
Regular Paper

How to Theorem-Prove Trace-Based Safety Properties

Toshinori Fukunaga1, Hideki Goromaru1, Tadanori Mizuno2, Kazuhiko Ohkubo1, and Yoshinobu Kawabe2

1NTT Secure Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-0012, Japan

E-mail : { toshinori.fukunaga.vf, hideki.goroumaru.mx }@hco.ntt.co.jp,
ohkubo.kazuhiko@lab.ntt.co.jp

2Department of Information Science, Aichi Institute of Technology
Yachigusa 1247, Yakusa-cho, Toyota, Aichi 470-0392, Japan

E-mail : { tmizuno, kawabe }@aitech.ac.jp

Abstract - Recently, it is getting more important to an-
alyze the trust of information and the trust of information
sources. This is because information exchanged in social me-
dia may not be trustable; for example, even though you re-
ceive a message which is consistent with other messages, you
might be skeptical if the message is sent from an unknown
sender. Thus, we need to analyze trust values and their transi-
tions. In this paper, we discuss how to analyze the transitions
of two-dimensional trust values. Specifically, after formaliz-
ing a time-related trust safety property, this paper introduces
an efficient verification method for the property. By conduct-
ing a case study with a theorem-proving tool, we show the
applicability of our proof method.
Keywords: On-Line Trust, I/O-automaton, Safety Proper-
ties, Theorem-Proving

1 INTRODUCTION

In recent years, social media is actively used in large-scale
disasters such as earthquakes and typhoons, and safety infor-
mation and relief information are actively exchanged in social
media. However, such information is not always trustable.
Some information may be incorrect, and the incorrect infor-
mation may be deliberately distributed in the wake of disas-
ters. Moreover, the correctness of information may change as
time passes. Even if the information “A person is seriously
injured but currently alive,” is true in a disaster site, it may
become false one hour later. When dealing with such infor-
mation in social networks, it is important to evaluate the trust
of messages and the trust of information sources.

Marsh and Dibben introduced an evaluation on trust [1],
which is a value between −1 and 1. In addition, the trust
values are classified with the notions of trust, distrust and un-
trust; also, another notion called mistrust is introduced. As
for these properties, there are studies [2] (on distrust and mis-
trust) and [3] (on trust and mistrust) by Primiero et al. This
classification is based on the one-dimensional definition of
trust values, where the point of total trust and the point of
total distrust are at the extremities. However, Lewicki has in-
dicated that trust and distrust should be treated as independent

The second and fourth authors are currently at Chiba Institute of Tech-
nology and KYOWA EXEO Corporation, respectively.

dimensions [4]. Trust is a concept closely related to human’s
impressions; hence, in evaluating the trust values “contra-
dictions/confusions” and “ignorance” should be considered.
From this point of view, we introduced a two-dimensional
trust representation with a pair of trust value and distrust value
[5]-[6]. Specifically, we employed Oda’s Fuzzy-set Concur-
rent Rating method [7] (hereinafter referred to as FCR method),
which is a fuzzy-logic-based psychological theory for impres-
sion formation, as a basis for the trust representation, and by
applying [8]-[9] we explored the correspondence between our
trust representation and Marsh and Dibben’s representation.

The two-dimensional trust value of [5]-[6] represents a trust
state at a certain moment. However, to analyze trust-related
properties, it is necessary to handle the changing nature of
trust values. Thus, in this paper, we model the property of
ever-changing trust value, and we conduct a computer-assisted
verification. Specifically, we define a safety property with the
transition sequences of trust values. Furthermore, based on
the results in I/O-automaton theory [10]-[11], we conduct an
efficient computer-assisted proof for the trust safety property.

This paper is organized as follows. Section 2 shows an
overview of [5]’s FCR-based two-dimensional trust represen-
tation. Then, in Section 3 we describe how to deal with ever-
changing trust values. Finally, Section 4 shows a case study,
and we describe how to theorem-prove a trust safety property.

2 TWO-DIMENSIONAL TRUST
REPRESENTATION

The trust classification by Marsh and Dibben is as follows,
where a trust value ranges over [−1, 1):

• Trust: is a state where a trust value of a trustee is more
than a threshold value. We can see that this is a state
enough to cooperate, and this is a measure of how much
an agent believes a trustee;

• Distrust: is a state where the trustee’s trust value is neg-
ative. This is a measure of how much an agent believes
that the trustee will actively work against the agent in a
given situation;

• Untrust: is a state where the trustee’s trust value is pos-
itive but not enough to cooperate. This is a measure of

International Journal of Informatics Society, VOL.12, NO.2 (2020) 121-130 121

ISSN1883-4566 © 2020 - Informatics Society and the authors. All rights reserved.

how little the trustee is actually trusted; and

• Mistrust: is a state in which the initial trust has been
betrayed; more precisely, the notion of mistrust can be
considered as “Either a former trust destroyed, or for-
mer distrust healed,” since the trustee may not have had
bad intentions and it is not always “betrayed”.

Suppose that you received a message, and you calculated its
trust value. If the trust value is 0.9 and the cooperation thresh-
old is 0.85, then from the definition of the trust notion, the
message should be trusted. However, can we say that there is
no distrust on this message? The maximum of the trust value
is 1, hence we can see that there is a deficit of 0.1 points on
the trust value. In this sense, the message might not be trusted
enough. In [5]-[6], we considered that this was due to the lim-
itation on the expressive power of one-dimensional trust rep-
resentation, and we introduced a two-dimensional trust value
to be an element of Trust × DisTrust, where Trust and
DisTrust are respectively degrees of trust and distrust, and
we have Trust = DisTrust = { v | 0 ≤ v ≤ 1}. Following
the manner in the FCR method, a two-dimensional trust value
is also called an observation.

