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Abstract - The damping of musical instruments is spectrally-
shaped, showing beatings and non-exponential decay. Such
behaviour can be explained by viscoelastic damping, which
also shows spectral sidebands and mode coupling. Previous
physical models of musical instruments do only roughly im-
plement viscoelastic damping. The present Finite-Difference
Time Domain spectrally-shaping viscoelastic model on the
other hand models complex damping spectra as physically
reasoned viscoelasticity discussing a membrane. The model
assumes a memory, delaying the strains of previous time points,
while convolving these strains with a damping function, only
to add it to the present stress. It therefore uses a complex
Young’s modulus and a complex tension, where the real part
represents damping. The damping function is calculated as
the inverse Laplace transform of the complex Young’s mod-
ulus spectrum. Contrary to modal analysis, the resulting am-
plitude decay of a damped target frequency is not exponen-
tial. This is in accordance with the physics of viscoelasticity
acting with a memory. Amplitude and frequency modulations
are found, leading to sidebands in the spectrum. The damping
frequency width Q of neighboring frequencies damped by a
target frequency is discussed. A sharper Q with longer mem-
ory and smaller inverse Laplace transform real kernel constant
γ is found as expected.

Keywords: Physical Modeling, Musical Instrument Acous-
tics, Viscoelastic Damping, Finite-Difference Time Domain
Method, Percussion instrument

1 INTRODUCTION

A vibrational system has basically two types of damping,
an external damping caused by energy loss due to radiation,
and an internal damping caused by energy loss within the
structure. The reasons for the internal energy loss are not per-
fectly clear [17]. There are thermodynamic losses [15] of sev-
eral kinds, viscoelastic losses due to shearing, atomistic and
quantum mechanical considerations of molecular restructur-
ing [9] [21] next to other explanations. Thermal losses expect
materials with a higher thermal conductivity to be damped
stronger. But although e.g. a metal plate has higher thermal
conductivity than a wooden plate, the wooden plate is damped
stronger. Therefore thermal losses are expected not to be the
major contribution to internal losses. The present paper dis-
cusses internal losses due to viscoelasticity only.

Physical models of the drum have been performed for In-
dian drum heads [19], the snare drum [7], or the bass drum

[3] using Finite-Difference methods. Fractal derivatives have
been suggested to replace complex models by single, but frac-
tal derivatives. These lead to a power law of damping [13].
Chaigne uses a Maxwell time-dependent model for damped
plates [8] with still considerable differences between model
and experiment.

All these models do not allow for a spectrally-shaping vis-
coelastic damping in the physical model. They only assume
an exponential damping curve depending on frequency. Ba-
sically two damping terms are used as part of the differential
equation, a first-order time derivative of the dependent vari-
able multiplied by a damping constant, and a first-order time
and second-order spatial derivative of the dependent variable
with plates or membranes. In the first case a perfect exponen-
tial damping depending of frequency results. In the second
case higher frequencies are damped stronger, compared to the
perfect exponential decay case [8]. The second case becomes
necessary in cases with strong viscoelasticity.

Nevertheless, the damping behaviour of material used for
musical instruments like wood or leather has a complex
frequency-dependency. Although exponential in general, some
frequency bands might be damped stronger, some weaker,
compared to the perfect exponential damping. This is as-
sumed to contribute strongly to the ‘liveliness’ of wood or
leather as material for musical instruments. Guitars built of
plastic, like e.g. the Maccaferri plastic guitar, are often per-
ceived to sound plastic, and are therefore rejected [12]. The
material property of a spectrally-shaping viscoelastic damp-
ing is therefore crucial when replacing traditional material
with polymer or hybrid material.

This also holds for physical models of musical instruments,
which need to sound as realistic as possible. Using a spectrally-
shaping viscoelastic damping method in the models allows for
a realistic reproduction of musical instrument sounds. The
role of internal damping has not been in the focus of musi-
cal acoustics over the last decades. Still as models improve in
quality, the differences between real and modeled instruments
still existing seem to be caused to a great extent by the lack of
a spectrally-shaping viscoelastic damping model.

