly focused on features data, training data ratio, and
kernel tricks to make the correct label for learning data. First,
we chose responsible features data, then we classified train
and test set data in maximum performance ratio, i.e., 80% of
our data are used for the training process, and the rest are for
the test process. Finally, we trailed with different algorithms
such as decision tree, naive Bayes, K-nearest etc., algorithm;
however, we found the best result in the Gaussian radial
basis function (RBF) kernel trick technique. SVM uses a
Gaussian radial basis function (RBF) kemel trick technique
to transform the input data in this classifier approach.

Primary RTK Engine LB B [ECRR

Positioning . = 5 5
Solution 0 T RTX0NA) ver demoS b33 ATK Moo X

Paranete ™ 3
X: -3681988.346 m
1 $530728.131 m
yi 3613511269 m

Coordinate of
Base station 1 "\

& sy

Figure 16: Result in primary RTK engine

International Journal of Informatics Society, VOL.13, NO.3 (2021) 115-128

Secondary RTK Engine W ot

Positioning % RTKNAMI ver dema’ b33 25 ATK Moitor X
Solution . " %
Selutn a | bzl :

X -3882309 564 m.
Y 3531587461 m
zZ 3612365.356 m

Coordinate of | | |
Base station 2 ©

(B @ Mark,, @ pot

Figure 17: Results in secondary RTK engine

As a result, the optimal bounds of the target classes are
obtained to classify nonlinear data, which we consider the
right label for our system. Also, feature scaling is used to
standardize datasets. The detailed working environments
and results are described in the next section.

6 RESULTS AND DISCUSSIONS

To test the proposed system's performance, the base station
was set up and tested in the practical field. A set of task
actions and obtaining results are described in the following
sub-section.

6.1 Discussion of Monitoring System and Its
Performance

Base stations are equipped with digital sensor network
systems that were deployed throughout all base stations. We
have considered three significant problems in the mountain
and snowy regions that affect the base station conditions.
These problems are (1) snow accumulation, (2) natural
disasters, and (3) power outage problems. Various cost-
effective and easily applicable sensors are used to address
these problems concretely. To check the monitoring
system's performance, we have done our experiment in the
dense snowy placed named Wakkanai, Hokkaido, where
there was heavy snowfall, dense fog, and cold weather. We
have done that experiment to check the performance of the
prototype on the snowy area that consists of multiple sensors
with a cellular RTK receiver. The main goals of this
experiment are (1) remotely monitor the base stations'
conditions (such as snow level on antenna, antenna's
orientation, power supply status, etc.) in real-time, (2) send
the satellite signal of the base receiver to the server system
using a cellular network.

In our system, the microcontroller works with a sketch
file that creates a data feed from the ultrasonic sensor,
accelerometer sensor, and voltage sensor. Here, an
ultrasonic sensor provides snow height levels. Similarly, the
accelerometer uses for detecting the orientation, gesture, and
motion of the antenna. Those are the ground data that we
used to monitor the base station. Similarly, the GNSS
receiver, which is supposed to work as a base station, is
embedded with a cellular LTE model to send the satellite

125

signal to the server using a cellular network. Those sensors'
data are sent to web-based applications and displays on a
web page correctly.

These data are received as byte-type data. Therefore, byte
type data is decoded in Harvest's GUI and displayed as a
column of primarily processed data. These data can be saved
to the local file or own server system. Finally, those data are
displayed in graphical form were shown in Fig. 14. Also, the
sensors' data are used to detect the healthy or unhealthy state
of the base station.

As a result, the optimum base station could be assigned
to a rover receiver. From this experiment, we checked
hardware and software performance regarding sensors-based
base stations. We concluded some bits of knowledge such as
sensors accuracy and its real-time performance.

First of all, our monitoring system in the snowy region is
perfectly worked. We were able to collect data and monitor
it in real-time through the sensors. Secondly, the wireless
data collection using the cellular network to server system is
smoothly done for both cases, sensors and GNSS signal.

6.2 Discussion of Seamless Handover and Its
Performance

In order to make a robust RTK infrastructure, we need to
address the networking mechanism of the base station.
Therefore, we proposed a seamless handover mechanism
between two or more base stations in network cellular RTK.
After the monitoring system, proposed algorithm, its
practical use, and performance evaluation were done with
static and kinematic rover receivers, as shown in Fig. 15.

We tested the handover process, system's functionality,
and performance concerning the RTK accuracy. To test the
performance of the proposed algorithm, we have done our
field test experiment in Hamamatsu, Japan, where the
surrounding environment contains tall buildings and dense
traffic. In our experimental kinematic scenario, two static
base stations and one kinematic rover receiver are used. For
this experiment, the base station assignment process was
computed manually through a server system.

At first, we have connected all base stations in the control
server system where available base stations are displayed
with their unique identity. As every base station consists of a
cellular module as an internet provider, the unique IMSI
(International Mobile Subscriber Identity) number is used
for base station identity. Basically, a base station is assigned
to the primary RTK engine.

Keenel SV (et setatel)

0 = NLOS signal
1= LOS signal

Blue hyperplane for NLOS signal(0)
Purple hyperplane for LOS signal(1)

Figure 18: Experimental results of site 1

126 B. Rokaha et al. / Building a Robust RTK-GNSS Infrastructure with Seamless Handover and a Multipath Detection Approach

Kernel SVM (Test set-site2)

0 = NLOS signal
1= LOS signal

Kermel SYM (Test set-site?)

06 0.3 10
Elevation Angle

Earrier to Noise r

s’ Blue hyperplane for NLOS signal{0)
1 = Purple hyperplane for LOS signal(1)

-1 0
Elevation Angie

Figure 19: Experimental results of site 2

This selected base station started a connection to the rover
receiver and got a fixed solution after a few seconds, as
shown in Fig. 16. After getting a fixed solution in the RTK
engine, the positioning information is ready to use by
applications. At the time of handover, the new base station
is assigned through the server system to the user end. The
communication link is established to the secondary RTK
engine because the first base station is still operating in the
primary end.

In this case, the secondary RTK engine receives
correctional information from a base station and provides
the fixed solution, as shown in Fig. 17. After getting a fixed
solution in the secondary RTK engine, the primarily selected
RTK engine went to ideal mode. The secondary RTK engine
starts its positioning solution and becomes the default RTK
engine. An open-source program package of RTKLIB
library with a program package is used as RTK engines.

In our experiment, we used two base stations at a fixed
location and near each other. However, those two base
stations might not be consistent; thus, the precise positioning
solution could be different in the primary RTK engine and
the secondary one. Therefore, to make a seamless handover
on that condition, we need to calculate the positioning error
in both RTK-engine, such that at a point, the positioning
error is conceding and become minimum; thus, handover
could be done continuously. For instance, if we plot the
positioning solution of the primary RTK-engine with the
positioning solution of the secondary RTK-engine, the
difference in positioning solution can be calculated and vice
versa.

Table 2: Processing components

Name Description
Features’ Differential CNR, elevation angle,
data azimuth angle, distinct state of
NLOS(0) and LOS(1)
Programming Python (V. 3.7.7)
language
Libraries NumPy (v. 1.16.4), Matplotlib (v.

3.1.0), and Pandas (v. 0.24.2)
Test set value 0.20

kernel Radial basis function (RBF)
Computer Windows 10, 16GB RAM, i7-8550
environment

From this experiment and result analysis, we concluded
that the seamless handover is possible with two RTK
engines in a simply smart way. If we combine both the
monitoring and seamless handover mechanism, this
development may upgrade the performance of network RTK
to a new level.