We focus on some observations to consider the meaning
of the two-dimensional trust values. We can see that an ob-
servation around (1, 0) has a high trust value and a low dis-
trust value. Thus, we can see that the observation represents
a state of “trust”. Similarly, observations around (0, 1) are
the states of “distrust” since they have a low trust value and
a high distrust value. For any observation (t, d) on the line
between (1, 0) and (0, 1), we can see that (t, d) is ideal in
the sense that the trust value and the distrust value satisfy the
consistency condition t + d = 1. We consider that Marsh
and Dibben’s trust values are on this line. That is, the con-
ventional trust value is defined with a limitation with regard
to the consistency condition. Finally, the observation which
corresponds to the conventional trust value of 0 is (0.5, 0.5).

We introduced a classification of trust for two-dimensional
trust values for observations with the consistency condition
t + d = 1. Let CT be a cooperation threshold. The observa-
tions of the trust region should satisfy t − d ≥ CT ; that is,

they are between (
1 + CT

2
,
1− CT

2
) and (1, 0). The obser-

vations between (0.5, 0.5) and (0, 1) correspond to a negative
trust value; that is, they are in the distrust region. Actually,
for any observation (t, d) in the distrust region we have t < d
where the degree of distrust is greater than the degree of trust.
We can see that the other observations are in the untrust re-
gion.

For any observations (t, d) which may not satisfy t+d = 1,
the above definition for trust notions is generalized as follows.
To explain this, we employ a transformation:

[(
cos π

4
− sin π

4

sin π
4

cos π
4

){ (
t
d

)
−

(
1
0

) }
+

(√
2
2

0

)]
× 1

√
2
2

=

(
t− d

t+ d− 1

)

and the resulting point (t− d, t+ d− 1) is called (i, c).

First, we consider the first element i = t− d of (i, c). This
is a value with −1 ≤ i ≤ 1, and the value corresponds to
the conventional trust value of Marsh and Dibben. In fact, the
value i indicates that the result of subtracting the degree of
trust by the degree of distrust is actually the net trust value,
and we see that this matches the intuition.

The value of i is calculated graphically. Actually, we first
draw a perpendicular line from (t, d) to the diagonal line be-
tween (1, 0) and (0, 1), and let (p, q) be the resulting point.
The value of p is in [0, 1], and the value of i is calculated as the
result of normalizing p to be in [−1, 1]. We can see that this

is a calculation of an integration value I2(t, d) =
t+ (1− d)

2
by the reverse-item averaging method; actually, the integra-
tion value should be normalized with i = 2(I2(t, d)− 0.5) to
be a value in [−1, 1].

We find that two observations in the same perpendicular
line have the same integration value. For example, observa-
tion A = (t, d) and its nearest point on the diagonal line

A′ = (
t+ (1− d)

2
, 1− t+ (1− d)

2
)

have the same integration value. However, for observations A
and A′, the distance from the diagonal line is different. The
distance between the observation (t, d) and the diagonal line
is given by |t+ d− 1|, which is the absolute value of the sec-
ond element c = t + d − 1 of (i, c). We can easily see that
the formula of c is equivalent to the degree of contradiction-
irrelevance C(t, d) of the FCR method. The degree of contra-
diction represents how much it deviates from the consistent
condition (t+ d = 1), and its value is between −1 and 1. The
degree of contradiction is close to 1 if we deal with a trustee
of a contradictory evaluation; for example, “I trust him but at
the same time I feel some distrust on his behaviour”. Also, if
the degree is around −1, then a truster is ignorant on a trustee;
that is, this is a situation like “I do not care for him at all.” If
we have t+ d = 1, then the degree of contradiction is 0.

With the notion of the degree of contradiction, we can in-
troduce two types of new untrust notions:

• Untrust confusional: This is a case where a trustee is
both trusted and distrusted. Formally, this is a case with
0 < i < CT and c ≥ 0; and

• Untrust ignorant: This is a case where the trustee is
ignored; in other words, the trustee is both little trusted
and little distrusted. Formally, this is a case with 0 <
i < CT and c < 0.

The original untrust notion in [1] is considered as the notion
of untrust ignorant.

3 TRANSITION OF OBSERVATIONS

Mistrust is a trust property with regard to a misplaced trust,
and this is related to a change of trust values over time. In or-
der to build a trust relationship among victims and volunteers
in a large-scale disaster [12]-[14], it is important to analyze
a chronological change of trust values. Also, a trust concept
called swift trust [15]-[16] attracts an attention, which is a

122 T. Fukunaga et al. / How to Theorem-Prove Trace-Based Safety Properties

trust property for building trust relations in a short period of
time. In this section, we deal with the observations in the
previous section as states, and we formalize time-related trust
properties with state machines.

I/O-automaton [10]-[11] by Lynch et al. is a well-known
mathematical model for distributed algorithms. In the theory
of I/O-automata, a system is regarded as a collection of state
machines which interacts with each other; the interactions are
formalized with events. Some of events are observable from
the outside of the system; for example, keyboard input, screen
output, communication through the Internet are typical ob-
servable events. Some events cannot be observed; computer’s
internal processing and communications using a private line
are such examples. A sequence of observable events from
the initial state is called a trace, and a set of traces represents
the behavior of the system. In general, systems have multiple
(possibly infinite) traces, and the properties of automata are
characterized with the set of traces.

Safety and liveness properties are well-known properties
of distributed algorithms and they are defined with traces.
A safety property guarantees that there is no occurrence of
(specified) bad event. For example, if a computer program
has no “division by 0” errors, then we regard that the program
satisfies a safety property. On the other hand, a liveness prop-
erty represents that finally some good behaviour will happen.
For example, if a computer program always terminates, we
can see that the program has a liveness property. If a com-
munication system can reach an initial state from any state of
the system, then we can see that the communication system
satisfies another liveness property.

