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Abstract - Maintenance of factory automation (FA) equip-
ment is important for quality assurance in the manufacture of
industrial products. In the present paper, we develop a failure
prediction method for FA equipment with parallel links.

Recently, predictive maintenance has been considered as a
maintenance system for FA equipment. In predictive main-
tenance, sensors are attached to the equipment. The failure
time is estimated based on the sensor data, and maintenance
is carried out in advance. Unsupervised learning is the recom-
mended method, because FA equipment is not prone to fail-
ures and may not accumulate much failure data. The princi-
pal component analysis used in the present study can be used
unsupervised, and related studies have shown that principal
component analysis is more accurate than other unsupervised
learning methods.

The considered method has a simple structure in which
links of the same type are arranged in parallel. The consid-
ered method is shown to have great potential for enhancing
predictive maintenance.

Since each link is connected to one mechanism, when the
operation of a particular link is abnormal, the operations of
other links are affected. By monitoring these interactions be-
tween links, failure prediction for the entire link mechanism
can be performed using the measurement data from the sensor
of a single link.

Experimental equipment with two links was produced. Time
series data were obtained from measurements using the sen-
sor of the servomotor when a load was applied to one link.
Using principal component analysis, changes in link classes
were observed based on the measurement data of not only the
loaded link but also the unloaded link. In the present paper,
we confirm the existence of the interaction between the links
using an experimental apparatus of the parallel linkage mech-
anism. These interactions are used to predict failures with a
small number of sensors.

Keywords: Predictive Maintenance, Factory Automation,
Parallel Link, Principal Component Analysis

1 INTRODUCTION

Recent factory automation (FA) systems support a wide
range of industrial products, from electronic devices, such as
mobile phones, to transportation equipment such as automo-
biles. Proper maintenance of FA systems is required in order
to ensure the quality of these products. In general, the main-
tenance cost of an FA system has been reported to be 15 to
60% of the manufacturing cost of the product, and thus is not
insignificant [1].

There are two types of maintenance methods for FA equip-
ment. The first is preventive maintenance which involves
regularly performing maintenance, regardless of the state of
the equipment. Therefore, unnecessary maintenance is per-
formed on the FA equipment, which increases maintenance
costs. The second type of maintenance is predictive mainte-
nance, in which maintenance is performed according to the
predicted state of the FA equipment. The state of the FA
equipment is measured by sensors, and future failure times
are predicted. The maintenance cost can be reduced by con-
ducting maintenance based on failure prediction. The Interna-
tional Air Transport Association (IATA) has estimated that the
cost of maintenance would be reduced by 15 to 20% if aircraft
were to be subjected to predictive maintenance [2]. Failure
prediction is required in order to perform predictive mainte-
nance. The installation cost and physical space in a system,
including wiring, for the sensor must also be considered [3].
In addition, a communication channel must be secured in or-
der to upload real-time measurement data to the cloud. The
purpose of the present paper is to predict the failure of FA
equipment. FA equipment consists of a combination of sev-
eral servo motors, links, and other mechanical components.
By attaching sensors to the components in a system, it is pos-
sible to accurately measure mutations that lead to component
failure. We herein examine a failure prediction method that is
suitable for edge computing.

In the present paper, we predict failure for predictive main-
tenance using the interaction between mechanical parts. De-
fective components in FA equipment are detected based on
changes in the sensor data. We examine the accuracy of the
failure prediction using an experimental apparatus while in-
creasing the load on the equipment until failure. We use prin-
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cipal component analysis (PCA) for feature extraction in the
failure prediction.

The remainder of the present paper is organized as follows.
Section 2 introduces related research. Section 3 presents the
considered method for failure prediction. Sections 4 and 5
describe the experimental system, the experimental method,
and the obtained results. Section 6 discusses the evaluation
results, and a summary is presented in Section 7.

2 RELATED RESEARCH

System diagnostics can be separated into model-based di-
agnostics and signal-based diagnostics [4]. Model-based di-
agnosis is used when the theoretical modeling of a target sys-
tem is straightforward. A deterministic model is created using
equations to represent the actual system, and the diagnosis is
performed by comparing the output of the system with the
output of the model.

