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Abstract - A process to improve the internal structure of a
software system while keeping its external behavior is called
refactoring. When performing refactoring, programmers need
to verify equivalence of the new and old programs by check-
ing that the functions of both satisfy the given specifications
to avoid unexpected bugs. Generally, programmers perform
unit testing by using test cases like JUnit, but it has the prob-
lems of lack of completeness and high time costs. In the Soft-
ware Analysis Workbench (SAW) verification tool, program-
mers use the SAWScript scripting language to define verifi-
cation properties that target functions must satisfy and for-
mal verification is performed by using SMT solvers and sym-
bolic execution. With the symbolic execution of SAW, pro-
grammers can perform unit testing completely and effectively
without test cases.

This paper proposes a method for verifying the specifi-
cations of target functions by generating a helper function
and calling a target function as its return value. By using
this method, programmers can define the values of class ob-
jects that the target function receives in a helper function and
make SAW verification possible. As a case study, we per-
formed SAW verification for Java functions that receive re-
cursive class objects as arguments and showed that property
verification and equivalence checking is actually possible.

Keywords: SAW, verification, equivalence, refactoring, unit
test, recursive data structures

1 INTRODUCTION

Both Java and C programs are widely used for modern in-
formation systems. Sometimes, changes of the working en-
vironment force engineers to develop new software code with
the same functions as the old codes. For example, C programs
working in an old environment are sometimes changed to new
Java programs that must work in a new environment. In these
situations, programmers have to ensure that the revised Java
programs preserve the behavior of the old C versions.

As another example, a programmer might have to develop
new C programs for an embedded system, where the CPU and

memory resources are limited, based on an existing Java pro-
gram which runs in a newer environment with rich resources.
In such a case, programmers have to ensure that the revised
C programs preserve the behavior of the old Java programs.
The process of improving the internal structure of a software
system while maintaining its external behavior is called refac-
toring [1].

Usually, regression testing is performed to check whether
different versions of a program have the same behavior. In
the above situation, however, we usually cannot use the same
regression test-suites because they use different programming
languages. Software Analysis Workbench (SAW) [2], [3] pro-
vides the ability to verify programs written in C and Java by
symbolic execution.

Formal approach techniques might help in such a situation.
These techniques will find potential bugs by checking the con-
formance to program specifications with adequate efficiency.
We call this kind of verification formal conformance verifica-
tion (FCV). Recent tools, however, do not fully support pro-
grams dealing with dynamic data structures especially recur-
sive data structures. For example, our previous research [4]
uncovered the possibility of FCV for C programs with recur-
sive data structures.

In this work, we attempt to resolve this problem for Java
programs by using the idea of bounded model checking. How-
ever, for Java programs, we do not know the possibility of
applying FCV. The reasons are summarized as follows.

• SAW retrieves information for verification from the byte
codes of C or Java and the difference of the codes af-
fects the checking algorithm.

• Java is based on the Java Virtual Machine while C has
no reference machine to interpret.

In order to avoid the halting problem (e.g., if verification is
performed without defining the end of a linear list structure,
the verification may fail without completing the recursion and
a state explosion could occur), our proposed method is based
on the bounded model verification technique [5], [6]. In this
work, we also perform experimental evaluation using SAW, a
recent formal verification tool.
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From the experimental results, we find that it is partially
possible to perform verification of functions dealing with re-
cursive data structures in Java. This observation supports the
possibility of using FCV between C and Java with recursive
data structures.

The rest of this paper is organized as follows. Section 2
gives the preliminaries and Section 3 describes the proposed
method. Sections 4 and 5 describe the experimental evalu-
ation and results. Section 6 discusses the results. Finally,
Section 7 summarizes this paper.

2 PRELIMINARIES

2.1 Equivalence Between Two Functions

Refactoring is defined as the process of improving the inter-
nal structure of a software system while keeping its external
behavior [1]. Thus, when we perform refactoring on a pro-
gram function, we need to check that the external behaviors
of the new and old functions are equivalent.

In this research, we defined external behaviors as the inputs
and outputs of program functions. When two functions f and
g are equivalent, expression (1) holds.

∀x ∈ A : f(x) = g(x) (1)

We say these functions are equivalent for any x that satisfies
A, where A specifies the range and type of the variable x. For
example, if x belongs to an integer type, then A = Z32 holds,
where Z32 represents the set of signed integers with 32-bit
width. In this paper, we use the following notations to show
the integer types Z16, Z32, Z64, Z8u , Z16u , Z32u , and Z64u

which correspond to the signed integers of 16-, 32-, and 64-
bit width, and the unsigned integers of 8-, 16-, 32-, and 64-bit
width, respectively.

In this work, we consider inputs and outputs as the require-
ments of equivalence and do not consider program size, algo-
rithm, execution time, type of programming language, etc.

The parameter x can be easily extended to a parameter vec-
tor with the same signatures. Here, a signature is a list of types
corresponding to each element of the parameters.

The programming languages for f and g are not fixed, but
in this paper, we use the case where f is implemented in Java
and g is implemented in C.

2.2 SAW

The unit testing framework xUnit[7][8] is the most popular
method for verifying the specifications of a program. How-
ever, verifying programs by using test cases has the difficuly
of having to create all possible cases and the time cost prob-
lem of generation. Checking specifications of a program au-
tomatically is an important theme and there exists much re-
search about it especially concerning SAT and SMT solvers
[9]-[11].

The Software Analysis Workbench (SAW) is an open-source
formal verification tool developed by Galois [3]. The SAW
tool automatically generates a formal model from the byte
code of a target function and by using symbolic execution, it

Figure 1: SAW Architecture

can verify whether the model satisfies a verification property
for any set of inputs and finds a counterexample if it does not.