If we regard observations as states, the property “The trustee
never goes to the region of distrust,” is regarded as a safety
property on trust transitions. Also, “A trustee will finally
reach the region of trust,” can be considered an liveness prop-
erty on trust. In the following, let CT be a cooperation thresh-
old with 0 < CT ≤ 1. We define the trust region T (CT), the
distrust region D, and the untrust region U(CT) with:

T (CT) = { (t, d) | t ∈ Trust ∧ d ∈ DisTrust
∧ t− d ≥ CT },

D = { (t, d) | t ∈ Trust ∧ d ∈ DisTrust
∧ t < d }, and

U(CT) = Trust×DisTrust \ (T (CT) ∪D)

and we formalize trust safety properties. Note that operator
“\” is for the set subtraction.

Formally, automaton X has a set of actions sig(X), a set of
states states(X), a set of initial states start(X) ⊂ states(X)
and a set of transitions trans(X) ⊂ states(X) × sig(X) ×
states(X). Transition (s, a, s′) ∈ trans(X) is written as
s

a→X s′. In this paper, a state is a tuple of values. Each ele-
ment of the tuple has a corresponding distinct variable name.
The name of a variable is used as an access function to the
value. This kind of modeling is standard in I/O-automaton
theory and its extensions such as [17]. In this paper, we use
variables tr and dis for trust value and distrust value, respec-
tively. The degrees of trust and distrust in state s ∈ states(X)
are referred as s.tr and s.dis, respectively.

For any state s ∈ states(X), a property “If s is not in the

distrust region then the next state of s is not in the distrust
region,” is defined with:

stepTrustSafe(s)
⇐⇒

(s.tr, s.dis) ̸∈ D
=⇒ ∀a ∈ sig(X)∀s′ ∈ states(X)

[s
a→X s′ =⇒ (s′.tr, s′.dis) ̸∈ D].

Hence, if we prove

∀s ∈ start(X)[(s.tr, s′.tr) ̸∈ D]
∧ ∀s ∈ state(X)[stepTrustSafe(s)]

(1)

then we have “The system X never reaches the distrust re-
gion.” This formula consists of two conditions. The first con-
dition represents that an initial state is not in the distrust re-
gion. The second condition means that every state s should
satisfy stepTrustSafe(s); that is, for any transition from s
the system X never goes to the distrust region. If we use the
predicate reachable(s, s′) for the reachability from state s to
state s′, the second condition can be:

∀sinit ∈ start(X), ∀s ∈ state(X)
[reachable(sinit, s) =⇒ stepTrustSafe(s)]

In this case, we consider the safety property only for reach-
able states. In any cases, this is to prove a trust safety property
by induction on the length of execution sequences.

With the predicate reachable, another safety property “If a
user exits the region of distrust, then the user never goes back
to the distrust region,” is formalized with:

∀s, s′ ∈ states(X)
[(reachable(s, s′) ∧ (s′.tr, s′.dis) ̸∈ D)
=⇒ ∀s′′ ∈ states(X)

[reachable(s′, s′′)
=⇒ (s′′.tr, s′′.dis) ̸∈ D]].

We believe trust liveness properties can be formalized simi-
larly.

4 PROVING TRUST SAFETY PROPERTY
— A CASE STUDY

Let X be an automaton which specifies a communication sys-
tem. In order to prove a trust safety property of X , it suf-
fices to prove the condition (1) in the previous section with a
theorem-proving tool directly. However, this proof approach
is not efficient.

In this section, we apply an efficient proof method for trace
inclusion of I/O-automaton to the verification of trust safety
properties. Specifically, we describe two automata. The first
automaton is what we can easily check that the automaton
satisfies a trust safety property. The second automaton is a
specification of the target communication system. If we can
prove the trace inclusion between the two automata, the trust
safety property of the first automaton leads to the trust safety
property of the second automaton.

International Journal of Informatics Society, VOL.12, NO.2 (2020) 121-130 123

4.1 Preliminary Definition

First, we introduce the definition for sort VL with the Larch
language. Specifically, the definition is:

VL: trait

introduces
vl0, vl1, otherValues: -> VL
-__, abs: VL -> VL
__+__, __-__: VL, VL -> VL
__<__, __<=__,
__>__, __>=__: VL, VL -> Bool
CT: -> VL
D: VL, VL -> Bool
T: VL, VL, VL -> Bool
U: VL, VL, VL -> Bool

asserts with x, y, z, t, d, ct: VL
x + vl0 = x;
vl0 + x = x;
x - vl0 = x;
vl0 - x = -x;
-(-x) = x;
(x >= vl0) => abs(x) = x;
(x < vl0) => abs(x) = -x;
abs(-x) = abs(x);
(-vl1) <= x;
x <= vl1;
(x >= y) <=> ((x = y) \/ (x > y));
(x <= y) <=> ((x = y) \/ (x < y));
(x > y) <=> ˜(x <= y);
(x < y) <=> ˜(x >= y);
CT > vl0;
CT < vl1;
D(t, d) <=> ((t-d) < vl0);
T(t, d, ct) <=> ((t-d) >= ct);
U(t, d, ct)

<=> (˜D(t, d) /\ ˜(T(t, d, ct)))

and this kind of description is called a trait. The trait VL is
for the set of real numbers whose domain is [−1, 1]. In this
trait, several constants and operators are introduced; for ex-
ample, constants vl0 and vl1 are respectively for 0 and 1 in
sort VL. CT is a term for the cooperation threshold. Addition
+, subtraction -, an unary operator for negative numbers -,
comparison operators <, >, <= and >=, and the function for
absolute value abs are defined as usual.

Predicates D(t, d), T(t, d, ct) and U(t, d, ct)
are true if observation (t, d) is in the distrust region, the
trust region and the untrust region, respectively; note that ct
is a parameter for the cooperation threshold.