6.3 Multipath Detection and Its Performance

The classification results of the kernel SVM-based
classifier are shown in Fig. 18 and Fig. 19. We have chosen
those satellites for both experiment areas, which had
changed their position from being LOS to NLOS or vice
versa. Observation data from the rover receiver and base
receiver is converted into an excel file to prepare a dataset
for training. Data and time, satellite number, azimuth,
elevation angle, differential CNR and the distinction state
for LOS and NLOS signal are used as the training dataset.
Here, the distinction set is marked O for NLOS and 1 for the
LOS satellite. The processing components are shown in
Table 2. To split the dataset into the train and test set, we
used a test set value of 0.20 (i.e., 80% sample data are used
for the training set, and 20% existing data is set for the test
set).

After that, feature scaling is applied to normalize the
features data (i.e., independent variable) with a particular
range and also helps in speeding up the calculations in an
algorithm. After that, we applied the kernel SVM model is
created and applied to the training data set. The
experimental results in Site 1 and Site 2 are described in the
following section.

A. Experimental results in Site 1

After sufficiently train our kernel SVM model, the test
experiment is done for an hour of data (excluding
observation data for the same elevation angle). The result of
the classifier is shown in Fig. 18. To analyze the result, we
used a graphical view and confusion Metrix. We found that
98% of NLOS data and 90% of LOS signals are predicted
correctly.

B. Experimental results in Site 2

Similarly, the experiment is carried out on Site 2. For this
experiment, three hours of data are used to train the model.
The experimental result is quite improved while using all
experiment data (i.e., every CNR value is used regardless of
the same elevation angle) shown in Fig. 19. After analyzing
the results through the confusion matrix, we found that 99%
NLOS and 97% LOS signals are predicted correctly. Also,
multiple experiments were conducted to analyze the
accuracy of the prediction. On average, 98% NLOS and
95% LOS signals are predicted accurately.

7 CONCLUSION

This research has presented the novel perspective to build
a reliable RTK infrastructure that is applicable in
snowy/mountain and urban areas. We proposed three new
components into the system to address the issues of those

International Journal of Informatics Society, VOL.13, NO.3 (2021) 115-128

areas, especially targeting the reliability and higher
positioning accuracy for movable objects.

Firstly, we practically implemented a mechanism of
detecting an unhealthy base station in order to monitor its
availability. We have practically checked the performance
of sensors embedded cellular RTK base station in Hokkaido,
Japan. We used different sensors in the base site to monitor
its status through the internet. Those data are used for web-
based monitoring purposes, such that a base station's state
(i.e., healthy, or unhealthy) is easily noticeable on the user
side. Experimental results confirmed that the base station's
availability is regularly ensured in real-time.

Secondly, we proposed an algorithm to assign the
optimum base station from multiple base stations in order to
provide continuous and high accurate positioning for a
portable rover receiver. The actual field experiment was
done in a network RTK system to explore a seamless
handover mechanism in Hamamatsu, Japan. The concept of
assigning optimal base station is based on two factors: base-
rover distance and sensors value. For the seamless handover,
we proposed the usage of two RTK engines on the user side,
such that the positioning accuracy was maintained at
centimeter-level before and after handover.

Thirdly, the multipath detection model is proposed as a
final component of our robust infrastructure. A new method
of distinguishing the LOS and the NLOS multipath signals
was developed to improve RTK-GNSS positioning accuracy
in urban environments. A classifier based on the kernel
SVM technique is proposed using receiver signal strength
and its elevation angle. As a result, around 98% of the
NLOS multipath signals and 95% of the LOS signals were
correctly classified. From the experimental results, we have
confirmed that the proposed technique can effectively
predict future CNR and helps to mitigate multipath signals.

By combining these three components' results, we have
confirmed that our approaches significantly impact building
a robust RTK-GNSS infrastructure for continuous and
precise positioning. Also, we have verified that continuous
correctional signals and precise positioning in challenging
environments can be achieved from our method for a
movable object.

ACKNOWLEDGMENT

This research work was supported by JSPS KAKENHI
Grant Number JP17H01731.

REFERENCES

[1] P. P. Das and S. Nakamura, “Analysis of GPS
Single Point Positioning and Software
Development,” [ject, vol. 7, no. 1, pp. 3440 (2016).

[2] U. Pudasaini, “Drones Optimized Therapy System
(DrOTS): Use of Drones for Tuberculosis Diagnosis
in Nepal,” Int. J. Hum. Heal. Sci., vol. Sup. Issue, p.
14 (2019).

[3] D. Jonathan, “Trimble: Mapping Everest,” Int. Work.
Meas. Height Sagarmatha (Mt. Everest) GNSS Appl.,
pp.1-14 (2017).

[4] T. Yoshihara, H. Motoyoshi, T. Sato, S. Yamaguchi,
and S. Saito, “GAST-D integrity risks of snow

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

127

accumulation on GBAS reference antennas and
multipath effects due to snow-surface reflection,” in
International Technical Meeting, pp.112—120 (2013).
H. He et al., “VRS technology based on multi-base
station network and its error analysis,” in Joint
Conference of SPAWDA 2009 and 2009 China
Symposium on Frequency Control Technology, pp.
288-292 (2009).

G. Zhang and L. Hsu, “Adaptive GNSS/INS
integration based on supervised machine learning
approach,” in International Symposium on GNSS, pp.
1-26 (2017).

B. Rokaha, B. P. Gautam, and T. Kitani, “Building a
Reliable and Cost-Effective RTK-GNSS
Infrastructure for Precise Positioning of IoT
Applications,” in 12th International Conference on
Mobile Computing and Ubiquitous Network (ICMU),
pp-1-4 (2019).

J. Jackson, B. Davis, and D. Gebre-Egziabher, “A
performance assessment of low-cost RTK GNSS
receivers,” in IEEE/ION Position, Location and
Navigation Symposium (PLANS), pp.642—649
(2018).

Y. Du, G. Huang, Q. Zhang, Y. Gao, and Y. Gao,
“A new asynchronous RTK method to mitigate base
station observation outages,” Sensors, vol. 19, no.
15, p. 3376 (2019).

Y. Quan, X. Meng, L. Yang, and S. Stephenson,
“Network RTK GNSS Quality Assessment,” in
European Navigation Conference, pp. 1-13 (2013).
S. A. H. Sulaiman, M. A. Mustafar, T. A. T. Ali, M.
A. Abbas, and H. Z. M. Shafri, “Practical accuracy
of VRS RTK outside the Malaysian Real Time
Kinematic ~ Network (MyRTKnet),” in 5th
International Colloquium on Signal Processing and
Its Applications, pp. 395-399 (2009).

T. Suzuki and N. Kubo, “N-LOS GNSS signal
detection using fish-eye camera for vehicle
navigation in urban environments,” 27th Int. Tech.
Meet. Satell. Div. Inst. Navig. ION GNSS 2014, vol.
3, pp. 1897-1906 (2014).

D. Maier and A. Kleiner, “Improved GPS sensor
model for mobile robots in urban terrain,” in EEE
International ~ Conference on Robotics and
Automation, pp. 4385-4390 (2010).

A. Sahni, K. Nakaaki, and T. Kitani, “Enhancing 3D
Maps using RTK-GNSS to help improve the
Position Solution in Urban Areas,” Proc. Int. Work.
Informatics, pp. 63—68 (2019).

B. Rokaha, B. P. Gautam, and T. Kitani, “Enhancing
RTK-GNSS Infrastructure in Snowy and Mountain
Region Through Rule-Based Base Station
Assignment Approach Graduate School of
Integrated Science and Technology , Shizuoka
University , Japan Department of Economic
Informatics , Kanazawa Gakuen Univ,” in
International Workshop on Informatics (IWIN2020),
pp. 101-108 (2020).

Y. Quan, L. Lau, G. W. Roberts, X. Meng, and C.
Zhang, “Convolutional neural network based

128 B. Rokaha et al. / Building a Robust RTK-GNSS Infrastructure with Seamless Handover and a Multipath Detection Approach

multipath detection method for static and kinematic
GPS high precision positioning,” Remote Sens., vol.
10, no. 12 (2018).