Signal-based diagnosis is used when theoretical modeling
of a target system is difficult. In this case, we use a model de-
rived from measurements. We extract the characteristics for
normal and abnormal operating conditions of the equipment
from the measurements and use these characteristics to diag-
nose faults.

In recent years, a method for signal-based diagnosis using
machine learning techniques has been introduced. With the
increasing accuracy of sensors and developments in the field
of Al, the accuracy of failure prediction is improving. There
are also techniques to perform signal-based diagnosis under
dynamic conditions, as compared to static conditions alone
[5].

FA equipment is generally reliable and resistant to failure.
However, in real environments, it is difficult to apply super-
vised learning because of the small accumulation of failure
data. Therefore, it is common to use unsupervised machine
learning for FA equipment. According to a review paper on
FA equipment diagnosis by unsupervised machine learning,
methods using PCA provide the best results [6]. The con-
sidered method uses unsupervised learning because it is not
possible to know the parameters at failure from the beginning.
Maintenance is carried out and monitoring the parameters and
actually operating the FA equipment and is optimized by ad-
justing the operation period little by little.

In addition, there is a problem in signal-based diagnosis
in that signal-based diagnostics require high computational
power for recording and processing large amounts of mea-
surement data. Therefore, it is necessary to apply these meth-
ods using cloud computing [7]. In the case of FA equipment,
it is necessary to secure a large capacity communication line.

For this reason, it is desirable that the computer on the edge
side be able to diagnose faults in the FA equipment. In addi-
tion, it is desirable that sensor count be reduced when edge
computing is used. There are interactions between compo-
nents such as the resonance between the components in the
FA equipment, and the status of the entire FA system can be
diagnosed using a small sensor count with appropriate signal
processing. However, as far as we know, methods for predict-
ing failure using the interaction between parallel links in FA
equipment have not been studied.

3 FAILURE PREDICTION OF FACTORY
AUTOMATION EQUIPMENT WITH
PARALLEL LINKS

In the present paper, we examine a method for predicting
failure by signal-based diagnosis for FA equipment with par-
allel links. Parallel link robots [8] are multiple link mecha-
nisms of the same type that are arranged in parallel and oper-
ate synchronously. Robots using parallel links use many more
shared control components compared to a single-arm robot.
Therefore, the manufacturing cost is low, and the mechanism
is simple and easy to maintain. For this reason, parallel links
have been widely used. Fault prediction is performed by the
parallel link mechanism with the installed sensor. Since each
link is combined to form a single mechanism, the movement
of a link is affected by other links. Therefore, if there is an
abnormality in the operation of a certain link, the behavior of
other links is expected to be affected. In the present paper, by
considering the interaction between parallel links, using only
measured data of sensors from a single link, we considered a
method to detect an abnormal sign of an FA apparatus with
parallel links to carry out its fault prediction. Generally, FA
equipment does not change suddenly from the normal state
to an abnormal state, and there may be a sign of abnormality
due to wear of parts between the normal state and the abnor-
mal state. The considered method measures the time series
data of FA devices with parallel links. PCA is performed for
these data. Based on the change in the PCA result, a sign of
the abnormality is obtained, and the failure time is predicted.
The procedure of the considered method is shown below.

e Measurement of time series data during operation of FA
equipment

e PCA for measured time series data

o Classification of the data using the plane with the first
and second principal components as axes

e Representation of each class by elliptic approximation
and extraction of elliptic parameters

e Prediction of failure time from time series variation of
elliptic parameters

The concept of fault prediction based on the considered method
is shown in Fig. 1. The two axes represent the first and second
components of the PCA. An ellipse approximating the mea-
sured data is shown. A normal ellipse indicates normal oper-
ation. This ellipse gradually changes with various factors to
an abnormal state which is indicated by an abnormal ellipse.
This change is obtained as an “abnormal sign” ellipse in the
middle, which indicates a sign of the abnormality. A class is
a collection of data measured at the same timing in an oper-
ation of an apparatus. Therefore, classification is possible by
collecting data in the order of measurement. In addition, we
use curve approximation to predict elliptic parameters. In the
next section, we discuss how to verify the degree of abnormal
behavior from other links that can be detected.
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Figure 1: Concept of failure prediction