4.2 Specifying and Proving Trust Safety
Property

We introduce Fig. 1’s I/O-automaton testerSafety to de-
fine a trust safety property. The automaton has three actions:

• move(ev, pt, pd, dt, dd): enabled if event
ev occurs and the two-dimensional trust value changes
from (pt, pd) to (pt+dt, pd+dd);

• inDistr(t, d): enabled if trust value (t, d) is
in the distrust region; and

• notInDistr(t, d): enabled if trust value (t, d)
is not in the distrust region.

� �
uses testerSafetyDT

automaton testerSafety
signature

internal move(ev:Event, pt: VL,
pd: VL, dt: VL, dd: VL)

output inDistr(t:VL, d:VL)
output notInDistr(t:VL, d:VL)

states
tr: VL := vl0,
dis: VL := vl0,
stateOfAgent: agtState := InitState

transitions
internal move(ev, pt, pd, dt, dd)

pre pt = tr
/\ pd = dis
/\ (vl0 <= (pt + dt)

/\ (pt + dt) <= vl1)
/\ (vl0 <= (pd + dd)

/\ (pd + dd) <= vl1)
/\ condition(stateOfAgent, ev,

pt, pd, dt, dd)
eff tr := tr + dt;

dis := dis + dd;
stateOfAgent

:= change(stateOfAgent, ev)

output inDistr(t, d)
pre tr < dis /\ t = tr /\ d = dis
eff tr := tr

output notInDistr(t, d)
pre ˜(tr < dis) /\ t = tr /\ d = dis
eff tr := tr� �

Figure 1: testerSafety: An Abstract System

Note that actions inDistr and notInDistr are special
actions for analyzing trust transitions. If action inDistr
does not appear on any trace, the automaton will not go to the
distrusted region.

The transition of trust values is determined only by action
move, and the action is enabled if predicate condition in
the pre-part is true. The predication condition is intro-
duced in Fig. 2’s testerSafetyDT, and it is defined as

condition(st, ev, pt, pd, dt, dd)
<=> ˜D(pt, pd) /\ ˜D(pt+dt, pd+dd)

in this study. This condition means that “The observation
(pt, pd) of the current state and the observation (pt +
dt, pd + dd) of the next state are neither in the distrust
region.” It is important for verifiers that the correctness of au-
tomaton testerSafety can be checked easily. Actually,
testerSafety is small and simple. Moreover, with the
condition predicate above, we can easily see that there is
no occurrence of inDistr in testerSafety’s traces; this
leads to the correctness of testerSafety. The correct-
ness may look straightforward, but we should formally ver-
ify the correctness. This is because the result with regard to
testerSafety is required when we conduct a simulation-
based proof for trace inclusion in Sec. 4.3.2. The correctness
for testerSafety is shown in the end of this section.

An example of event sequence from testerSafety is:

124 T. Fukunaga et al. / How to Theorem-Prove Trace-Based Safety Properties

� �
testerSafetyDT: trait

includes VL

introduces
condition: agtState, Event,

VL, VL, VL, VL -> Bool,
InitState: -> agtState,
AnotherState: -> agtState,
change: agtState, Event -> agtState

asserts with st: agtState, ev: Event,
pt, pd, dt, dd: VL

condition(st, ev, pt, pd, dt, dd)
<=> ˜D(pt, pd) /\ ˜D(pt+dt, pd+dd)� �

Figure 2: Datatype for testerSafety

notInDistr(vl0, vl0).
move(get mes(usrA, "hello"),

vl0, vl0, vl0.3, vl0.2).
notInDistr(vl0.3, vl0.2).

In the initial state, both of the trust and distrust degrees are
0; that is, we have (tr, dis) = (vl0, vl0). In this
case, tr < dis holds, and this allows an occurrence of event
notInDistr(vl0, vl0). Then, after the occurrence of
event get mes, the pair of trust and distrust degrees becomes
(vl0.3, vl0.2), where constants vl0.3 and vl0.2 in
sort VL represent 0.3 and 0.2 respectively. In the resulting
state, the distrust degree still does not exceed the trust degree,
thus event notInDistr(vl0.3, vl0.2) can occur.

In the above example, it looks that “random” real num-
bers 0.2 and 0.3 are used in the event sequence. However,
“arbitrary” numbers are actually assumed for the parameters.
That is, at a level of abstraction, theorem-proving is exhaus-
tive with regard to the event sequences, and all the event se-
quences are logically checked in a verification.

In the specification of Fig. 1, we have variables dt and
dd in action move. They are variables of sort VL, and the
definitions in trait VL restrict their values to be in [−1, 1].
Additionally, dt and dd should be the values which satisfy
both of values pt + dt and pd + dd are in [0, 1]. This
condition is written in the precondition part of move.

The I/O-automaton testerSafety can be translated into
first-order predicate logic formulae, and a trust safety prop-
erty can be proven with Larch Prover (LP) [18]. In the fol-
lowing we prove the trust safety property that “For any state
s of automaton testerSafety, if s is reachable then the
two-dimensional trust value at s is not in the distrust region.”
This is formally described as:

(\A st:States[testerSafety]
(reachableAbst(st)
=> ˜D(st.tr, st.dis))).

Proving this formula is equivalent to proving two conditions

(\A st:States[testerSafety]
(start(st)
=> ˜D(st.tr, st.dis)))

and

(\A st:States[testerSafety]
(\A at:Actions[testerSafety]

(reachableAbst(st)
=> ((enabled(st, at)

/\ ˜D(st.tr, st.dis))
=> ˜D(effect(st, at).tr,

effect(st, at).dis))))).

We can see that this is to prove a trust safety property by in-
duction on the length of execution sequences starting from
initial states; the first condition represents a base case, and
the second condition is an induction step.