[17] L. T. Hsu, “GNSS multipath detection using a
machine learning approach,” [EEE Conf. Intell.
Transp. Syst. Proceedings, ITSC, pp. 1-6 (2018).

[18] Faire Shenzhen, “Wio LTE Cat.1,” the first maker
faire in China, 2012. [Online]. Available:
http://wiki.seeedstudio.com/Wio LTE Cat.1/.

[19] Amazon AWS veterans and Telco engineers,
“Soracom: IoT cellular Connectivity Provider.”
[Online]. Available: https://www.soracom.io/.

[20] B. Hofmann-Wellenhof, Elementary Mathematical
Models for GNSS Positioning (2018).

[21] T. Takasu, “RTKLIB ver. 2.4.2 Manual. Tokyo
University of Marine Science and Technology;

Tokyo, Japan” (2013).
[22] T. Suzuki, M. Kitamura, Y. Amano, and T.
Hashizume, “Multipath mitigation using

omnidirectional infrared camera for tightly coupled
GPS/INS integration in urban environments,” 24th
Int. Tech. Meet. Satell. Div. Inst. Navig. 2011, ION
GNSS 2011, vol. 4, pp. 2914-2922 (2011).

[23] L. E. O. S. Systems, S. Li, and C. H. Liu, “An
Analytical Model to Predict the Probability Density
Function of Elevation Angles for,” vol. 6, no. 4, pp.
138-140 (2002).

(Received November 11, 2020)
(Accepted September 6, 2021)

Bhagawan Rokaha received his bachelor's degree
in Electronics and Communication Eng. from the
Department of Eng., Kathmandu Eng. College,
Tribhuvan University. He has completed his
Master's degree in computer science from Shizuoka
University and joined Mitsubishi Electric in April
2021. He is currently a member of Kitani
laboratory, Shizuoka University, conducting the
research on improvement of RTK-GNSS and the
other GPS-related subjects. He is also planning to
do a Ph.D. in the near future. His research interest
includes Intelligent Transport System, Cellular Network-RTK, Next
Generation Train Control and Monitoring System (NG-TCMS), and
Automotive Software Architectures. He is a member of IPNTJ, and Sakura
Science Club.

Bishnu Prasad Gautam received his bachelor's
degree from Wakkanai Hokusei Gakuen University.
He received his Master's degree and Ph.D. in
Computer Engineering from Shinshu University.
He is currently working as Assoc. Prof. at
Kanazawa Gakuin University, and he is a member
of IEEE, IPSJ, and TAENG. His current research
interest includes Sustainable Computing, Network
Architecture, Network Security, and IoT.

Tomoya Kitani was born in 1979. He received his
associate degree in Engineering from Nara National
College of Technology in 2000, Master's degree in
Information Science and Technology, and Ph.D.
from Osaka University in 2004 and 2006,
respectively. He is currently an associate professor
at the College of Informatics, Academic Institute,
Shizuoka University. His research interests include
Intelligent Transport Systems for Motorcycles,
Global Navigation Satellite Systems, Computer
Networks, and Embedded Systems. He joined the
Information Processing Society of Japan (IPSJ) in 2003. He is a committee of
the Special Interest Group of Intelligent Transport Systems and Smart
Community (SIGITS) of IPSJ. He is also a committee of the Motorcycle
Dynamics Division, Society of Automotive Engineers of Japan (JSAE). He is
a member of the IEEE, IPSJ, IEICE, and JSAE.

International Journal of Informatics Society, VOL.13, NO.3 (2021) 129-138

Regular Paper

129

Evaluation of Autonomous Control of Server Relocation
for Fog Computing Systems

Kouki Kamada®, Hiroshi Inamura¥, Yoshitaka Nakamura*

tGraduate School of Systems Information Science, Future University Hakodate, Hakodate, Japan
tSchool of Systems Information Science, Future University Hakodate, Hakodate, Japan

Abstract - Fog computing, which extends the paradigm of
cloud computing to the edge of networking, has been pro-
posed, and its research has been active. In the field of net-
working, research on Content Centric Networks (CCN) has
been conducted. CCN have been shown to be able to handle
cached content naturally within the network, reducing traffic
and latency. However, in today’s Internet, dynamic content
with dynamic services is indispensable. A system that capa-
ble of handling dynamic services is desired by incorporating
the way of handling computational resources in fog comput-
ing into CCN. In this paper, an autonomous control scheme of
server relocation for fog computing systems is proposed. We
study the optimizing quality of service by allowing services
running on the network to be dynamically relocated. Our ns-
3 simulations show the fairness between users achieved and
the reduction of the average response time on non-uniform
computer resources with three use cases.

Keywords: Contents Centric Network, Fog Computing,
In-Network Caching, Server Relocation

1 INTRODUCTION

The number of IoT devices, which is 27.4 billion as of
2017, is expected to increase to about 40 billion by 2020[1].
For these large volumes of data generated by IoT devices,
processing-intensive architectures such as cloud computing
do not take advantage of the processing power of the edge and
the latency from the point of data generation to the remote
data centers cannot be ignored. Therefore, fog computing,
which extends the paradigm of cloud computing to the edge
of the network, has been proposed and actively studied[2].

In the field of networking, research on CCN (Content Cen-
tric Networks) such as NDN (Named Data Networking) has
been carried out instead of the conventional IP address-based
architecture[3]. It has been shown that CCN can naturally
handle cached content in the network by using location- in-
dependent content as an identifier, which capable of reducing
traffic and latency.

We proposed an autonomous control of server relocation
for fog computing systems[4]. In addition, we improved the
autonomous control of server relocation to transfer services
on the fog network where the processing capacity is hetero-
geneous, so that the service transfer is commensurate with the
required processing capacity[5].

In this paper, to optimize end-user QoS, we control server
transfers in a fog computing environment to achieve both short-

ening of the average response time and fairness between users.
For this purpose, we set up three use cases to examine the
fairness between users in uniform computer resources, the re-
alization of shortening the average response time in hetero-
geneous computer resources, and the realization of fairness
between users and shortening the average response time in
heterogeneous computer resources, respectively.

2 RELATED WORKS
2.1 Fog Computing

In fog computing, the delay time for execution is reduced
by selecting and transporting the points necessary for the ex-
ecution process. For example, in wireless sensor and actuator
networking, simple processing should be performed at inter-
mediate nodes, such as fog nodes, before the data collected
by sensor nodes are transferred to the cloud. The appropri-
ate placement of the processes at the intermediate nodes im-
proves the command response time for actuation, compared
with it is executed at cloud. There is another technique called
code-offloading[6]—[9]. Code-offloading is the optimal use of
resource-constrained mobile devices. This technology aims
to improve the energy efficiency and execution speed of ap-
plications. In a mobile application, a part of the application
code will be offloaded to the node on fog that has more com-
putational resources to execute the code, rather than running
on mobile devices. With the decision, it is possible to save re-
sources such as batteries in mobile devices. In fog computing,
the optimal allocation of computational resources is a focus,
but there has been no discussion on the optimal placement of
content.

Code Bubbling Offload System F. Berg et al.[9] focused
on the fact that only two or relatively simple, restrictive sys-
tem models consisting of three devices have been considered
in previous code-offloading techniques. They argue that n-
tier architectures become interrelated when multiple classes
of various highly distributed resources take advantage of code
offloading. For example, the smartwatch (tier 1) connects to
the smartphone (tier 2) via Bluetooth. Its smartphone con-
nects via Wi-Fi to a car (tier 3) connected to an edge server
(tier 4). In addition, an edge server is connected to a server
in a data center (tier 5) across 4G mobile communications
and fixed networks. Heterogeneous devices in such an n-tier
system differ greatly in terms of energy and computational
resources. In this example, they have tiers 1 to 5, but the

130 K. Kamada et al. / Evaluation of Autonomous Control of Server Relocation for Fog Computing Systems

complexity of the tiers will increase typically from very lim-

ited to virtually unlimited. Therefore, they targeted an n-tier

environment containing highly distributed heterogeneous re-

sources with different performance characteristics and cost re-

lationships code offload system proposed CoBOS (Code Bub-

bling Offload System). This proposal includes a concept called
code bubbling.