Users can define verification properties by using the special
SAWScript scripting language which we explain in the next
section.

The SAW architecture is shown in Fig. 1. SAW can ana-
lyze Low Level Virtual Machine (LLVM) [12], Java Virtual
Machine (JVM) [13] byte code, and Cryptol [14], [15]. High
level languages like C or Java must be compiled before per-
forming SAW verification.

2.3 SAWScript
According to [2], “the process of model generation and

transformation in SAW, and the interaction with third-party
proof tools, is coordinated by a scripting language called
SAWScript” and users can specify a .saw file to control or
command SAW execution, e.g., extract target functions from
.bc or .class files, define verification properties, generate SMT
expressions and prove them by solvers.

We explain the SAW verification procedure with a simple
example. We prove the function oldJavafunc in Listing
1 returns 2x when it receives x as any integer type. The
SAWScript for this verification is shown in Listing 2. First,
we describe explicitly the verification properties and which
SMT solver to use in the JavaSetup block. In this case,
the java var command in the second line generates integer
type symbolic inputs to correspond to the Java variable x
as java input. The java return command in the third line
defines the expected return value of the target function as
2java input. The java verify tactic command in the fourth
line specifies the SMT solver to use. Next, the load .class
file operation is indicated by the java load class command in
the sixth line as java mul. Finally, we verify whether or
not oldJavafunc of the Mul class satisfies the verification
properties by the java verify command in the seventh line. If
the verification is valid, z3 proves that oldJavafunc the
verification property described in the JavaSetup block and
newJavafunc fulfill expression (2). Thus, oldJavafunc
always returns 2∗x for any input x when x is an integer type.

∀java input : oldJavafunc(java input)

= 2java input

∧java input ∈ Z32, java input = x

⊢ ∀x ∈ Z32 : oldJavafunc(x) = 2x

(2)
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Listing 1: Java Mul Class
1 class Mul{
2 int oldJavafunc(int x){
3 return x + x;
4 }
5 }

Listing 2: SAWScript for Java Mul Class
1 let java_spec : JavaSetup () = do {
2 java_input <- java_var "x" java_int;
3 java_return {{java_input*2}};
4 java_verify_tactic z3;
5 };
6 java_mul <- java_load_class "Mul";
7 java_verify java_mul "oldJavafunc" [] java_spec

;

2.4 SAT/SMT Solvers
A SATisfiability problem (SAT) searches for all combina-

tions of boolean variables that make a propositional formula
true [16]. In particular, programs that solve CNF proposi-
tional formulas automatically are called SAT solvers.

We explain the process of proving propositions using SAT
solvers. If a propositional statement is a tautology, it is sat-
isfiable for any status of its boolean variables. That is, the
negation of the propositional logic is UNSAT for any combi-
nation of its boolean variables. Thus, proving that the nega-
tion of a propositional logic leads to UNSAT means that the
propositional logic is a tautology.

There are many proposed SAT solvers for quickly solv-
ing propositional logic. However, SAT solvers handle only
propositional logic and do not have the definitions of back-
ground knowledge like in predicate logic [17]. Satisfiability
Modulo Theories (SMT) solvers have been proposed to re-
solve this problem. In addition to the definitions of predicate
logic, SMT solvers can define integer types, arrays, etc. that
are used in recent computer science and allow users to de-
scribe propositions abstractly and effectively.

SAW supports ABC [18], Boolector [19], CVC4 [20], Math-
SAT [21], Yices [22], and Z3 [23]. In this work, we used all
of the above SMT solvers except for Boolector which does
not run on Windows.

2.5 Problems with Handling Class Objects
The SAW uses the prove command to verify equivalence

between two functions by comparing the formal models of
the semantics of the two functions that are extracted by the
java extract command. This method can easily verify equiva-
lence of the two functions from intermediate code. However,
since this method does not perform assertion checks, we can-
not find a counterexample regarding the two functions that
has the same bugs. Thus we need to devise a specification
based method to check equivalence. Another problem of this
method is that the java extract command cannot model func-
tions that have array type arguments and we need to devise a
new method to do this.

The SAW tool uses the java verify and llvm verify com-
mands to prove equivalence between a C or Java function and

a specification. The java verify command is used for proving
the equivalence between JVM code and a specification that
users describe in the JavaSetup block of a SAWScript. The
llvm verify command and LLVMSetup block are for LLVM
code. In the JavaSetup block, users can create variables that
show the entire set of values of inputs by the java var com-
mand and use it as a verification property. The java var com-
mand can handle array type variables, however when a vari-
able is declared, the concrete size of the array must be given
by a parameter. Thus, SAW verification is valid only for an
array specified with a given size in SAWScript. Due to the
static symbolic execution of SAW, increasing of the size of an
array leads to a state explosion.

In this work, we want to verify C and Java functions that
handle data structures as arguments. In C, data structures are
defined by struct, thus, users need to define struct variables as
a verification property in SAWScript. In this case, verification
can be performed by allocating memory spaces for data struc-
tures by the llvm alloc command and assigning their heap
values by the llvm points to command. However, SAW cur-
rently has no command to assign symbolic variables for fields
of class objects that are allocated by the jvm alloc object com-
mand. Thus, we need to devise a method to assign symbolic
variables and to perform SAW verification on Java functions.