Below, we show a proof script for a trust safety property.

prove
(\A st:States[testerSafety]

(reachableAbst(st)
=> ˜D(st.tr, st.dis)))

..
%
prove
(\A st:States[testerSafety]

(start(st) => ˜D(st.tr, st.dis)))
..
res by =>
%
prove
(\A st:States[testerSafety]

(\A at:Actions[testerSafety]
(reachableAbst(st)
=> ((enabled(st, at)

/\ ˜D(st.tr, st.dis))
=> ˜D(effect(st, at).tr,

effect(st, at).dis)))))
..
res by =>
%
res by ind on at
res by =>
res by =>
res by =>

qed

From this, ˜D(st.tr, st.dis) holds for any reachable
state st of testerSafety. This means action inDistr
is not enabled at st. Therefore, we obtain the following
lemma; a screenshot of computer-assisted theorem-proving
for this lemma is shown in Fig. 3.

Lemma 1 Every trace of I/O-automaton testerSafety
does not have any occurrence of action inDistr. □

In this sense, we can see that testerSafety never goes to
the region of distrust; this leads to a trust safety property.

We have shown that testerSafety satisfies a trust safety
property. We can see that the property is, informally, “The
transition of trust value does not reach the region of distrust.”
Note that this is a trust safety property but is not the only trust
safety property. In general, and more formally, if the follow-
ing conditions are satisfied for the set traces(P) of all traces
of automaton P , we say P is called a safety property [10]:

(i) traces(P) is non-empty;

(ii) traces(P) is prefix-closed, that is, if β ∈ traces(P)
and β′ is a finite prefix of β, then β′ ∈ traces(P); and

(iii) traces(P) is limit-closed, that is, if β1, β2, . . . is an in-
finite sequence of finite sequences of traces(P), and

International Journal of Informatics Society, VOL.12, NO.2 (2020) 121-130 125

Figure 3: Theorem-Proving Trust Safety of testerSafety

for each i, βi is a prefix of βi+1, then the unique se-
quence β that is the limit of the βi under the successive
extension ordering is also in traces(P).

Automaton testerSafety is not general in this sense, how-
ever, from a practical viewpoint, it is too strong to require a
general automaton satisfying the above conditions. We con-
sider testerSafety is powerful enough for analysis.

4.3 Specifying Communication System and
Safety Proof by Trace Inclusion

4.3.1 Specification of Communication System

We consider a specification bbdSystem of a communica-
tion system; see Fig. 4. This communication system sends a
message to an online bulletin board after evaluating the user’s
trust value. The system receives a message from a user by
action get mes and evaluates the trust value of the message
with actions discard mes and approve mes. If the trust
value in the next state reaches the distrust region when writ-
ing the message to the bulletin board, the message is not sent
and discarded by discard_mes. Otherwise, the message is
written to the bulletin board by actions approve_mes and
say. Actions inDistrC and notInDistrC are special
actions to discuss the trust values, and they correspond to ac-
tions inDistr and notInDistr of testerSafety.

Automaton bbdSystem uses a datatype defined in the
trait bbdSystemDT shown in Fig. 5. This trait employs
Sequence(MES), which defines a message queue.

We introduce functions evalTr and evalDis for calcu-
lating the degree of trust and the degree of distrust, respec-
tively, though the concrete definitions of these functions are
not given in this paper; giving a definition for these functions
is a future work. In this paper, only the constraints on these
functions are defined as follows. For function evalTr, we
employ a constraint

(\A tr:VL
((vl0 <= tr /\ tr <= vl1)
=> (\A m:MES

(vl0 <=
(tr + evalTr(tr, m))

/\ (tr + evalTr(tr, m))
<= vl1))))

� �
uses bbdSystemDT

automaton bbdSystem
signature

input get_mes(i:ID, m:MES)
internal discard_mes(i:ID, m:MES)
internal approve_mes(i:ID, m:MES)
output say(i:ID, m:MES)
output inDistrC(t:VL, d:VL)
output notInDistrC(t:VL, d:VL)

states
tr: VL := vl0,
dis: VL := vl0,
flg: Bool := false,
mesQ: Seq[MES] := empty

transitions
input get_mes(i, m)

eff mesQ := mesQ ||
(packet(i, m) -| empty)

internal discard_mes(i, m)
pre ˜flg

/\ mesQ ˜= empty
/\ packet(i, m) = head(mesQ)
/\ ((tr + evalTr(tr, m))

-(dis + evalDis(dis, m)))
< vl0

eff mesQ := tail(mesQ)

internal approve_mes(i, m)
pre ˜flg

/\ mesQ ˜= empty
/\ packet(i, m) = head(mesQ)
/\ ((tr + evalTr(tr, m))

-(dis + evalDis(dis, m)))
>= vl0

eff flg := true

output say(i, m)
pre flg /\ mesQ ˜= empty

/\ packet(i, m) = head(mesQ)
eff tr := tr + evalTr(tr, m);

dis := dis + evalDis(dis, m);
mesQ := tail(mesQ);
flg := false

output inDistrC(t, d)
pre tr < dis /\ t = tr /\ d = dis
eff tr := tr

output notInDistrC(t, d)
pre ˜(tr < dis) /\ t = tr /\ d = dis
eff tr := tr� �

Figure 4: bbdSystem: A Concrete System

for the degree of trust to be in [0, 1]. For evalDis, a similar
condition is introduced.

We do not introduce the definition of change, which is a
function in the effect part of action move. This is because in
our case study the value of stateOfAgent is not required
in evaluating the precondition part of move. However, if we
modify the definition of predicate condition, a concrete
definition might be required.