Experimental data of viscoelastic losses in leather show
an increase of damping with higher temperatures above its
glass transition temperature [11] which are additionally fre-
quency dependent. Higher water content of leather also leads
to higher internal damping. The reasons for such a damping
behavior are mainly thought to be a reconfiguration of colla-
gen fibers, within them and between the fibers, where water
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molecules become part of the collagen structure [11]. Col-
lagen is a very stiff protein and therefore leather is basically
considered a crystal. Still the layering of leather fibers al-
lows gaps which are filled by water, as well as by molecules
which are introduced by the process of tanning. Here water
molecules enter in two ways, either as larger portions between
collagen fibers or as single molecules between or even within
collagen molecules. The former is responsible for leather to
freeze to a hard plate around zero degree Celsius. The other
water molecules lead to a slow melting process around a cer-
tain temperature, adding most to the strong viscoelastic prop-
erties of leather. Additional components of this viscoelastic
internal damping are sudden changes in the molecular ge-
ometries when stress is applied. All these processes lead to
a phase shift between stress and strain which again leads to
an internal energy loss of the vibration. Internal damping can
be very strong and therefore contributes considerably to the
timbre of a drum built of leather.

Basic models of viscoelastic damping have mainly been
discussed with Finite-Element Methods [24]. Here the Maxwell
and the Kelvin-Voigt model for relaxation and creep respec-
tively are normally used as time integration models, where
combinations of both are able to build arbitrarily complex
damping behavior. Both creep and relaxation may have very
short but also very long time constants. Guitar builders speak
of the ‘flowing’ of wood when the tension the strings apply
to the soundboard leads to a plastic strong deformation of the
soundboard over years. Relaxation appears with musical in-
struments which have plates under tension, like top and back
plates of guitars or a crowned piano soundboard. Instrument
builders often estimate that the internal tension relaxes over
about one year and the deformation due to tension becomes
again a plastic deformation with no internal tension left.

Sound absorbing material research uses mainly bitumen-
, liquid- and nanotube-based materials [25]. The modeling
in this field is nearly exclusively done using the Maxwell or
the Kelvin-Voigt model. Again damping is strongest when
the operation temperature of the material meets the glass-
transition temperature. Complex frequency- and temperature-
dependent damping curves appear with sandwich plates [26].
Using a center-finite-difference method [27] shows the ap-
pearance of frequency band-gaps in periodically stiffened plates,
still here caused by the periodicity of the material and not
mainly by viscoelastic effects. The methods used are modal
analysis and do not consider the development of the damped
amplitudes.

The complex nature of internal damping also appears with
wood. In a review paper [5] finds a close correlation between
Young’s modulus and the damping parameter tan δ for 450
wood species, the relation between imaginary and real parts
of a complex Young’s modulus, an index often used when
measuring viscoelasticity. This index is not taking frequency-
dependence of damping into consideration. Damping corre-
lates with Young’s modulus, but not with wood density [6].
Comparing normal and compression wood, where the amount
of cellulose is higher, it appears the the micro fiber angle
(MFA), the angle the cellulose fibers lay inside the second
cell wall correlate with both, Young’s modulus and damping

[4]. Obataya et al. investigate the influence of viscoelasticity
to the vibration of reeds [16].

Viscoelasticity may also vary over musical instrument ge-
ometries. Adding additional paste to a drum head is a com-
mon practice for drums in Southeast Asia. Indian drums,
especially tablas are studied in terms of the additional mass
added to their drum head [19] [18] called sihai which is placed
concentric for the dayan and off-centric for the bayan drum.
Varying the width, position, smoothness and strength of the
sihai it was found that the harmonic overtone relations of the
drum modes change and can meet values very close to har-
monic ratios.

Tablas have a clear pitch, still they are not played as melody
instruments. The Myanmar drum circle pat wain on the other
hand needs to be tuned to pitches over about three octaves [1].
The paste adds considerable viscoelasticity to the drum, next
to the leather the drum head is built of. Experimentally it was
found that a double-headed drum, like the pat wain shows a
coupling of the drum heads for lower modes, while the higher
modes are more or less decoupled [22] [18]. Normally the
upper drum head is keeping its frequency at the lower modes
while the lower drum head is forced into the motion and fre-
quency of the upper one.

Several other studies deal with drums. The vibration of the
Karen bronze or ‘frog’ drum has been studied experimentally
[14], finding complex modes up to 3 kHz. The influence of
non-uniform tension of a drum head was studied using laser-
interferometry measurements, where degenerated modes have
been found [23] mostly leading to musical beats. The eigen-
modes of the drum vessel were analyzed using Finite-Element
methods [10]. The coupling between the drum head and the
wooden shell was investigated using Finite-Elements for a
bass drum [3].