3 PROPOSED METHOD

3.1 Equivalence Checking by Using SAW
In this section, we first explain how to perform an equiv-

alence verification with the prove command using the two
functions shown in Listing 3. The SAWScript is shown in
Listing 4. The java extract command in the second and third
lines extract Java functions from the .class file and create for-
mal models that show these semantics. The fourth line de-
fines a verification property that states the return values of the
two formal models are equivalent for any argument x. The
fifth line verifies the property with the Z3 solver by the prove
command which verifies the given assertion and generates a
counterexample if it is invalid. In this case, SAW does not find
any counterexamples. Thus the two functions are equivalent.

The prove command provides an easy method for checking
the equivalence of two functions. However, the java extract
command cannot model functions that have indefinite size ar-
guments like array types because this command generates a
formal model by performing symbolic simulation. When a
function that has an array type argument is assigned to the
java extract command, SAW will terminate. This method has
a demerit that the prove command will only check the equiva-
lence of two functions regardless of whether or not these func-
tions satisfy the required specification.

We introduce a method to verify equivalence of functions
that have array type arguments by employing an assertion
check with the verify command. The conceptual diagram
is shown in Fig. 2. In this method, users describe appro-
priate properties that target functions need to satisfy in the
SAWScript and perform verification with the java verify or
llvm verify commands for each function. When two func-
tions satisfy the same properties, in other words, SAW does
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Figure 2: Equivalence checking by SAW

not find a counterexample, the two functions are judged as
equivalent.

Listing 3: Revised Java Mul Class
1 class Mul{
2 int oldJavafunc(int x){
3 return x + x;
4 }
5
6 int newJavafunc(int x){
7 return x << 1;
8 }
9 }

Listing 4: Equivalence Verification with the prove Command
1 java_mul <- java_load_class "Mul";
2 old <- java_extract java_mul "oldJavafunc"

java_pure;
3 new <- java_extract java_mul "newJavafunc"

java_pure;
4 let thm = {{ \x -> old x == new x }};
5 result <- prove z3 thm;
6 print result;

We show a concrete verification example using the target
code shown in Listing 3 and the SAWScript is shown in List-
ing 5. The JavaSetup block of the SAWScript is the same as in
Listing 2. Line 7 verifies oldJavaFunc and the Line 8 ver-
ifies newJavaFunc. Both verifications are valid, thus these
functions are equivalent meaning that they have the same prop-
erty of returning 2x for any integer type argument x.

The merits of this method are shown below. By using the
verify command, users can verify not only equivalence be-
tween functions but also equivalence between target functions
and specifications. The verify command can handle func-
tions that have array type arguments by defining their sizes in
SAWScript as well as reuse verified specifications for other
verifications. This is effective in shortening verification times
for complex functions.

Listing 5: SAWScript for Revised Java Mul Class
1 let java_spec : JavaSetup () = do {
2 java_input <- java_var "x" java_int;
3 java_return {{java_input*2}};
4 java_verify_tactic z3;
5 };
6 java_mul <- java_load_class "Mul";
7 java_verify java_mul "oldJavafunc" [] java_spec

;
8 java_verify java_mul "newJavafunc" [] java_spec

;

If the programming languages that implement the functions
are different, the method for proving equivalence requires an
additional step since we also need to prove that the verifica-
tion properties of both program functions are equivalent. We
created a C program shown in Listing 6 by revising Listing 1
and the SAWScript for verifying it is shown in Listing 7. In
the Java verification, SAW uses the java int command when
creating an integer type symbolic input for Java verification,
llvm int for C. C verification uses LLVMSetup to describe
a verification property, whereas Java uses JavaSetup. This
is due to the difference of the compiling methods between
LLVM and JVM. Therefore, we cannot use the verification
property shown in Listing 5 for functions written in a lan-
guage other than Java and we need to check that the verifi-
cation properties have the same inputs/outputs in each range.
In this case, we defined Z32 that the two functions receive as
expression (3).

∀x ∈ Z ∧ −2147483648 ≦ x ≦ 2147483647

⇔ x ∈ Z32

(3)

It is apparent that ints of both languages are integer types from
their specifications [24], [25]. The range of values changes
according to the number of bits of the OS or environment of
the compiler. The min/max values of the integer type can be
checked by using limits.h for C and Integer.MAX VALUE
for Java. The environment of the experiment is explained in
Section 5. As a result, the ranges of int of both languages
satisfy expression (3). Thus, we consider that the int of Java
and C are the same.

As a result of SAW verification, we confirmed that newCfunc
satisfies the verification property of Listing 7. Therefore, ex-
pression (4) holds and the two functions satisfy the definition
of equivalence.

∀java input : oldJavafunc(java input) = 2java input

∧∀c input : newCfunc(c input) = 2c input

∧java input = c input ∈ Z32

⊢ ∀x ∈ Z32 :

oldJavafunc(x) = newCfunc(x) = 2x

(4)

Listing 6: C Mul Function
1 #include <stdint.h>
2
3 int newCfunc(int x){
4 return x << 1;
5 }

Listing 7: SAWScript for C Mul Function
1 let c_spec : LLVMSetup () = do{
2 c_input <- llvm_var "x" (llvm_int 32);
3 llvm_return {{ c_input*2 : [32] }};
4 llvm_verify_tactic z3;
5 };
6 c_mul <- llvm_load_module "mul.bc";
7 llvm_verify c_mul "newCfunc" [] c_spec;
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Figure 3: Linear List with Unspecified Size

Figure 4: Linear List with Specified Size

3.2 Bounded Model Checking

The java var command can handle array type variables by
using the java arrray command. However, when users declare
array type variables in SAWScript, the concrete size of an ar-
ray must be given by a parameter. This means there is no
method to verify the properties of target functions valid with
any array size. Owing to the static symbolic execution of the
SAW, increasing the size of data leads to the verification fail-
ing without completing the recursion and ending in a state
explosion.