Code bubbling[9] moves code dynamically and adaptively
towards more powerful and more distant tiers, enabling an
efficient and scalable code-offloading in n-tier environment.
CoBOS decreases the energy consumption by 77% and the
execution time by 83% for code-offloading in an n-tier envi-
ronment.

This research aims to optimize the execution point in mo-
bile applications by offloading the code components of the ap-
plication to a stronger tier at runtime. Therefore, we thought
that we could optimize the execution point of the services by
considering an architecture that executes the services running
in the cloud closer to the user.

2.2 CCN

V. Jacobson et al.[3] proposed a CCN that does not use the
traditional IP addressing architecture and Two types of CCN
messages, Interest and Data, are used in the CCN communi-
cation. This is done by a protocol that is based on the Mes-
sages can be sent and received through the FIB(Forwarding
Information Base), CS(Content Store), PIT (Pending Inter-
est Table) to send the data back to the requester, three main
data structures are used. Using these data structures, CCN
exchange messages between Interest and Data. The result re-
tains the simplicity and scalability of IP but offers much better
security, delivery efficiency, and disruption tolerance. In this
way, CCN put content closer to the user, which allows static
contents to be disseminated. However, to treat the running
system, we need to care the internal state to continue the pro-
cess, it is not possible to handle in the same way to provide
dynamic content and services.

There is research on cache efficiency in CCN and how to
route Interest packets efficiently[10]. These studies have been
discussing the treatment of static content and how efficiently
distributed content can be considered as transparent, and there
is no discussion on how dynamic services can be distributed
and deployed on the network.

2.2.1 Service over Content-Centric Routing

In host-oriented communication, technologies such as repli-
cation of content and services, caching services, load bal-
ancing, and routing of content requests have been enabled
by the introduction of applications (e.g., CDN and P2P), but
the cost of managing and operating the network is high. Two
paradigms, CCN and SCN (Service Centric Network)[11], are
used to solve these problems.

If content and services are treated separately, it is not pos-
sible to show the relationship between content and services.
In practice, services generate new content or perform various
functions on existing content, just as some services perform

various functions on existing content, but despite the deep re-
lationship between content and services, there is a problem of
creating a content-service divide and the gap between CCN
and SCN needs to be bridged. Therefore, S. Shanbhag et
al. proposed Services over Content-Centric Routing (SoC-
CeR)[10]. The SoCCeR has added a new ant colony opti-
mization[12] based service routing control layer on top of the
CCN to manipulate the routing table for Interest messages.
Without affecting the content request and retrieval capabilities
of the CCN, they show that they can add SCN capabilities,
service requests selectively to service instances with lighter
loads and is highly responsive to network and service state
changes. However, there is no discussion of how to deploy
distributed service instances on the network.

2.2.2 PiGeon

A platform for service orchestration is proposed that addresses
the challenges of CCNs in delivering dynamic content and
services. M. Selimi et al. propose a Docker container-based
PiGeon platform that extends CCN to seamlessly deliver, cache,
and deploy at the network edge[13]. PiGeon consists of three
types of components: a service controller that monitors the
network topology and resource consumption of nodes for ser-
vice deployment, a service execution gateway for executing
service instances at the network edge, and a forwarding node
that forwards user requests to nearby caches and other con-
tent. The service provider uploads the service to the service
controller as a prelude, and the service controller uses the de-
cision engine to decide when and where to place the service
in a service algorithm based on the monitoring data.

The PiGeon platform has a service controller as a single
point of failure. If a service controller is isolated from the
network, the service is not relocated. It is necessary to regis-
ter the service execution gateway with the service controller
in advance, and the monitoring information must be sent pe-
riodically from the service execution gateway to the service
controller. In medium-sized networks, such as the 80-node
experiment in their previous work[14] and the 32-node net-
work in their study, the effect is more than the traffic of mon-
itoring information, but in large networks, the traffic of mon-
itoring information is rapidly increasing and the scalability to
the network is low.

2.2.3 Necessity of Fog Computing and CCN Integration

In order to solve the problems we have seen from the research
mentioned so far, it would be useful to consider an architec-
ture that allows us to control the deployment of services run-
ning in the cloud and dynamically redeploy them as needed.
For example, it may be possible to optimize the point of exe-
cution of services by running them closer to the user.

Since the CCN is based on the idea of replacing the cur-
rent TCP / IP with the CCN, there are several discussions on
static content caching schemes. However, in today’s Inter-
net, which is created by real-world TCP / IP, dynamic content
with dynamic services is essential. For example, there is a
web page that authenticates the user and displays informa-
tion appropriate for the user. We wondered if a static content

International Journal of Informatics Society, VOL.13, NO.3 (2021) 129-138

caching scheme is not enough to replace the current Internet
with a CCN because of the large amount of these dynamic
contents. In the study of fog computing, there is little dis-
cussion on the issue of how to place data on a fog network.
Therefore, we believe that the problems in the research fields
of fog computing and CCN can be mutually resolved by in-
corporating the way computational resources are handled in
the CCN, as introduced in 2.1, into the CCN.

3 CHALLENGE

We consider optimizing quality of service by allowing ser-
vices running on the network to be dynamically relocated. In
this paper, we focus on response time as seen by the client as
quality of service. We assume that the response time is ex-
pressed as the sum of the network transmission delay and the
processing time at the server. When considering the response
time, we need to optimize the system in two ways: fairness
of the response time among clients and minimization of the
processing time. An example is shown and discussed below.

3.1 Use Case that Require Fairness in Delay
Times

There is a need for autonomous resource allocation that sat-
isfies the fairness of delay times for participants. For exam-
ple, in an Internet conferencing system, media quality for all
participants may not be maintained if the server is in a sin-
gle location for clients distributed in different locations on
the network with different latency. Therefore, there is a need
for autonomous resource allocation that satisfies the equity of
delay time for participants.

3.2 Use Case that Require Minimize
Processing Time

We assume that the system is available with a dedicated

purpose-specific unit, such as TPU (Tensor Processing Unit)[15],

to enable machine learning at the edge. Installing a purpose-
specific unit for every node may be cost-prohibitive. There-
fore, in order to utilize the sparsely placed purpose-specific
unit, it is necessary to discover the node with the unit from
the topology and to transfer the execution point to the node.

3.3 Assumptions and Requirements for
Autonomous Control of Server Relocation
System

We need a system that aims at fairness in average response
time and shortening of service execution time among users
simultaneously. We define the service response time which is
the sum of the network latency between the client and server
and the processing time of the service.

In addition, the system should reduce the average response
time on non-uniform computer resources. For machine learn-
ing applications, where the execution time varies greatly de-
pending on the processing performance, the processing time
of the service becomes a bottleneck due to the processing per-
formance. Therefore, by monitoring the processing perfor-

131

mance of each node and transferring services based on the
predicted service response time, services can be transferred
to nodes with appropriate processing capacity.

In this system, we assume that the client has a fixed posi-
tion in the network because it communicates directly with the
sensor and user. On the other hand, since servers providing
services are arbitrarily located in the fog/cloud, we assume
that it is possible to relocate the server by transferring the
state of service execution to obtain the necessary resources to
execute a process.