4 EXPERIMENTAL METHOD

In this section, we describe the experimental apparatus with
a parallel link as well as the procedure for using the experi-
mental apparatus. The experiment was carried out in a room
in which an air conditioner was set at a constant tempera-
ture in order to suppress the change of motor data due to the
change in temperature between day and night. An outline of
the experiment is as follows. In this experiment, the abnor-
mality of the bearing due to seizure and rusting due to a lack
of grease is shown by mounting the weight. This is a fatal
failure as a parallel link robot because the movement of the
joint is impeded.

e Applying a load, which assumes an increase in the fric-
tion load at a specific link, and measuring the data.

e Analysis of changes due to increased load.

e Comparison of data between loaded and non-loaded links
to evaluate the possibility of failure prediction.

4.1 Experimental Apparatuses

The experimental apparatuses are shown in Fig. 2. These
apparatuses are systems that predict failure times from data
obtained from the servo motors and can cover anomalies in
joints such as bearing wear and seizure due to a lack of grease.
In this experiment, the method was first examined on an ap-
paratus (Type 1) that imitates FA equipment. By applying
the method to an apparatus similar to actual FA equipment
(Type 2), we obtain the results reported herein, and the gener-
ality to the parallel link mechanisms is confirmed. The Type
1 system is shown in Fig. 3. The Type 1 system consists of
a personal computer and parallel link mechanisms using two
servo motors. The personal computer transfers control to the
servo motors, and the servo motors transmit the data to the
personal computer. Six kinds of data can be obtained from the
servo motors. The Type 1 sensor data consist of temperature,
current, voltage, rotation angle, rotation speed, and rotation
time, which can be obtained from the servo motor. The data
acquisition frequency is 10 Hz. The temperature data mea-
surements of the servo motor are affected by the temperature
of the room. Therefore, this temperature is stabilized in the
range of +1°c using air conditioning. This method prevents
temperature change due to factors other than the heat gener-
ated by the operation of the servo motor.
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Figure 3: Type 1 experimental system

Experimental device

The Type 1 system is approximately 15 cm and is smaller
than actual FA equipment. The specifications of the servo
motor are listed in Table 1. The Type 2 system consists of an
external hard disk drive (HDD) and parallel link mechanisms,
as well as a controller using two servo motors. The controller
operates the servo motors and transmits the data to the exter-
nal HDD. Three kinds of data can be obtained from the servo
motors. The Type 2 sensor data consist of current, rotation
speed, and overshoot, which can be obtained from the servo
motor. The data acquisition frequency is approximately 2252
Hz.

The specifications of the servo motor are listed in Table 2.

In the experiment, by operating the experimental appara-
tus which is similar to FA equipment, we obtain the sensor
data necessary for failure prediction by increasing the load on
the servo motor. In particular, we increase the load on the
link component in order to create abnormal operating condi-
tions. The experimental apparatus is shown in Fig. 4. The
joints connect the links of the link components. The guide
rails limit the movement of the drive unit. The drive unit is
perpendicular to the guide rail.

Table 1: Specifications of the Type 1 servo motor (RS302CD)

Torque (during operation 7.4 V) 5.0 kgf-cm
Current consumption (when stopped) 40 mA
Current consumption (when moving) 125 mA

Working voltage 72-74V

Movable angle 150°
Temperature limit 0-40°C
Communication speed max 460.8 kbps

Table 2: Specifications of the Type 2 servo motor
(MDH-4012-324KE)
Torque
Temperature limit

6.1182 kgf-cm
0-40°C
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Figure 4: Parallel links

The drive unit moves backward and forward by rotating
servo motors A (M 4) and B (M p) outward. The weights are
placed either at Joint A (J4) or Joint B (Jp).