In this paper, in order to solve this problem, we verify the
data of such structures using the bounded verification method.
The bounded verification method verifies that the specified
verification property is satisfied for all states obtained by state
transitions from the initial state to a certain given number n,
using the assumption that the execution of a program is re-
garded as a state transition [5]. In general, bounded verifi-
cation methods are realized by using an unfolding technique
for a finite number of application steps such as loops. In this
paper, we define n to be the size of data structure elements to
be given to the function to be verified as shown in Fig. 4.

3.3 Introduction of Helper Functions to
SAWScript

The SAW generates symbolic states from intermediate code
and looks for combinations of input and output that can dis-
able assertions in SAWScript. Thus, to verify functions that
have properties that are difficult to describe in SAWScript,
users need to devise alternative methods. We consider for ex-
ample Java functions that handle linear lists that are defined
by class objects. The SAW 0.2 does not have a method to
assign symbolic variables to fields of allocated class objects.
Thus, the SAW tool cannot directly verify Java functions that
handle class object type arguments.

To solve this problem, we devised a method of using helper
functions. Helper functions are defined as wrapper functions
that call the target functions. Helper functions absorb differ-
ences between properties of the target functions and asser-

tions that can be described in SAWScript and make verifying
possible. Introducing helper functions to SAW has a merit of
being able to perform verifications without changing any code
of the target functions.

A simple example of verifying with a helper function is
shown in Listings 8 and 9. The target function returns the
value of a field x of a class object that receives it as an argu-
ment. The argument of the target function is a class object,
thus we create a helper function called testme which re-
ceives an integer type argument and creates an instance for
the target function. The helper function will return the return
value of the target function, if the target function satisfies the
property shown in Listing 9. In this case, the helper func-
tion resolves the problem of SAWScript mentioned above by
allocating values in it.

Listing 8: Example of Helper Function
1 public class Helper {
2 int x;
3
4 Helper(int x){
5 this.x = x;
6 }
7
8 static int target(Helper foo){
9 returh foo.x;

10 }
11
12 int testme(int x){
13 Helper help = new Helper(x);
14
15 return target(help);
16 }
17 }

Listing 9: SAWScript for Helper Function
1 let java_spec : JavaSetup () = do {
2 java_input <- java_var "x" java_int;
3 java_return {{java_input}};
4 java_verify_tactic z3;
5 };
6
7 java_mul <- java_load_class "Helper";
8 java_verify java_mul "testme" [] java_spec;

4 EXPERIMENTS

The following two research questions were established for
conducting the evaluation experiments.

RQ1 With the proposed method, can we use SAW to evalu-
ate the behavior of Java functions that handle recursive
structures?

RQ2 How does the verification time change depending on
the solver used and the size of input data?

In order to investigate these questions, we implemented
two programs that deal with linear data list structures and bi-
nary tree structures, which are typical for handling recursive
data structures. Unlike C, Java generally uses classes to im-
plement data structures.

Due to the limitation of SAW, we use a single Java class to
implement the data structures.
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Figure 5: Perfect Binary Tree with size n = 7

4.1 Binary Trees
We performed SAW verification for Java functions that can

receive binary trees and return the sum of all of the nodes.
A binary tree is a data structure that has nodes defined recur-
sively. The example in Fig. 5 shows a perfect binary tree with
size n = 7.

In this paper, all nodes of a binary tree are Node objects
with an integer type variable and two Node objects as their
fields. For convenience, we call the nodes “right” and “left”
and the size of a binary tree “n”.

First, we created a definition of a binary tree shown in List-
ing 10 by using the Alloy Analyzer [26]. Only one root node
exists and it is defined as a subset of Node. All the nodes have
lone relationships with other nodes to “right” and “left” and
a relationship with Value. The Value signature is Z32. The
Alloy Analyzer has an Int signature of integers, however, its
range is from -32 to +31. We consider that each node in a bi-
nary tree has a value, thus we defined this abstractly by using
a Value signature. If data structure S satisfies the constraint
below, it is called S ∈ Binary Tree.

• Each Node has only one variable.

• All of the Nodes and the Values are able to be referred
to from the Root node.

• Each Node has only one route from the Root node.

• Nodes do not loop.

Listing 10: Alloy Code for Binary Trees
1 sig Node {
2 val: one Value,
3 left: lone Node,
4 right: lone Node
5 }
6 one sig Root extends Node {}
7 sig Value {}
8
9 fact {

10 #Node = #Value
11 all v: Value, r: Root | v in r.*(right + left

).data
12 no n: Node, n’: n.right.*(right + left), n’’:

n.left.*(right + left) | n’ = n’’
13 all n: Node | n not in n.ˆ(right + left)
14 }

The Java program that handles a binary tree is shown in
Listing 11. The Node and Value signature of the Alloy script

Figure 6: All Patterns of Binary Trees with size n = 3

corresponds with the objects of this class and the var in the
second line. Generally, a node class is defined in another
class, however, we use a single class to simplify the SAW
verification in this case.

We consider the case in which we refactored oldFunc to
create newFunc and we need to prove that these functions
are equivalent.

When each of the functions receives the top node of a bi-
nary tree, they return the sum of all of the values in it, but their
algorithms are different. Their return values are integer types,
however, the arguments of both are defined as class objects.
Since it is difficult to define a class object in SAWScript, we
created a helper function based on the proposed method and
verified it.

We explain the behavior of the helper function testme.
When it receives an integer type array, it generates three class
objects of JavaBTree.