4 PROPOSAL FOR AUTONOMOUS
CONTROL OF SERVER RELOCATION
SYSTEM

In order to optimize QoS for end users, we propose the au-
tonomous control of server relocation for fog computing to
reduce both the average response time and the fairness be-
tween users.

4.1 The Functions Required by the System

This system collects information about the computing en-
vironment of the surrounding nodes, searches for a candidate
node that can minimize the service response time, and trans-
fers the server to the selected node.

In searching for candidate nodes, it is not realistic to as-
sume global knowledge across different computing environ-
ments such as fog and cloud. As a reasonable scope of search,
we assume a routing topology of CCN interest messages when
the server is regarded as a resource. It collects PCEL (Avail-
able Processing Capacity and Estimated Latency) manage-
ment information for each node on the path where a message
arrives and determines the server transfer based on this infor-
mation.

Compared with the related studies mentioned in Section
2.2.2, the advantages of our system are as follows. From this
system collects information via service communication and
the service execution point makes the relocation decision, the
system has high availability, including the fact that the single
point of failure for each service moves through the fog net-
work and does not affect other services. By this system loads
monitoring information on a node via service communication,
it is not necessary to register the system at a single location
simply by installing it on the node. Also, since the monitor-
ing information is superimposed on the communication of the
service, there is no increase in traffic to monitor the network
status and the network is scalable.

The following sections describe the main components of
the proposal, the estimation of the service processing time,
the collection of PCEL information on the message arrival
route, and the algorithm for selecting candidate nodes.

Service processing time

C which is the processing power of a node and L which is
the amount of processing of the requested service executed
by the node are represented as a two-dimensional vector to
decompose the processing power of the node into CPU C

132 K. Kamada et al. / Evaluation of Autonomous Control of Server Relocation for Fog Computing Systems

Figure 1: System Configuration Example

and the purpose-specific unit 7', respectively. The process-
ing capacity of a fog node is represented by (C¢, Cr), and
the amount of processing required for service execution is de-
fined as (L, Lr). Based on these processing capacity and
processing volume, the service processing time Tes; is de-
fined as follows.

Lo+ L)y (Cr=0)
Test(Co,Cr, Lo, Ly,) = Cc o
+(Cc,Cr, Lc, L7,) {max(éiC7 %) (otherwise)

However, the CPU can perform the processing required for
the purpose specific unit. The « that express ratio is set to 5
for use in later evaluation.

Collecting PCEL information on the message arrival path

In order to treat all the nodes on the path from each client
node to the server as candidates for transfer, it is necessary to
collect information on the delays between the links traversed
and the processing capacity of the nodes traversed. These are
called the route PCEL information. In our system, PCEL in-
formation is added to the request message at the node that
passes by the time the request message reaches the server
node, and it is transmitted to the server.

For example, when our system is used as shown in Fig. 1,
the following parameters are added to the request message of
C:. In Fig. 1, S'is the server node, F is the fog node, and C
is the client node.

* Lc, ., which is the communication delay of the link
from C to fog node F when a request message from
client node C'; goes through each fog node

* L, 5, which is communication delay of the link from
server node S to F}

* Cp,, which is the CPU processing power of F}

* T'r, which is the processing power of the purpose-
specific unit of F

This added PCEL information can be acquired by S from
the request message. Similarly, S is able to obtain informa-
tion on the route to and from all clients from the PCEL in-
formation attached to the request messages from C; to Cy,
which are all participating client nodes.

Candidate node selection algorithm

The server selects candidate nodes for transfer from the PCEL
information appended to the request message received from
the client By using the algorithm shown in Algorithm 1. Al-
gorithm 1 calculates the average and standard deviation of the
service response time of the participating clients based on the
information that the server shown in Fig. 1 can obtain from
the request message. The value is the sum of the service re-
sponse time multiplied by 1 — R4 and the standard devia-
tion multiplied by R4, based on R4, which specifies how
much importance is placed on the fairness between clients and
users. Then, we find the node whose evaluation value is at a
minimum.

Algorithm 1 Find Candidate Node

Require: L 4;;:List of L on the Path

Require: L, c,):List of L on the Path between F; to C;;

Require: F'y;;:List of F' on the Path

Require: C'4;;:Clients connected to the service

Require: L:CPU processing capacity during service exe-
cution

Require: L7 :Purpose specific unit throughput during service
execution

Require: node.Cc: CPU processing capacity of the node

Require: node.Cp: Purpose specific unit capacity of the
node

Require: R;4:Ratio of importance to the standard deviation

Require: Sp, ¢, :Standard deviation of service response
time between F; to C'yy;

Require: «:Coefficient that represents the ratio when the
CPU can handle the amount of processing of the target-
specific unit

Ensure: MinNode is candidate node
MinCost + oo
for all node in F'y;; do

for all client in Cy;; do
Latencynode,client — Z Lnode,client * 2
Latencysym < Latencysum + Latencynode,client

end for

Latencysum
Latencygpe < Cay.length
Cayr.length

Latencyyq, <+ m >
Latencynode,Ci)2
ServiceRTT < Test(node.Ceo,node.Cr, Lo, L, o)+
Latencygye
Rrrr 1 — Ryq
COST < ServiceRTT * Rprr + Snode,Cay * Rstd
if MinCost > Cost then
MinCost <+ Cost
MinN ode < node
end if
end for
return MinNode

(Latencyaye—

4.2 Functions of the Node

The movement of the proposed system is shown in Fig. 2.
This system is assumed to operate at the session layer of all

International Journal of Informatics Society, VOL.13, NO.3 (2021) 129-138

Application layer Application layer

Session layer Session layer Session layer

Proposed System Proposed System Proposed System

Server Node Relay Node Client Node

Figure 2: Autonomous Control of Server Relocation System

participating fog nodes. It is preferable that the change in the
point of service execution is done transparently to the client
and server. In order to implement the collection of PCEL
information and transparent addition to the request message,
it is convenient to work at the session layer in the seven-
layer model. Since management actions such as service trans-
port are operated by resources below the transport layer, they
must be located in the upper layer where they are visible, and
the session layer is lower than the application layer where
clients and servers are running. By relaying communication
between server nodes and client nodes at the application layer,
the server relocation system at the session layer of server
nodes, relay nodes and client nodes share information about
resources available at each node. Based on the collected in-
formation, it realizes the selection of service execution points
and resource allocation.

The proposed system consists of three types of nodes. The
proposed system consists of multiple connections: a cloud
node that has the contents necessary for service execution
and has high processing power, a middle-class fog node that
has medium processing power and can communicate with end
devices with relatively low latency, and a client node that
is an end device such as a smartphone that participates in
the server. Based on the client-server communication model,
cloud nodes and fog nodes play the role of servers, and leaf
nodes play the role of clients. The server monitors the com-
munication status of participating clients and decides whether
it should autonomously play the role of the server or delegate
the role of the server to other fog nodes based on the com-
munication status. The delegated fog node takes over the role
of the server. In this way, we try to optimize the server re-
location of the server’s role. This is an attempt to reduce the
service response time.

There is each fog node has an in-network resource moni-
toring function, a candidate selection function and a service
transfer function. In this section, each function is explained.
The autonomous control of server relocation system at each
node operates at the session layer to superimpose manage-
ment information on the communication messages between
the server and the client to realize the resource monitoring
function in the network. At the same time, it constantly mon-
itors changes in the resources in the network, and if a change
is observed, it executes the candidate selection function and,
if it is judged to be necessary, it executes the service transfer
function to the selected node to optimize the server relocation.

133

4.2.1 Network Resource Monitoring Function

The in-network resource monitoring function monitors the
currently used network resources and collects information to
decide whether or not to transfer the service. Specifically,
this function monitors and records network information, such
as the delay between client nodes participating in the service
and the network information, as well as the CPU and memory
resources of the fog nodes themselves, while the fog nodes
on which this system is installed are deploying the service.
As described in the previous section, the PCEL(available Pro-
cessing Capacity and Estimated Latency) management infor-
mation described below is included in the normal communi-
cation message exchange between the client and server, and
information on relay nodes that exist on the route between the
client and server is collected.