4.3.2 Safety Proof by Trace Inclusion

We replace bbdSystem’s observable actions get_mes and
say with internal actions of the same name; the resulting
automaton is called bbdSystem\{get mes,say}. If we
prove the existence of a binary relation called a forward sim-
ulation from automaton bbdSystem\{get mes,say} to

126 T. Fukunaga et al. / How to Theorem-Prove Trace-Based Safety Properties

� �
bbdSystemDT: trait

includes VL, Sequence(MES)

introduces
packet: ID, MES -> MES
evalTr: VL, MES -> VL
evalDis: VL, MES -> VL
getMesFromPacket: MES -> MES

asserts with tr, dis: VL, i:ID, m: MES
(\A tr:VL

((vl0 <= tr /\ tr <= vl1)
=> (\A m:MES

(vl0 <=
(tr + evalTr(tr, m))

/\ (tr + evalTr(tr, m))
<= vl1))));

(\A dis:VL
((vl0 <= dis /\ dis <= vl1)
=> (\A m:MES

(vl0 <=
(dis + evalDis(dis, m))

/\ (dis + evalDis(tr, m))
<= vl1))));

getMesFromPacket(packet(i, m)) = m;� �
Figure 5: Datatype for bbdSystem

automaton testerSafety, then we have a trace inclusion

traces(bbdSystem\{get mes,say})
⊆ traces(testerSafety)

from Theorem 3.10 of [11]. From Lemma 1, every trace
in traces(testerSafety) does not have any occurrence
of action inDistr. Hence, if we prove a trace inclusion,
every trace in traces(bbdSystem\{get mes,say}) does
not contain inDistr; this leads to the absence of inDistr
in traces(bbdSystem).

A candidate binary relation for a forward simulation is de-
fined as follows:

fs(sb, st) <=> ((sb.tr = st.tr)
/\ (sb.dis = st.dis)
/\ (sb.flg => X))

where X =
(((sb.tr

+ evalTr(sb.tr,
getMesFromPacket(head(sb.mesQ))))

- (sb.dis
+ evalDis(sb.dis,

getMesFromPacket(head(sb.mesQ)))))
>= vl0)

To prove that binary relation fs is a forward simulation, we
should prove the initial state condition

(\A sb:States[bbdSystem]
(start(sb)
=> (\E st:States[testerSafety]

(start(st) /\ fs(sb, st)))))

and step correspondence condition

(\A sb:States[bbdSystem]
(\A sb’:States[bbdSystem]
(\A st:States[testerSafety]
(\A ab:Actions[bbdSystem]

(reachableAbst(st)
=> ((fs(sb, st) /\ step(sb, ab, sb’))

=> (\E st’:States[testerSafety]
(steps(st, ab, st’)
/\ fs(sb’, st’)))))))))

with a theorem proving tool. We show a proof script as fol-
lows.

% ------------------------------
% Initial states’ correspondence
% ------------------------------
prove
(\A sb:States[bbdSystem]

(start(sb)
=> (\E st:States[testerSafety]

(start(st) /\ fs(sb, st)))))
..
res by =>
res by spec st to [InitState, vl0, vl0]
qed

% ------------------------------
% Step’s correspondence
% ------------------------------
prove
(\A sb:States[bbdSystem]
(\A sb’:States[bbdSystem]
(\A st:States[testerSafety]
(\A ab:Actions[bbdSystem]

(reachableAbst(st)
=> ((fs(sb, st) /\ step(sb, ab, sb’))

=> (\E st’:States[testerSafety]
(steps(st, ab, st’)
/\ fs(sb’, st’)))))))))

..
res by =>
%
make passive c-o(steps)
res by ind on ab
%
res by =>
res by spec st’ to stc
%
res by =>
res by spec st’ to stc
%
res by =>
res by spec st’ to stc
prove getMesFromPacket(head(sbc.mesQ)) = mc
crit c-o(mc) / c-o(packet) with *
%
res by =>
res by spec st’ to

effect(stc, move(ev, stc.tr, stc.dis,
evalTr(sbc.tr, mc), evalDis(sbc.dis, mc)))

..
make passive c-o(intTrans)
rewrite con with reversed

(c-o(intTrans) / c-o(enabled)) ˜ c-o(steps)
..
res by spec at to

move(ev, stc.tr, stc.dis,
evalTr(stc.tr, mc),
evalDis(stc.dis, mc))

..
make active c-o(intTrans)
prove getMesFromPacket(head(sbc.mesQ)) = mc
crit c-o(mc) / c-o(packet) with *
%
crit c-o(stc) with *
crit c-o(stc) with *
%
res by =>
res by spec st’ to stc
res by spec st1 to stc
prove effect(stc, inDistr(t, d)) = stc
crit c-o(inDistr) with *
%
res by =>
res by spec st’ to stc
res by spec st1 to stc
prove effect(stc, notInDistr(t, d)) = stc
crit c-o(notInDistr) with *
%
qed

International Journal of Informatics Society, VOL.12, NO.2 (2020) 121-130 127

Figure 6: Theorem-Proving Trace Inclusion

This leads to the following lemma.

Lemma 2 Binary relation fs(sb, st) is a forward sim-
ulation from automaton bbdSystem\{get mes,say} to
automaton testerSafety. □

Summarizing, we have the following result.

Theorem 1 Every trace of I/O-automaton bbdSystem does
not have an occurrence of action inDistr.

Proof: Proven by Lemmata 1 and 2. □

Consequently, a trust safety property has been shown for au-
tomaton bbdSystem; see Fig. 6 for a snapshot of proving
with LP.

We can see that the specification of bbdSystem is small.
Thus, it may look straightforward that automaton bbdSystem
satisfies some safety-related trust property. This observation
is correct in some sense. However, it is not easy to rigorously
state what kind of safety property is satisfied by bbdSystem.
Based on the correctness of testerSafety, we can de-
fine the correctness of bbdSystem formally. Moreover, the
correctness can be proven with a semi-automatic theorem-
proving approach.

Suppose that we write automaton distSystem, which
is a specification of distributed or more concrete version of
bbdSystem. If we can prove a trace inclusion

traces(distSystem) ⊆ traces(bbdSystem)

at a level of abstraction, this paper’s result with regard to the
safety property of bbdSystem leads to the safety property
of distSystem. In this sense, a stepwise verification for
trust safety properties is possible when we deal with larger
specifications. This is an advantage of this paper’s verification
method.