The node2 object is assigned to node1.left and node3 is
assigned to node1.right. The data structure generated by the
testme function is a perfect binary tree with size n = 3 that
satisfies the definition of a binary tree shown in Listing 10.
The helperFunc calls either of the target functions as its
return value.

The possible binary tree structures with size n = 3 are the
five patterns shown in Fig. 6. The structure of the binary tree
generated by testme equals Pattern 3. To say that the target
function satisfies the verification property with size n = 3
we need to check for all patterns. Therefore, we created and
proved helper functions corresponding to each of the binary
tree structures. Since implementation is possible by simply
switching the node indicated by the pointers, we omit the
source code here.

We explain the SAWScript shown in Listing 12. Since the
size of the array that testme assumes is 3, we defined an
integer type array with size n = 3 as input and the sum of its
elements as output in the SAWScript. The same SAWScript
is used when the size of the binary tree is 3. The size of the
array increases or decreases based on the size of the binary
trees that testme assumes.

Listing 11: Java Program for Pattern 3
1 public class JavaBTree{
2 int val;
3 JavaBTree left;
4 JavaBTree right;
5
6 JavaBTree(int val){
7 this.val = val;
8 left = null;
9 right = null;
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10 }
11
12 int oldFunc(JavaBTree now){
13 if(now != null && now.right != null && now.

left != null){
14 return now.val + oldJavaBTreeFunc(now.

right) + oldJavaBTreeFunc(now.left);
15 }else if(now != null && now.right == null

&& now.left != null){
16 return now.val + oldJavaBTreeFunc(now.

left);
17 }else if(now != null && now.right != null

&& now.left == null){
18 return now.val + oldJavaBTreeFunc(now.

right);
19 }else if(now != null && now.right == null

&& now.left == null){
20 return now.val;
21 }else{
22 return 0;
23 }
24 }
25
26 int newFunc(JavaBTree now){
27 if(now == null){
28 return 0;
29 }
30 return now.val + newJavaBTreeFunc(now.right

) + newJavaBTreeFunc(now.left);
31 }
32
33 int testme(int[] x){
34 JavaBTree node1 = new JavaBTree(x[0]);
35 JavaBTree node2 = new JavaBTree(x[1]);
36 JavaBTree node3 = new JavaBTree(x[2]);
37 node1.left = node2;
38 node1.right = node3;
39
40 return oldFunc(node1);
41 //return newFunc(node1);
42 }
43 }

Listing 12: SAWScript for Java BTree Program
1 let linear_spec : JavaSetup () = do {
2 ary <- java_var "x" (java_array 3 java_int);
3 java_return {{ ary@0 + ary@1 + ary@2 }};
4 java_verify_tactic yices;
5 };
6 linear_java <- java_load_class "JavaBTree";
7 java_verify linear_java "

helperFunc_size3_pattern3" [] linear_spec;

We performed the following two experiments.

• SAW verification for all binary tree structures with size
1 ≤ n ≤ 3. The numbers of possible binary tree struc-
tures are 1 when size n = 1, 2 when size n = 2, and
5 when size n = 3. The verification result is shown in
Section 6.1.1.

• SAW verification for all perfect binary trees with size
1 ≤ n ≤ 63 to investigate the gains of verification
time by size. The verification result is shown in Section
6.1.2.

4.2 Linear Lists
We performed SAW verification for C and Java functions

that receive linear lists and return the sum of all of the nodes.

A linear list is a data structure that has nodes defined recur-
sively. The example in Fig. 7 shows a linear list with size
n = 3. In this paper, all nodes of linear lists are Node objects
and they have an integer type variable and one Node object as
their fields. For convenience, we call nodes indicated by the
pointer as “next” and the size of a linear list as “n”.

As with the binary trees, we created a definition of a linear
list shown in Listing 13 by using the Alloy Analyzer. Only
one top node exists and it is defined as a subset of Node. All
nodes have lone relationships with other nodes as “next” and
a relationship with Value. The Value signature is taken as Z32

and if the data structure S satisfies the constraint below, it is
called S ∈ Linear List.

• Each Node has only one variable.

• All of the Nodes and the Values are able to be referred
to from the Top node.

• Nodes do not loop.

Listing 13: Alloy Code for Linear Lists
1 sig Node {
2 val: one Value,
3 next: lone Node
4 }
5 one sig Top extends Node {}
6 sig Value {
7 }
8
9 fact {

10 #Node = #Value
11 all v: Value, t: Top | v in t.*(next).val
12 no n: Node | n in n.ˆnext
13 }

4.2.1 Java Linear List

A Java program for defining a linear list class is shown in
Listing 14. We performed SAW verification for all linear list
structures with size 1 ≤ n ≤ 10. The verification result is
shown in Section 6.2.1. As described above, we implemented
the program in a single Java class for simplicity since we are
focusing on a single function.

We assume that we need to prove the property of the func-
tion javaLinearFunc. When this function receives the
top node of a linear list, it returns the sum of its data by call-
ing itself recursively. The data type of the argument of the
target function is a class object of JavaLinear, which is
difficult to define in SAWScript as input.

Figure 7: Linear List Structure

International Journal of Informatics Society, VOL.12, NO.3 (2021) 143-156 149



Thus, we create helperFunc based on the proposed method.
This function generates a linear list with size n = 3 that sat-
isfies expression (5). Since the function structure is the same
as Listing 11, we omit the explanation.

now = node1(x[0], node2(x[1], node3(x[2], null))) (5)

As a result, all possible linear list patterns that can be
constructed with size n = 3 can be completed with one
helper function. This is a benefit of symbolic execution. The
SAWScript is shown in Listing 15.