4.2.2 Candidate Selection Function

The candidate selection function is called when there is a
change in the information collected by the in-network resource
monitoring function. This function determines whether the
service should be transferred. In addition, if it is to be trans-
ferred, it will be based on the information collected by the
in-network resource monitoring function. Select the appro-
priate candidate nodes. After the consignee is determined by
this function, the server is consigned by the service transfer
function.

4.2.3 Service Transfer Function

This function transfers services to the nodes selected by the
candidate selection function. The node that is the current
server is the candidate server for the new candidate fog node
specified by the candidate selection function. The information
about the data required for the service is sent with a message
informing the user that the service is being entrusted. The
server candidate fog nodes are now in the process of gather-
ing all the necessary data and are ready to take on the server.
It sends a message informing the user that it can be entrusted
to a fog node that is a server of When the fog node, which is
currently the server, receives it, it sends a message to a client
node that has joined the server It sends a message notifying
the new destination to In this way, the service is transferred.

4.2.4 Overall Flow to Optimize Server Placement

We summarize the optimization process explained so far. The
client sends a request to the server . The server stores infor-
mation associated with the request by means of an in-network
monitoring function. Using the candidate selection function,
we select candidate nodes from the accumulated information.
After a candidate node is selected, it sends a message to the
candidate node that it will transfer the service. A fog node
that receives a message to transport a service confirms that no
other service is established at its own node and starts collect-
ing data for service execution, while at the same time sending
a message to the node from which the service is being trans-
ported to inform it that the service is being prepared. When a

134 K. Kamada et al. / Evaluation of Autonomous Control of Server Relocation for Fog Computing Systems

Figure 3: The network topology used in the experiment

fog node completes its data collection, it starts the service and
sends a message to the source node telling it that it is ready.
The server node that receives the ready message announces
the new server to its current clients. The client receives infor-
mation about the new server and changes the destination of
the request to the new server. A client that joins from the mid-
dle of the process first sends a request to the original server
node, receives information on the current server, and joins the
service based on that information.

S EVALUATION

We defined three use cases to show three aspects: fairness
between users on uniform computer resources, reduction of
average response time on heterogeneous computer resources,
and fairness and reduction of average response time between
users on heterogeneous computer resources.

5.1 Simulation Environment

For the network topology, we used the topology generated
by BRITE[16], which is a topology generator as shown in
Fig. 3. A county of three AS-equivalent nodes was prepared,
with about 20 Fog nodes in each AS, and in each simulation,
one AS was treated as a cloud environment and two AS were
treated as a fog network with clients connected to it. Table 1
shows the parameters used in the simulation. The amount of
content cache space owned by each node is also determined
by the This was done assuming that the system has enough
space to cache all the necessary data.

5.2 Use Case 1: Internet Conference

Use case 1 assumes a multi-point Internet conferencing sys-
tem to show fairness among users with uniform computer re-
sources. In the Internet conferencing system, the server mixes
media data received from all connected terminals and dis-
tributes them as a single stream to all terminals. The goal

Table 1: Simulation Parameters

Parameters Value
Cache Algorithm LRU
Data Rate 10Mbps
Delay 1ms
Simulation time 100s
Server’s Co 100.0
Server’s Cp 100.0
Dedicated Unit’s C | 20.0
Dedicated Unit’s Cr | 50.0
Regular Unit’s C¢ 20.0
Regular Unit’s Cr 0

is to keep media quality fair in situations where geographi-
cally distributed participants connect to the system. Simulate
the behavior of a server moving to the optimal location for
clients distributed in different locations on the network with
different latency times.

Simulation Scenario Multiple meetings were defined and
the participants of each meeting were placed in the same AS,
and the servers of all the meetings were placed together in a
different AS than the AS in which the clients were participat-
ing. The processing capacity for conducting the conference
and the processing capacity of each node were assumed to be
constant. The results were compared with the case in which
no transfer was performed.

5.3 Use Case 2: Machine Learning

In Use Case 2, we assume a service that uses machine
learning on a fog network to demonstrate the realization of
shortening the average response time on heterogeneous com-
putational resources. For efficient processing of machine learn-
ing, it is better to have a dedicated purpose specific unit such
as a TPU (Tensor Processing Unit). However, installing a
purpose-specific unit for every fog node may be cost-prohibitive.
Therefore, the cost problem is solved by using nodes with
dedicated units as part of the fog network. In the fog net-
work, nodes with normal CPU only and nodes with special-
ized units are mixed together, and the processing power is not
uniform in the vicinity of a point. In this situation, we aim to
minimize the service response time by transferring the service
execution point from the processing accelerated by a purpose-
specific unit, such as machine learning, to nodes with appro-
priate processing power. Experiments in this use case show
that a certain percentage of nodes with purpose-specific units
such as TPU are randomly placed on the fog network, and the
average service response time can be reduced as expected in
the entire network.

Simulation Scenario The following simulation scenarios
were prepared to achieve the purpose of the experiment. Mul-
tiple clients connected to the network are available with servers
in the distant cloud and fog nodes with various processing ca-
pabilities. Clients make service requests that be able to take
advantage of the processing power of purpose-specific units
such as the TPU. In this experiment, we show that the service

International Journal of Informatics Society, VOL.13, NO.3 (2021) 129-138

response time can be minimized by arranging about % of all
fog nodes. For that purpose, the ratio of nodes equipped with
a dedicated unit in the fog network was changed from 0% to
100% in 20% increments, and an experiment was performed
100 times in which the arrangement was randomly changed.

5.4 Use Case 3: Video Delivery Service

In the third use case, we assumed a video delivery service
to demonstrate the realization of fairness among users and
reduction of average response time on heterogeneous com-
putational resources. In some cases, you may want to cut
out noteworthy parts of the video, overlay the board, or over-
lay chroma-keyless CG. When we want to perform such ad-
vanced video delivery, we need computer resources for video
delivery. In addition, it is required that the communication
delay must be low for the participants to comfortably watch
videos. As in Use Case 2, it is not practical to deploy compu-
tational resources for video delivery to all nodes due to cost
issues. Therefore, optimizing the execution point requires
both processing time and communication delay, which are af-
fected by processing performance. The results are compared
with the case where simple average service response times are
taken into account.

Simulation Scenario The video distributor sends the video
to the server. The client receives the delivery stream pro-
cessed by the server. While transferring to nodes with pro-
cessing power suitable for video processing, the delay in video
delivery to participants is reduced to such a node. When new
participants are added from a different AS than the one that
attracts video distributors and initial participants, the process-
ing power and participants were observed transferring based
on the fairness of the communication delay. New participants
are timed to join the video feed at 50 seconds from the start
of the simulation, such as Simulations were performed.

6 RESULTS AND DISCUSSION

The results and discussion of the experiments conducted
for each use case are described, respectively.

6.1 Use Case 1: Internet Conference

In this use case experiment, we achieved fairness between
users on a uniform computational resource. The experimental
results for Use Case 1 are shown in Fig. 6 and Fig. 7. Figure 6
shows the change in service response time when the proposed
system is not used, and Fig. 7 plots the change in service
response time against time when the proposed system is used.
The users of the proposed system are gradually transferred to
the one with less network latency.

At the timing of the start of the simulation, the two confer-
ence streams are shown in Fig. 4. It is sent from different AS
to a single AS, and the network traffic is aggregated. In the
network after the transfer, the servers are transferred within
each AS, as shown in Fig. 5, and the two conference avoids
the aggregation of meeting traffic.