4.2 Experimental Procedure of Type 1 System

Experiments are conducted to increase the friction between
the links. First, we record the sensor output for 20 minutes
without placing a load on the system. Second, weights are
fixed to J4 for a 30-second interval. Next, we record the sen-
sor output for another 20 minutes under a 70 g load. Weights
are fixed to J4, again. Finally, we record the sensor output
for 20 minutes under a 130 g load.

4.3 Experimental Procedure of Type 2 System

Experiments are conducted to increase the friction between
the links.The weight on joint A is the same as in the Type
1 experiment. The change is that the motor of the Type 2
system has a stronger force than that of the Type 1 system.
We performed measurements from 0 g to 2500 g at 100 g
intervals.

This experiment is carried out in order to verify whether
the load increase can be observed by only the measurements
from M p when placing a weight on J4.

S EXPERIMENTAL RESULTS

We first describe the observed interactions. Next, we de-
scribe the results of PCA using 12-dimensional data. Finally,
we describe the results of PCA using six-dimensional data.
The data obtained from the servo motors are shown separately
in Figs. 5 through 12.

5.1 Changes in Rotational Angle

Figures. 5 and 6 show the rotational angles of the servo mo-
tors.In the rotational angle data, M 4 indicates that the move-
ment of the horn is faster than usual due to the loading. Fig-
ure. 7 shows an enlarged view of the angle data for Mp. The
region of the rotational angle data containing abnormal read-
ings are enclosed by a black circle. Figure. 7 shows an en-
larged view of the black circle. In Mp, there was an inter-
action in which the timing of the action was shifted by M 4.
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Figure 5: Angle data for Motor A
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Figure 6: Angle data for Motor B
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Figure 7: Enlarged view of angle data for Motor B
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5.2 Changes in Rotation Time

Figures. 8 and 9 show the rotation times of the servo mo-
tors. Rotation time indicates the elapsed time from the start
of the movement of the servo horn, and the value is retained
until the next movement after arrival at the target angle. The
abnormal measurements in the rotation time data are enclosed
by a black circle. Figure. 10 shows an enlarged view of the
area indicated by the black circle. Here, M 4 indicates that
the time of movement is clearly earlier than that for the case
without a load. Figure. 10 shows an enlarged view of the Mg
rotation time data. In addition, Mp is also moving slightly
faster than before the load was added.

5.3 Changes in Voltage

Figures. 11 and 12 show the voltages of the servo motors.
The three sets of measurements for M4 show that the ten-
dencies in the voltage change do not agree. The M4 voltage
under the 130 g load is more stable than that under the 70 g
load, probably because the play in the experimental apparatus
was suppressed by the weight. The abnormal voltage data are
enclosed by a black ellipse. The voltage data for Mp show
a small variation, but an abnormal voltage drop was observed
due to the interaction.
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Figure 8: Rotation time data for Motor A
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Figure 9: Rotation time data for Motor B
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Figure 10: Enlarged view of rotation time data for Motor B
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Figure 11: Voltage data for Motor A
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Figure 12: Voltage data for Motor B

5.4 Results of Principal Component Analysis

PCA was performed using 12-dimensional data from both
motors. Figure. 13 shows the contribution of the principal
components (PCs) of the normal time data. The contributions
of the PCs of the loaded data were approximately the same.
We can explain less than 50% of the variance in the data in
two dimensions.
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Figure 13: Cumulative explained variance for the principal
components

Figures. 14 and 15 show the 12-dimensional data distribu-
tion without and with load, respectively. The solid and dashed
ellipses indicate the 70 g data and the 130 g data, respectively,
in Fig. 15. The class count could be observed to change as
the load increased. Classes are formed by grouping points
for each operation of the experimental equipment. A given
point moves between multiple classes after one movement
of the experimental equipment, before returning to the ini-
tial class. Classes P; through P, are highlighted in Fig. 14.
Other classes are moving between assigned numbers. The
classes are changing as the load increases. In particular, the
change of the P class is remarkable.