Listing 14: Java Linear class
1 public class JavaLinear{
2 int val;
3 JavaLinear next;
4
5 JavaLinear(int val){
6 this.val = val;
7 next = null;
8 }
9

10 int javaLinearFunc(JavaLinear now){
11 if(now.next != null){
12 return now.val + javaLinearFunc(now.next)

;
13 }else{
14 return now.val;
15 }
16 }
17
18 int helperFunc(int[] x){
19 JavaLinear node1 = new JavaLinear(x[0]);
20 JavaLinear node2 = new JavaLinear(x[1]);
21 JavaLinear node3 = new JavaLinear(x[2]);
22 node1.next = node2;
23 node2.next = node3;
24 return javaLinearFunc(node1);
25 }
26 }

Listing 15: SAWScript for Java Linear Program
1 let java_spec : JavaSetup () = do {
2 ary <- java_var "x" (java_array 3 java_int);
3 java_return {{ary@0 + ary@1 + ary@2}};
4 java_verify_tactic mathsat;
5 };
6 linear_java <- java_load_class "JavaLinear";
7 java_verify linear_java "helperFunc" []

java_spec;

4.2.2 C Linear List

We revised the previous Java program of Listing 14 to a C
program shown in Listing 16. We performed SAW verifica-
tion for all linear list structures with size 1 ≤ n ≤ 10. The
verification result is shown in Section 6.2.2. A node is defined
by using struct, has an integer type variable and a pointer to
the next node. The target function is cLinearFunc and its
algorithm is the same as javaLinearFunc in Listing 14.

The SAWScript is shown in Listing 17. Defining a struct of
C in SAWScript is easily possible by using the crucible alloc
and crucible points to commands.

The crucible alloc command allows SAW to reserve mem-
ory space. In this experiment, we need to perform SAW veri-
fication on a linear structure with size n = 3. The description
from Lines 6 to 8 let SAW reserve memory space of struct
named node1, 2, and 3.

The crucible points to allows SAW to specify the destina-
tion of a pointer in the memory space. By using this, users
can create data structures that the target function receives in
SAWScript. The description from Lines 10 to 15 determines
the specification of node1: its field is val1, next node is node2.

The crucible execute func in Line 29 allows SAW to de-
termine the argument that the target function receives. In this
case, the target function needs to receive the top node of a
linear list.

Listing 16: C Linear Program
1 #include <stdint.h>
2 typedef struct NODE{
3 int val;
4 struct NODE *next;
5 }node_t;
6
7 int cLinearFunc(node_t *now){
8 if(now->next != ’\0’){
9 return now->val +cLinearFunc(now->next);

10 }else{
11 return now->val;
12 }
13 }

Listing 17: SAWScript for C Linear Program
1 let linear_spec = do{
2 val1<-crucible_fresh_var "val1" (llvm_int 32)

;
3 val2<-crucible_fresh_var "val2" (llvm_int 32)

;
4 val3<-crucible_fresh_var "val3" (llvm_int 32)

;
5
6 node1<-crucible_alloc (llvm_struct "struct.

NODE");
7 node2<-crucible_alloc (llvm_struct "struct.

NODE");
8 node3<-crucible_alloc (llvm_struct "struct.

NODE");
9

10 crucible_points_to node1 (
11 crucible_struct [
12 crucible_term val1,
13 node2
14 ]
15 );
16 crucible_points_to node2 (
17 crucible_struct [
18 crucible_term val2,
19 node3
20 ]
21 );
22 crucible_points_to node3 (
23 crucible_struct [
24 crucible_term val3,
25 crucible_null
26 ]
27 );
28
29 crucible_execute_func [node1];
30 crucible_return(crucible_term{{val1+val2+val3

}});
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31 };
32
33 print "llvm_load start";
34 linear_c <- llvm_load_module "liner.bc";
35 crucible_llvm_verify linear_c "cLinearFunc" []

false linear_spec abc;
36 print "Done.";

4.2.3 Increases of Verification Time

As shown in Tables 1 and 2, timeout (T/O) verification times
greater than 600 sec. did not occur with the verifications by
CVC4, Yices, and Z3. Therefore, we performed additional
tests with these solvers to investigate the increases in verifica-
tion time with size. We generated test cases of linear lists with
size 100 ≤ n ≤ 2000 in 50 node increments and performed
SAW verification. The results are shown in Section 6.2.3.

5 ENVIRONMENT OF THE
EXPERIMENTS

The following summarizes the specifications of the PC used
for the experiments.

• PC : TOSHIBA Dynabook T55/76MG

• OS : Windows 10 64-bit

• CPU : Intel Core i7 4510U

• RAM : 8GB DDR3

The versions of the tools used in the experiments are as
follows.

• SAW : 0.2

• Clang : 3.7.1

• Java : 1.8.0 211

• ABC : 1.0.1

• CVC4 : 1.5

• Z3 : 4.6.0

• Yices : 2.5.4

• MathSAT : 5.5.1

We used the older LLVM 3.7.1, due to the SAW limitation.

6 EXPERIMENT RESULTS

In this section, we show the results of experiments for the
various solvers. The numbers in the tables represent seconds.
Verification times greater than 600 seconds were judged as
timeouts (T/O).

6.1 Verification Results for Binary Trees
6.1.1 Verification Result with Size 1 ≤ n ≤ 3

We performed SAW verification for all binary tree structures
with size 1 ≤ n ≤ 3. As a result, SAW verification for both
functions was successful for all possible binary tree patterns
in this range.