135

o Conference 2 server

D Aggregated Links

Figure 4: Use case 1: Network status before the transfer be-
gins

In Figure 5, the fairness between users depends on which
node on each communication path the server will be trans-
ferred to. It is possible to achieve the fairness required by
each application by adjusting the ;4 used in the algorithm
1 for destination determination. Figure 8 shows the trend of
the mean and standard deviation of the service response time
for a single conference among the results of the selecting can-
didate nodes for transfer, where the value of R4 is set to 0
and only the mean of the service response time is important.
Figure 9 sets the value of R4 as 0.7 and the node selection
with a weighted standard deviation of 70% of the response
time, showed the average service response time for the same
meeting as in Fig. 8. Comparing the two figures, we can con-
firm that the result of Fig. 9, weighted at 70%, is fairer (i.e.
smaller deviation) than the result of Fig. 9, which shows the
fairness of the transfer between users. We are able to confirm
that the fairness of the transfer between users is maintained.
In this way, we achieved fairness among users with uniform
computer resources by performing transfers to shorten the ser-
vice response time and adjusting the parameters to meet the
requirements of the application.

6.2 Use Case 2: Machine Learning

In this use case, we have shown the realization of reduced
average response time on heterogeneous computational re-
sources. Figure 10 shows the average service response time
of 100 simulations with the TPU placement probability vary-
ing from 0% to 100% in 20 percent increments. In the worst
case with the TPU node placement rate set to 0%, transfers
do not occur because the service response time is shorter if
the service continues to be processed at the initial server node
than if it is transferred to the fog node. When the placement
rate of TPU nodes is increased, transfers occur to TPU nodes
and the processing capacity is uneven The service response in
Fig. 10 shows that the optimization of the execution point on
the fog network is correctly done This can be seen by looking

136 K. Kamada et al. / Evaluation of Autonomous Control of Server Relocation for Fog Computing Systems

Conference 1 server

Conference 2 server

(o Lo/

Figure 5: Use case 1: Network status after transfer

Change in Latency

30 4

Service RTT (ms)
= N
& =}

| !

-
o
L

—— Conference B
04 | Conference A

T T T
0 20 40 60 80 100
elapsed time (s)

Figure 6: Use case 1: Changes in service response time if the
proposed system was not used

at the changes in time. We have shown that this reduces the
average response time for non-uniform computer resources.

6.3 Use Case 3: Video Delivery Services

In Use Case 3, we showed how to achieve fairness between
users and reduce the average response time on non-uniform
computational resources. A simulation with a 20% probabil-
ity of deploying a dedicated unit to process the video. Figure
11 shows the mean and standard deviation of the service re-
sponse time after 100 trials. In the period from O to 50 sec-
onds in Fig. 11, when only the clients stuck in one AS are
connected to the video delivery server, we are able to see that
transfer reduces the standard deviation value, i.e., the fairness
among the participating clients, but the mean of the service re-
sponse time can be reduced significantly, and therefore trans-
fer is used. In addition, after 50 seconds of simulation time, a
new client of another AS began to connect to the video deliv-
ery server. Temporarily, the values of the mean and standard
deviation of the service response time are increasing. How-
ever, we found a fog node where both the standard deviation

Change in Latency

30 - —— Conference B
Y - Conference A

Z51

8]
=
L

Service RTT (ms)
"
w

T T T
0 20 40 60 80 100
elapsed time (s)

Figure 7: Use case 1: Changes in service response time when
using the proposed system

Change in Standard deviation of Latency and std

— latency
~ std

¥ w
w o
L L

8]
=]
L

,_.
o

Standard deviation of Latency and Latency (ms)
w &
L

o
L

T T T T T r
[} 20 40 60 80 100
elapsed time (s)

Figure 8: Mean and standard deviation of service response
time for conference A when R4 is set to 0%

and service response time values can be reduced by about 75
seconds of simulation time, and we are capable of seeing a
gradual change in the transfer.

6.4 Discussion

In this section, we discuss the validity and constraint of the
design of the system in the view point of flexibility to scale
and response to changes in available resources.

For scalability to the size of network, the proposed sys-
tem does not require aggregation of information for the entire
network nodes. The server node executing the service deter-
mines the service transfer based only on the PCEL informa-
tion of each client and the relaying node on their path. In
this design, we limit the discovery of the available resource
in node on the message path. Our evaluation shows the ef-
fectiveness, however the result of the service transfer may be
sub-optimal.

In terms of service scalability, the proposed system im-
proved fairness and response time by controlling the place-
ment of a single server instance. We have not considered the
case to utilize multiple instances to scale.

We discuss the network change issues from the perspective

International Journal of Informatics Society, VOL.13, NO.3 (2021) 129-138

Change in Standard deviation of Latency and std

—— latency
- std

N w
w =]
L L

™
o
L

o
o

Standard deviation of Latency and Latency (ms)
=
w o
|

=}
L

T T
0 20 40 60 80 100
elapsed time (s)

Figure 9: Mean and standard deviation of service response
time for conference A when R, is set to 70%

Change in Latency

W
o
L

w
=]
L

N
w

]
=1
L

15 1

Service RTT {ms)

104

===

5+ — 20%
— 60%
0 — 100%
; ,
0 20 40 60 80 100

elapsed time (s)

Figure 10: Changes in the average service response time as a
percentage of TPU nodes deployed

Change in Standard deviation of Latency and std

30 4 — latency

- std

25:

20+

15

10 A

Standard deviation of Latency and Latency (ms)

T T
0 20 40 60 80 100
elapsed time (s)

Figure 11: Use case 3: Mean and Standard Deviation of
Service Response Time

137

of adapting to changes in paths and available resources.

Regarding the change of the path due to the reflection of
the network topology etc., proposed system assumes that the
interest message of the base CCN mechanism follows, and
has no other mechanism. To estimate the available resources,
PCEL information is piggybacked on the interest message and
collected at the server node. From these, it can be said that the
possibility of immediate adaptability to changes in the path of
this system and changes in available resources depends on the
frequency of exchange of interest messages.

If there is high frequency of exchange, it is possible to es-
timate precisely than when there are few. The evaluation sce-
narios discussed in this paper, target applications inherently
assume stable frequency of sending and receiving messages.
In contrast, if the use case only interacts with clients infre-
quently, they may not be able to keep up with changes in paths
and available resources. It may be necessary to increase the
volume of message flow for the resource monitoring purpose.

In summary, the situations in which this system is consid-
ered applicable are follows. This system makes it possible to
relocate servers by utilizing frequent exchanges of messages
between clients and servers in response to changes in the net-
work. While this system is scalable to the size of the network
because it does not require aggregation of information for the
entire network, there is a limitation to the service scalability.

7 CONCLUSION

Fog computing, which extends the cloud computing paradigm
to the edge of the network, has been proposed and is being ac-
tively researched. In the field of networking, there is research
on CCN that use location-independent content as identifiers
instead of the traditional IP address-based architecture. So
far, we have proposed a system that aims at fairness in re-
sponse time and shortening of service execution time between
users, respectively. Therefore, in this study, we proposed the
autonomous control of server relocation for fog computing
systems to optimize QoS for end users, which achieves both
shortening the average response time and fairness between
users. To this end, the system achieves inter-user fairness on
uniform computer resources, reduction of average response
time on non-uniform computer resources, and we tested the
fairness between users and the reduction of the average re-
sponse time on non-uniform computer resources by setting
up three use cases for each.

In the future, we will consider further expansion of the pro-
posed system based on the use cases mentioned in this article,
and work to enhance the usefulness of the proposed system.

REFERENCES

[1] Ministry of Internal Affairs and Communications,
Japan: The 2018 White Paper on Information and Com-
munications in Japan, Japanese Government (2018).