From the PCA result for the 12-dimensional data, only Ps
was individually analyzed, and the change of P in each state
was confirmed. Table 3 shows the change of P;. We applied a
normal distribution to the data and analyzed the average value
and the angle of the distribution on the x-and y-axes and the
length of the main axis of the distribution. The major and mi-
nor axes are the standard deviations for each axis multiplied
by a constant. Ellipses represent equal probabilities of 95%.
In the 12-dimensional data, the change of P53 was observed in
the x mean value, the angle of distribution, and the principal
axis. This is because some of the data for P; are located at P,
in the operation.
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Figure 14: Twelve-dimensional data distribution: without
load
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Figure 15: Twelve-dimensional data distribution: with load

Table 3: Twelve-dimensional data change for Ps

P Center (x,y) | P3 (Angle) | Ps (Major, Minor)
Normal (-4.16, 1.63) 3.02° (2.99, 0.65)
70g (-1.84, 1.65) 5.24° (6.34, 0.36)
130 g (-1.90, 1.38) 6.66° (6.28, 0.38)

5.5 Failure Prediction of Type 1 System

PCA was performed using six dimensional data for each
servo motor. Figsure. 16 and 17 show the results of PCA of
M 4 for the data distributions without and with load, respec-
tively. Since M 4 was directly loaded, the transition in the en-
tire class from right to left was remarkable. Figures. 18 and 19
show the results of PCA of Mg for the data distributions with-
out and with load, respectively. A transition was observed in
the class. From this result, it is considered that abnormality in
the equipment operation can be detected based only on PCA
of the data of M p without applying the load directly.
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Figure 16: Six-dimensional data distribution for Motor A
without load
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Figure 17: Six-dimensional data distribution for Motor A
with load

Based on the PCA result for the six-dimensional data of
M 4, only Ps was individually analyzed, and the change of
Ps in each state was confirmed. Table 4 shows the change of
Ps5. In the M4 data, the change of Ps; was observed in the
x mean value and the angle of distribution. In this case, as
in the case of the 12-dimensional data, the data are arranged
from P; to P» by the operation.

Based on the result of PCA for the six-dimensional data of
Mp, only P3 was individually analyzed, and the change of P
in each state was confirmed. Table 5 shows the change of Ps.

Table 4: Six-dimensional data (M 4) change of Ps

Ps Center (x,y) | P3 (Angle) | P53 (Major, Minor)
Normal (0.71,-0.94) -0.68° (8.45, 1.80)
70 g (0.13, -0.95) 10.9° (7.41, 1.73)
130 g (0.02, -0.90) 0.49° (7.47, 1.62)
3
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Figure 18: Six-dimensional data distribution for Motor B
without load
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Figure 19: Six-dimensional data distribution for Motor B with
load

Table 5: Six-dimensional data (M p) change of Ps

Ps Center (x,y) | P3 (Angle) | Ps (Major, Minor)
Normal (4.70, -0.44) -24.5° (291, 1.21)
0g (2.30,-0.38) -12.0° (6.12,0.47)
130 g (2.31,-0.42) -12.4° (6.04,0.51)

In the Mp data, the change of P; was observed in the x
mean value, angle of distribution, and principal axis.In this
case, as in the case of the 12-dimensional data, the data are
arranged from Ps to P, by the operation.By looking at the
long axis of the distribution, it is possible to observe the ab-
normality even from the motor under no load.