6.1.2 Verification Times Changing the Number of Ele-
ments

We performed SAW verification for all perfect binary trees
with size 1 ≤ n ≤ 63. The verification times in seconds are
shown in Table 1.

6.2 Verification Results for Linear Lists
6.2.1 Verification Times for Java Linear List

We performed SAW verification for the javaLinearFunc
function in Listing 14 by changing the size of the linear list.
The verification times in seconds are shown in Table 2.

6.2.2 Verification Times of C Linear List Structures

The result of SAW verification for Listing 16 is shown below.
The value of the counterexample is 1 more than INT MAX.

SolverStats solverStatsSolvers = fromList [”ABC”],
solverStatsGoalSize = 45

———-Counterexample———-

(“val2”,2147483648)

(“val3”,2147483648)

When we changed the type of variable and function from
int to uint32 t, SAW verification was successful. Thus, we
performed a modified SAW verification for that program and
the results are shown in Table 3.

6.2.3 Increases of Verification Times

The results of the experiment in Section 4.2.3 are shown in
Figs. 6.2.3 and 6.2.3. Figure 6.2.3 shows the change in veri-
fication time of the Java program of Listing 14. No timeouts
occured with any of the three SMT solvers and SAW verifi-
cations were successful, taking less than 30 seconds with size
n = 2000.

Table 1: Verification Times for Binary Trees

size n ABC CVC4 MathSAT Yices Z3
1 0.203 0.340 0.319 0.358 0.315
3 0.212 0.454 0.415 0.526 0.423
7 133.626 0.462 T/O 0.504 0.431
15 T/O 0.494 T/O 0.536 0.469
31 T/O 0.635 T/O 0.616 0.571
63 T/O 0.634 T/O 0.706 0.571
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Figure 6.2.3 shows the change of verification time of the
C program of Listing 16. To perform SAW verification, we
changed the type of variable and function from int to uint32 t.
timeouts occur with CVC4 when size n = 1400, Yices and
Z3 when size n = 1350.

7 DISCUSSION

7.1 Property Proving for Java Binary Tree
Programs

When function helperFunc of Listing 11 satisfies the
verification property shown in Listing 12, expression (6) holds.

∀x ∈ Z32 Array, size = 3 :

helperFunc(x) =
∑

x = x[0] + x[1] + x[2]
(6)

This means that when helperFunc receives any integer
type array with size n = 3, it returns the sum of its ele-
ments. Property proving for the target function must be given
by users.

According to the result of the experiment, when the
return value of helperFunc is either target func-
tion, it satisfies the verification property. Thus, the
return value of helperFunc is the same as the re-
turn value of oldJavaBTreeFunc(node1) and
newJavaBTreeFunc(node1). Also, the argument
node1 that the target functions receive is the root node of any
binary tree with size n = 3 and Pattern = 3 in Fig. 6.
Thus, expression (7) holds.

∀x ∈ Z32 Array ∧ size = 3

∧∀node1 ∈ BinaryTree ∧ size = 3 ∧ Pattern = 3 :

helperFunc(x) = oldJavaBTreeFunc(node1)

= newJavaBTreeFunc(node1)

=
∑

x

(7)

When instance creation occurs in helperFunc, an inte-
ger value is given for the val of each node as data by a con-
structor. From the description of Listing 11, expression (8)
holds.

Table 2: Verification Times for Java Linear List Structures

size n ABC CVC4 MathSAT Yices Z3
1 0.186 0.205 0.312 0.202 0.221
2 0.081 0.206 0.177 0.224 0.214
3 0.278 0.205 0.301 0.208 0.211
4 1.184 0.208 6.573 0.216 0.219
5 5.978 0.212 114.327 0.219 0.213
6 54.713 0.214 332.668 0.214 0.214
7 144.602 0.211 T/O 0.215 0.228
8 T/O 0.221 T/O 0.214 0.228
9 T/O 0.252 T/O 0.238 0.266

10 T/O 0.224 T/O 0.225 0.231

Table 3: Verification Times for C Linear List Stuctures

size n ABC CVC4 MathSAT Yices Z3
1 0.512 0.462 0.447 0.463 0.459
2 0.568 0.508 0.539 0.540 0.505
3 0.766 0.506 0.617 0.494 0.505
4 1.823 0.514 6.478 0.495 0.606
5 7.234 0.513 105.291 0.502 0.502
6 58.827 0.521 315.102 0.505 0.509
7 134.956 0.514 T/O 0.507 0.525
8 256.111 0.526 T/O 0.508 0.516
9 T/O 0.523 T/O 0.509 0.529
10 T/O 0.525 T/O 0.512 0.526

node1.val = x[0] ∧ node2.val = x[1] ∧ node3.val = x[2]

⊢
∑

x =
n∑

i=1

noden.val

(8)

From expressions (7) and (8), it is proved that when both
target functions receive the root node of any binary tree with
size n = 3 and Pattern = 3, they return the sum of all node
values.

According to the result of the experiment, SAW verifica-
tions succeeded for all possible binary tree structures with
size 1 ≤ n ≤ 3. The proof for the other structure patterns
is possible in the same way, therefore expression (9) holds.

∀now ∈ BinaryTree ∧ 1 ≤ n ≤ 3 :

oldJavaBTreeFunc(now)

= newJavaBTreeFunc(now)

=
n∑

i=1

noden.val

(9)

In other words, two functions being equivalent means that
they return the sum of all elements of a binary tree when they
receive any binary tree with size 1 ≤ n ≤ 3.
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Figure 8: Verification Time for Java Linear List Program
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7.2 Property Proving for Java and C Linear
List Programs

Since the number of possible linear list structure orderings
does not increase with additional nodes, verification is easy
compared with binary tree structures.