[2] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S.: Fog
Computing and Its Role in the Internet of Things, Pro-
ceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC ’12, pp. 13—16 (2012).

138

(3]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

K. Kamada et al. / Evaluation of Autonomous Control of Server Relocation for Fog Computing Systems

Jacobson, V., Smetters, D. K., Thornton, J. D. et al.:
Networking Named Content, Proceedings of the 5th In-
ternational Conference on Emerging Networking Ex-
periments and Technologies, CONEXT ’09, pp. 1-12
(2009).

Kamada, K., Inamura, H. and Nakamura, Y.: A Proposal
of Autonomous Control of Server Relocation for Fog
Computing Systems(In Japanese), IPSJ SIG Technical
Report, Vol. 2018-MBL-89, No. 1, pp. 1-5 (2018).
Kamada, K., Inamura, H. and Nakamura, Y.: Au-
tonomous Control Scheme of Server Relocation for
Non-Uniform Computing Capacity in Fog Networks(In
Japanese), DICOMO2019, Vol. 2019, pp. 1204-1211
(2019).

Cuervo, E., Balasubramanian, A., Cho, D.-k. et al.:
MAUI: making smartphones last longer with code of-
fload, ACM Press, p. 49 (2010).

Chun, B.-G., Ihm, S., Maniatis, P. et al.: CloneCloud:
elastic execution between mobile device and cloud,
ACM Press, p. 301 (2011).

Kosta, S., Aucinas, A., Hui, P. et al.: ThinkAir: Dy-
namic resource allocation and parallel execution in the
cloud for mobile code offloading, 2012 Proceedings
IEEE INFOCOM, pp. 945-953 (2012).

Berg, F., Diirr, F. and Rothermel, K.: Increasing the
Efficiency of Code Offloading in N-tier Environments
with Code Bubbling, Proceedings of the 13th Interna-
tional Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, MOBIQUITOUS
2016, ACM, pp. 170-179 (2019).

Shanbhag, S., Schwan, N., Rimac, I. and Varvello,
M.: SoCCeR: services over content-centric routing,
Proceedings of the ACM SIGCOMM workshop on
Information-centric networking - ICN ’11, ACM Press,
p. 62 (2011).

Wolf, T.: Service-Centric End-to-End Abstractions in
Next-Generation Networks, Proceedings of 15th Inter-
national Conference on Computer Communications and
Networks, IEEE, pp. 79-86 (2006).

Dorigo, M. and Birattari, M.: Ant Colony Optimiza-
tion, Encyclopedia of Machine Learning (Sammut, C.
and Webb, G. 1, eds.), Springer US, pp. 36-39 (online),
https://doi.org/10.1007/978-0-387-30164-8_22 (2010).
Selimi, M., Navarro, L., Braem, B., Freitag, F.
and Lertsinsrubtavee, A.: Towards Information-Centric
Edge Platform for Mesh Networks: The Case of City-
Lab Testbed, 2020 IEEE International Conference on
Fog Computing (ICFC), 1EEE, pp. 50-55 (online),
doil0.1109/ICFC49376.2020.00016.

Selimi, M., Lertsinsrubtavee, A., Sathiaseelan, A.,
Cerda-Alabern, L. and Navarro, L.: PiCasso: Enabling
information-centric multi-tenancy at the edge of com-
munity mesh networks, Vol. 164, p. 106897 (online),
doil0.1016/j.comnet.2019.106897.

Jouppi, N. P, Borchers, A., Boyle, R. et al.: In-
Datacenter Performance Analysis of a Tensor Process-
ing Unit, Proceedings of the 44th Annual International
Symposium on Computer Architecture - ISCA 17, ACM

Press, pp. 1-12 (2017).

[16] Medina, A., Lakhina, A., Matta, I. and Byers, J.:

BRITE: An approach to universal topology generation,
MASCOTS 2001, Proceedings Ninth International Sym-
posium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems, IEEE, pp. 346—
353 (2001).

(Received November 14, 2021)
(Accepted October 1, 2021)

Kouki Kamada received his B.E. and M.E. de-
grees in information science from Future Univer-
sity Hakodate, Japan in 2019 and 2021. His re-
search interests include cloud infrastructure and
mobile computing. He currently works in Cybozu,
Inc.

| Hiroshi Inamura is a professor of School of Sys-
tems Information Science, Future University Hako-
date, since 2016. His current research interests
include mobile computing, system software for smart
devices, mobile and sensor network and their se-
curity. He was an executive research engineer in
NTT docomo, Inc. He received B.E., M.E. and
D.E. degree in Keio University, Japan. He is a
member of IPSJ, IEICE, ACM and IEEE.

Yoshitaka Nakamura received B.E., M.S., and
Ph.D. degrees from Osaka Univer-sity in 2002,
2004 and 2007, respectively. He is currently an
associate professor at the Faculty of Engineering,
Kyoto Tachibana University. His research inter-
est includes infor-mation security and ubiquitous
computing. He is a member of IEEE, IEICE, and
IPSJ.

Submission Guidance

About 1JIS

International Journal of Informatics Society (ISSN 1883-4566) is published in one volume of three issues a year.
One should be a member of Informatics Society for the submission of the article at least. A submission article is
reviewed at least two reviewer. The online version of the journal is available at the following site:

http://www.infsoc.org.

Aims and Scope of Informatics Society

The evolution of informatics heralds a new information society. It provides more convenience to our life.
Informatics and technologies have been integrated by various fields. For example, mathematics, linguistics,
logics, engineering, and new fields will join it. Especially, we are continuing to maintain an awareness of
informatics and communication convergence. Informatics Society is the organization that tries to develop
informatics and technologies with this convergence. International Journal of Informatics Society (IJIS) is the
journal of Informatics Society.

Areas of interest include, but are not limited to:

Internet of Things (IoT) Intelligent Transportation System
Smart Cities, Communities, and Spaces Distributed Computing

Big Data, Artificial Intelligence, and Data Science Multi-media communication
Network Systems and Protocols Information systems

Computer Supported Cooperative Work and Groupware Mobile computing

Security and Privacy in Information Systems Ubiquitous computing

Instruction to Authors

For detailed instructions please refer to the Authors Corner on our Web site, http://www.infsoc.org/.

Submission of manuscripts: There is no limitation of page count as full papers, each of which will be subject to a
full review process. An electronic, PDF-based submission of papers is mandatory. Download and use the
LaTeX2e or Microsoft Word sample 1JIS formats.

http://www.infsoc.org/IJIS-Format.pdf

LaTeX2e

LaTeX2e files (ZIP) http://www.infsoc.org/template_1JIS.zip

Microsoft Word™

Sample document http://www.infsoc.org/sample_1JIS.doc

Please send the PDF file of your paper to secretariat@infsoc.org with the following information:

Title, Author: Name (Affiliation), Name (Affiliation), Corresponding Author. Address, Tel, Fax, E-mail:

Copyright
For all copying, reprint, or republication permission, write to: Copyrights and Permissions Department,

Informatics Society, secretariat@infsoc.org.

Publisher
Address: Informatics Laboratory, 3-41 Tsujimachi, Kitaku, Nagoya 462-0032, Japan

E-mail: secretariat@infsoc.org

CONTENTS

Guest Editors Message
Hiroshi Yoshiura

Regular Paper
Executable Counterexample for Java Model Checker
C. M. B. Hassan, S. Ogata, and K. Okano

Regular Paper
Building a Robust RTK-GNSS Infrastructure with Seamless Handover and
a Multipath Detection Approach

B. Rokaha, B. Prasad Gautam, and T. Kitani

Regular Paper
Evaluation of Autonomous Control of Server Relocation for Fog Computing Systems
K. Kamada, H. Inamura, and Y. Nakamura

	GuestEditorsMessageVol13No3Yoshiura_修正
	IJIS_Vol13_No.3_0330