5 DISCUSSION AND CONCLUSION

In this paper, we discussed how to analyze transitions of two-
dimensional trust values. Specifically, we employed a theory
of distributed algorithms to formalize trust safety properties

such as “Any transition does not lead to the distrust region,”
or “After reaching some region other than the distrust region,
the system never goes to the distrust region.”

We cannot say that it efficient to theorem-prove the condi-
tion for trust safety property of each automaton. In this paper,
we employed I/O-automata to represent a trust safety prop-
erty, and applied a proof method for trace inclusion. This
enables us to verify trust safety properties efficiently. Further-
more, with simple examples, we empirically demonstrated
that it is possible to verify trust safety properties with auto-
matic theorem provers. In this study, we employed the Larch
Prover (LP), which is theorem proving tool based on first-
order predicate logic and equational theory. LP proves formu-
lae with the techniques of term rewriting systems [19]-[21].
Although we need to translate IOA specifications into each
theorem prover’s formulae as in [18][22], we believe that a
similar proof with another theorem proving tool (such as Coq
[23], Isabelle [24], and Maude [25]) is possible. With regard
to the functions evalTr and evalDis, we introduced the
constraint on the range of the trust value only, and we did not
discuss the concrete evaluation method of the trust value. In
other words, this paper gives an analysis method for the tran-
sition of the evaluated trust value at each moment. It is an
interesting future work to define the trust value of each mo-
ment.

The trust, distrust, and untrust notions were defined for
two-dimensional trust values in [5]-[6]. This is defined with
the value of i = t − d, and we do not use the value of c. We
can see that this is formalized as a linear case; for example,
the trust notion and the distrust notion are defined with linear
restrictions d ≤ −t+CT and d > t, respectively. This is just
for simplicity, and we believe it is possible to provide a finer
definition for trust notions with both of i and c. Introducing
such a non-linear definition is an interesting future work. In
order to deal with the non-linear settings, it would be required
to change the definitions for the regions of trust, distrust and
untrust. However, we believe that the verification method in
this paper is also applicable for the non-linear case.

Finally, conducting larger verification examples is an im-
portant work. Specifically, we are planning a trust verification
for communication systems [26]-[27] based on social media.

REFERENCES

[1] S. Marsh and M. R. Dibben, “Trust, untrust, distrust and
mistrust – an exploration of the dark(er) side,” in Pro-
ceedings of the Third International Conference on Trust
Management, iTrust’05, (Berlin, Heidelberg), pp. 17–
33, Springer-Verlag (2005).

[2] G. Primiero, “A calculus for distrust and mistrust,”
in Trust Management X (S. M. Habib, J. Vassileva,
S. Mauw, and M. Mühlhäuser, eds.), (Cham), pp. 183–
190, Springer International Publishing (2016).

[3] G. Primiero, F. Raimondi, M. Bottone, and J. Tagliabue,
“Trust and distrust in contradictory information trans-
mission,” Applied Network Science, vol. 2, p. 12 (2017).

[4] R. J. Lewicki, D. J. B. McAllister, and R. J. Bies, “Trust
and distrust: New relationships and realities,” Academy
of Management Review, vol. 23, pp. 438–458 (1998).

128 T. Fukunaga et al. / How to Theorem-Prove Trace-Based Safety Properties

[5] K. Ohkubo, T. Oda, Y. Koizumi, T. Ohki, M. Nishi-
gaki, T. Hasegawa, and Y. Kawabe, “Trust represen-
tation under confusion and ignorance,” in Proceedings
of International Workshop on Informatics (IWIN 2018),
pp. 191–198 (2018).

[6] Y. Kawabe, Y. Koizumi, T. Ohki, M. Nishigaki,
T. Hasegawa, and T. Oda, “On trust confusional, trust ig-
norant, and trust transitions,” in Proceedings of IFIPTM
2019 (2019).

[7] T. Oda, “Fundamental characterestics of fuzzy-set con-
current rating method,” Journal of Japan Association for
Management Systems, vol. 12, no. 1, pp. 23–32 (1995).
In Japanese.

[8] T. Oda, “Fuzzy set theoretical approach for improving
the rating scale method : Proposing and introducing the
FCR-method and the IR-method as novel rating meth-
ods,” Japanese Psychological Review, vol. 56, no. 1,
pp. 67–83 (2013). In Japanese.

[9] T. Oda, “Measurement technique for ergonomics, sec-
tion 3: Psychological measurements and analyses
(3) measurements and analyses by kansei evaluation,”
The Japanese Journal of Ergonomics, vol. 51, no. 5,
pp. 293–303 (2015). In Japanese.

[10] N. A. Lynch, Distributed Algorithms. Morgan Kauf-
mann Publishers (1996).

[11] N. Lynch and F. Vaandrager, “Forward and backward
simulations — part I: Untimed systems,” Information
and Computation, vol. 121, pp. 214–233, (1995).

[12] Y. Murayama, “Issues in disaster communications,”
Journal of Information Processing, vol. 22, no. 4,
pp. 558–565 (2014).

[13] M. G. Busa, M. T. Musacchio, S. Finan, and C. Fennell,
“Trust-building through social media communications
in disaster management,” in Proceedings of the 24th
International Conference on World Wide Web, WWW
’15 Companion, (New York, NY, USA), pp. 1179–1184,
ACM (2015).

[14] F. Lemieux, “The impact of a natural disaster on altru-
istic behaviour and crime,” Disasters, vol. 38, pp. 483–
499 (2014).

[15] D. Meyerson, K. E. Weick, and R. M. Kramer, Swift
Trust and Temporary Groups in Trust in Organizations:
Frontiers of Theory and Research. SAGE (1995).

[16] J. Wildman, M. Shuffler, E. Lazzara, S. Fiore, and
S. Burke, “Trust development in swift starting action
teams: A multilevel framework,” Group & organization
management, vol. 37, no. 2, pp. 137–170 (2012).