5.6 Failure Prediction of Type 2 System

In order to confirm the validity of the method, we designed
the Type 2 system using high-power motors used in actual FA
equipment. Figure. 20 shows that the results of the same data
processing for the Motor B data of the Type 2 system. The
results of the PCA were categorized on the axis of the plane
with the first and second PCs and were approximated as an
ellipse. In order to observe the change, 4.5% of the data from
the beginning were extracted and defined as class 1.
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Figure 20: Three-dimensional data distribution for Motor B
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Second principal component

First principal component

Figure 21: Three-dimensional data distribution for Motor B
(class 1)

Table 6: Type 1 data (M p) for change of class

(x,y) (Angle) | (Major, Minor)
Normal | (1.01, 0.80) 32.1° (4.08, 0.38)
500 g (1.55,0.10) 34.7° (4.20, 0.18)
1000 g | (1.89,-0.44) | 34.3° (4.14,0.14)
1500 g | (1.59,0.01) 33.1° (4.06, 0.24)
2000 g | (2.00,-0.60) | 34.4° (3.94,0.14)
2500 g | (2.20,-1.18) | 33.2° (4.00, 0.26)

The results for class 1 are shown in Fig. 21. As shown in
the figure, the class 1 data change as the weight is increased.
In addition, the parameters of the ellipse are shown in Table
6. In the present verification, it was confirmed that the x and
y coordinates of the center of gravity changed with increasing
weight, except for 1000 g.

6 DISCUSSION

In the present paper, we considered a fault prediction
method for FA equipment with parallel links using the inter-
action between links. An experimental apparatus for moni-
toring parallel links using two servo motors was developed.
An experiment in which a load was placed on one link was
carried out in order to determine whether an increase in fric-
tion could be detected from the other link. Based on the re-
sults of PCA of 12-dimensional data from the servo motors,
it was confirmed that multiple data classes changed when the
load was increased. Based on the results of the PCA for six-
dimensional data obtained from one servo motor, it was pos-
sible to observe changes in the data classes when increasing
the load not only in the servo motor with the load but also in
the servo motor without the load. This indicates that failure
prediction for the robot joint based on the interaction between
parallel links of FA equipment is possible.

Changes in the Type 1 Mp ellipse parameter are shown in
Fig. 22. The figure shows that the change from 70 g to 130 g is
small. It is considered that the equipment has already entered
the failure condition from the usual condition, because it has
been confirmed that the operation of the equipment stops dur-
ing the experiment, when the experiment is carried out when
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Figure 22: Change of M p ellipse parameter (Type 1)

the weight exceeds 130 g. In addition, if the data count is
low, the evaluation of the parameter prediction will be insuf-
ficient.

Therefore, evaluation of the prediction is possible by ac-
quiring more data for the 70 g load from the usual time.

Changes in the Type 2 Mp ellipse parameter are shown in
Fig. 23. In this verification, it is confirmed that the process
applied to the Type 1 parameter can be applied to Type 2 pa-
rameter. Therefore, it is conceivable that this method can be
applied in the same manner to other parallel link mechanisms
to predict anomalies. The considered method does not look
for learned patterns, but rather predicts gradual changes in the
data. This method is applicable to anomalies other than bear-
ing seizure. For example, it is possible to predict failures due
to aging and wear. For these anomalies, we need to conduct
verification experiments.

On the other hand, there is a limitation in the considered
method in that it cannot predict failures in which gradual
changes in the data cannot be observed. Such failures include
chipping of bearings due to sudden overloads.
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Figure 23: Change of Mp ellipse parameter (Type 2)
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7 CONCLUSION

In the present paper, we considered a failure prediction
method for FA equipment assuming there exists an interac-
tion between parallel links. The experimental apparatus of
the parallel link was developed, and the abnormality of the
bearing used for the joint was expressed in the load quantity.
The sensor output data were then measured. PCA of the time
series data confirmed that multiple data classes changed as
the load increased. In the analysis of the measurements for
each servo motor, it was possible to observe the change in
the data classes under increasing loads, i.e., not only in the
servo motor with a load but also in the servo motor without
a load. This indicates the possibility of fault prediction based
on observation of the interaction between links.

Two experimental systems, Type 1 and Type 2, were de-
signed in order to simulate actual parallel links of FA equip-
ment. As aresult, it was confirmed that the considered method
applied to both systems can predict failures in which gradual
changes in the data were observed. Future issues include veri-
fication experiments of the considered method for other kinds
of anomalies, such as ageing and wear.
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