7.2.1 Java Linear List

The function javaLinearFunc of Listing 14 satisfies ex-
pression (10).

∀now ∈ LinearList ∧ 1 ≤ size n ≤ 10 :

= javaLinearFunc(now) =
n∑

i=1

noden.val
(10)

In other words, when javaLinearFunc receives any linear
list with size 1 ≤ n ≤ 10, it returns the sum of its elements.
The proof is similar to that in Section 7.1 and we omit it here.

7.2.2 C Linear List

As shown in Section 6.2.2, we changed the type of variable
and function from int to uint 32 to enable a SAW verification.
Thus, the definition of a linear list was changed to expression
(11).

∀f(x, n) : x ∈ Z32u ∧ n ::= f(x, n)|null
⇔ f(x, n) ∈ C Linear List

(11)

It is possible for SAWScript to define a struct of C for C veri-
fication. Thus, expression (12) holds.

∀now ∈ C Linear List ∧ 1 ≤ size n ≤ 10 :

= cLinearFunc(now) =
n∑

i=1

noden.val
(12)

7.2.3 Equivalence between Java and C Functions

The value of the counterexample shown in Section 6.2.2 was
1 more than INT MAX and SAW verification was successful

when we changed the type of variable and function from int
to uint32 t. Thus, we assume that llvm int 32 of SAWScript
means uint32 t of C and we implemented an intentional bug
of Listing 6 so that it returns x when x==0xFFFFFFFF. The
type of its variable and function were changed into uint32 t.
The result of SAW verification is shown below.

Proof of return value failed.

———-Counterexample———-

%x: 4294967295

return value

Encountered: 4294967295

Expected: 4294967294

Proof failed.

From this result, we determined that llvm int 32 defines the
symbolic variable of uint32 t. However, it is not clear why
the SAW verification of the original program of Listing 6 was
successful in spite of the types of the target function and its
argument being int. Currently, we consider this behavior of
SAW as a bug and we need to investigate further and clarify
the specification of SAW.

The types of the target functions and data values of linear
lists are Z32 in Java, Z32u in C. These differences make it
difficult to prove the two functions are equivalent in a strict
sense. However, it can at least be said that the two functions
meet the same specification in that they return the sum of a
linear list when they receive the top node of it.

7.3 Verification Time
In this section, we discuss the verification times. SAW

automatically generates formal models based on target func-
tions and descriptions of SAWScript and then solves them us-
ing SMT solvers. Thus, the time or ability of calculation is
strongly influenced by the performances of the solvers.

There are pros and cons of the various SMT solvers. For
example, in Table 2, the verification time with size n = 5 of
Yices is over 100 sec. less than that of MathSAT. It is known
as a demerit of SMT verification that estimating the verifica-
tion time before performing verification is difficult due to the
complex implementation of SMT solvers [27]. However, we
can change which SMT solver to use in SAW just by editing
the description of SAWScript and users can investigate the
differences of verification time easily.

Due to the symbolic execution of SAW, we reduced the
number of required test cases for verifying functions that han-
dle recursive data structures to the number of possible patterns
of data structures.

The number of possible binary tree structures with size n is
shown in expression (13) and is called a Catalan Number[28].

P (n) =
(2n)!

(n+ 1)!n!
(n ≥ 0) (13)

This shows that the time complexity of verifying a binary
tree function is O(n!). Table 1 shows that Z3 verifies a per-
fect binary tree with size n = 15 in 0.469 sec., however, the
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total number of possible binary tree patterns with size n = 15
is about 9.7 million. In spite of using symbolic execution,
verifying a function with recursive data structures still needs
enormous time. Thus, we need to devise a method that veri-
fies more effectively.

7.4 Threats to Validity

7.4.1 Proposed Method

In this paper, we proposed a method to perform SAW verifi-
cation for functions that receive class objects by using helper
functions. This method is useful in defining arguments of the
target function that cannot be defined in SAWScript. How-
ever, SAW can only verify the property of the helper func-
tions, which means users need to prove properties of the tar-
get function manually like in Section 7.1. This dependency
is a threat to internal validity and a way of generalizing the
method is needed.

7.4.2 Definition of Equivalence

It is obvious that there are various requirements for the defi-
nition of equivalence [29], e.g., time complexity, readability,
requests of memory space, and power consumption. How-
ever, in this paper, we adopted the description in [1] as the
definition of refactoring and expression (1) as the definition of
equivalence between two program functions. The reason for
this is due to the specification of SAW. SAW automatically
generates formal models of target functions and solves them
by using SMT solvers. However, in SAWScript, users can de-
fine inputs and outputs as verification properties of the target
function by this method, and we used SAW as a black-box
unit testing tool. To evaluate the requirements shown above,
SAW is not an adequate tool and users need to adopt other
approaches.

8 CONCLUSION

In this work, we applied our proposed method to Java pro-
grams dealing with two types of recursive data structures and
verified them using SAW to show that verification is actually
possible. For the verification of linear lists, a comparison with
the verification for C in our previous research was discussed.

We also proposed a method for simplifying the description
of SAWScript and performing verification inductively by cre-
ating a helper function and defining a structure piece by piece
in it. We confirmed that equivalence verification by SAW can
be performed in the sense that two functions written in C and
Java satisfy the same verification property.

In our future work, we will conduct further evaluation ex-
periments and devise a method to verify the equivalence of the
behavior of functions which have more complex algorithms
like sorting algorithms. In addition, we would like to inves-
tigate the influence of language and algorithm on the solvers,
and consider a method to find the optimal solver in equiva-
lence verification.
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