[17] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, The
Theory of Timed I/O Automata, Second Edition. Morgan
& Claypool Publishers, 2nd ed. (2010).

[18] J. F. Soegaard-Andersen, S. J. Garland, J. V. Guttag,
N. A. Lynch, and A. Pogosyants, “Computer-assisted
simulation proofs,” in CAV ’93, vol. 697 of Lecture
Notes in Computer Science, pp. 305–319, Springer-
Verlag (1993).

[19] F. Baader and T. Nipkow, Term Rewriting And All That.
Cambridge University Press (1998).

[20] J. W. Klop, “Term rewriting systems,” in Handbook of

Logic in Computer Science (D. G. S. Abramsky and
T. S. E. Maibaum, eds.), vol. 2, pp. 1–112, Oxford Uni-
versity Press (1992).

[21] E. Ohlebusch, Advanced topics in term rewriting.
Springer-Verlag (2002).

[22] A. Bogdanov, “Formal verification of simulations be-
tween I/O-automata,” Master’s thesis, Massachusetts In-
stitute of Technology (2000).

[23] “The Coq Proof Assistant.”
https://coq.inria.fr/, (June 13, 2020).

[24] L. C. Paulson, “Isabelle: The next seven hundred the-
orem provers,” in Proceedings of the 9th Conference
on Automated Deduction, vol. 310 of Lecture Notes
in Computer Science, pp. 772–773, Springer-Verlag
(1989).

[25] N. Martı́-Oliet and J. Meseguer, “Rewriting logic:
Roadmap and bibliography,” Theoretical Computer Sci-
ence, Vol. 285, pp. 121–154 (2002).

[26] J. Chen, M. Arumaithurai, X. Fu, and K. K. Ramakr-
ishnan, “CNS: Content-oriented notification service for
managing disasters,” in Proceedings of ACM Confer-
ence on Information-Centric Networking, pp. 122–131,
ACM (2016).

[27] M. Jahanian, Y. Xing, J. Chen, K. K. Ramakrishnan,
H. Seferoglu, and M. Yuksel, “The evolving nature of
disaster management in the internet and social media
era,” in 2018 IEEE International Symposium on Lo-
cal and Metropolitan Area Networks, LANMAN 2018,
Washington, DC, USA, June 25-27, 2018, pp. 79–84
(2018).

(Received October 30, 2019)
(Revised April 9, 2020)

Toshinori Fukunaga received the B.E., and M.E.
degrees in electrical engineering from Chiba Uni-
versity in 1996 and 1998. He joined Nippon Tele-
graph and Telephone Corporation in 1998. His
main research area is cryptography and its imple-
mentation. He is also involved in information se-
curity management system work and is currently
engaged in human resource development for re-
searchers.

Hideki Goromaru received the M.E. degree in
Graduate School of Engineering from the Kagoshima
University in 1995 and received the Ph.D. degree
in Graduate School of System Engineering from
the Wakayama University, Japan, in 2015. In 1995,
he joined NTT Corp. and he had been a research
and development engineer at NTT Laboratories
until 2020. In 2020, he is an Associate professor
at the Chiba Institute of Technology, Japan. His
research interests include groupware, security and
risk management. He is a member of Information

Processing Society of Japan, the Institute of Electronics, Information and
Communication Engineer, Japan Creativity Society and the Japan Psycho-
logical Association.

International Journal of Informatics Society, VOL.12, NO.2 (2020) 121-130 129

Tadanori Mizuno received the B.E. degree in In-
dustrial Engineering from the Nagoya Institute of
Technology in 1968 and received the Ph.D. degree
in Engineering from Kyushu University, Japan, in
1987. In 1968, he joined Mitsubishi Electric Corp.
From 1993 to 2011, he had been a Professor at
Shizuoka University, Japan. From 2011 to 2016,
he had been a Professor at the Aichi Institute of
Technology, Japan. Since 2016, he is an Affili-
ate Professor at the Aichi Institute of Technology,
Japan. His research interests include mobile com-

puting, distributed computing, computer networks, broadcast communication
and computing, and protocol engineering. He is a member of Information
Processing Society of Japan, the Institute of Electronics, Information and
Communication Engineers, the IEEE Computer Society and Consumer Elec-
tronics, and Informatics Society.

Kazuhiko Ohkubo received his B.E. degree in In-
formatics from the University of Tsukuba in 1987
and his M.E. in Electrical Engineering from the
University of Tokyo in 1989. In 1989, he joined
NTT (Nippon Telegraph and Telephone Corpora-
tion) Telecommunication Laboratories and earned
his M.S. degree in Management of Technology
from the MIT Sloan School of Management, USA
in 2000. From 2016 to 2019, he had been the
head of NTT Secure Platform Laboratories and
also been a director of NTT Security Corporation,

the specialized security company of NTT Group. In 2019, he received his
Ph.D. in Business Administration and Computer Science from the Aichi In-
stitute of Technology. Since 2019, he is the CISO of Kyowa Exeo Corpora-
tion. He is a member of IEEE.

Yoshinobu Kawabe received his B.E., M.E., and
D.E. degrees in information engineering from Nagoya
Institute of Technology in 1995, 1997, and 2003.
He joined NTT Communication Science Labora-
tories, Nippon Telegraph and Telephone Corpo-
ration in 1997. In 2002, he was a visiting re-
search scientist at MIT Laboratory for Computer
Science. Since 2008, he has been at Aichi Insti-
tute of Technology, where he is a professor at the
Department of Information Science. His research
interests include term rewriting systems, process

algebras, network programming languages, formal methods, security/privacy
verification, and computational trust. He is a member of ACM, JSSST, IPSJ,
and IEICE.

130 T. Fukunaga et al. / How to Theorem-Prove Trace-Based Safety Properties