The model presented allows for a very precise computer
simulation of vibrational systems in general, using a drum as
an example. As internal damping shapes the overall spec-
tral amplitude shape of sounding objects considerably, the
suggested model in future can also be used in sound design,
sonification, auralization, room acoustics, or in urban envi-
ronmental noise problems. These topics have become an in-
tense focus of modern engineering over the last years, where
simple estimations of overall energy, roughness, sharpness, or
brightness of a sound are way not enough to satisfy modern
auditory demands. As musical instruments have always been
subject to very precise tuning of timbre they are an excellent
benchmark.

The method of using Finite-Difference Time Domain (FDTD)
sound synthesis belongs to the analysis-by-synthesis approach.
It is an alternative to the analyzing branch of information pro-
cessing, taking existing sounds and deriving their properties
using spectral analysis or related techniques. The model ap-
proach on the other side gives detailed insight into the mate-
rial and geometrical properties of the objects, and therefore
allows the formulation of a state-space of all possible sounds.
Such a state-space can then be used to understand existing
sounds with respect to their physical sources, and therefore
help to classify and identify sounds with analytical informa-
tion processing tools much easier. This makes an interplay
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between the two analysis ways possible, the forward synthe-
sis and the backward analysis techniques. Such model tools
will be subject to machine learning based on physical model-
ing in the near future. Still this interplay can only reasonably
work when using physical models, taking all crucial parame-
ters into consideration. As internal damping strongly shapes
the sound of musical instruments, as well as all sounding ob-
jects in a frequency-dependent way, without such a model as
presented here a precise relation between physics and analy-
sis can only be rough. Due to the complex nature of internal
viscoelastic damping such a model is complex too. Addition-
ally, the literature in this field is scarce. The present model is
a suggestion to fill this gap to some extend.

First the paper considers viscoelasticity as a frequency-depen-

dent spectrum of a Young’s modulus, as known from litera-
ture, and later the stiffness of a membrane. Transferring the
equations into the time-domain is done via an inverse Laplace
transform. Results for a reduced system, a 0-dimensional
mass-spring system are discussed, showing complex decay
behavior, as well as sidebands with strong damping. Then
results for the membrane are shown, estimating the damp-
ing strength in correlation with the input parameters of the
model as well as the damping frequency width, the impact of
a damped target frequency onto its neighboring frequencies.

2 METHOD

2.1 Viscoelastic Finite-Difference Model
The drum membrane is modeled as a Finite-Difference Time

Domain (FDTD) model, used before in models of whole ge-
ometries of a guitar, a violin and several other musical in-
struments [2]. It is implementing the equation of a membrane
with tension T(x,y), area density ν(x,y) = m(x,y) / B, damping
constant D, and displacement u, like

T(x,y)
ν(x,y)

(
∂2u
∂x2

+
∂2u
∂y2

)
=

∂2u
∂t2

+ D
∂u
∂t

. (1)

The tension is often called T in the literature, and E is de-
noting the Young’s modulus. Both are closely related, as E is
measured in Pascal [Pa], or force per area, and T is measured
in Newton [N]. In viscoelastic literature mainly the Young’s
modulus E is used, defined as the proportionality constant be-
tween stress and strain. As the differential equation of the
membrane can also be interpreted as a stress-strain relation,
we discuss the viscoelastic model using Young’s modulus E
at first, and later use tension T or Young’s modulus E, to be
close to literature conventions.

The area density ν(x,y) depends on the mass m divided by
the area B of the membrane. As is the case with membranes
which are nonuniform in thickness, its mass varies along x
and y. Therefore ν(x,y) depends on space. Also the tension
T(x,y) has a spatial distribution. If a drum is tuned by ad-
justing tuning pegs at its rim, most often it is not possible to
adjust the tuning pegs such, that the drum has a perfectly uni-
form tension distribution over its whole area. Therefore also
the tension T(x,y) depend on x and y. The implemented model
therefore allows any density and tension distribution. Still as

the focus of this paper is on the viscoelastic damping, density
and tension are kept constant, although the model itself easily
allows for complex distributions.

This differential equation of the membrane includes a damp-
ing term, which leads to an exponential decay of the drum
eigenfrequencies, both in time and in frequency. Each partial
is therefore exponentially decaying, and the spectrum of the
sound will have an exponential decay towards higher frequen-
cies. All this damping depends on a single variable alone.
Still experiments nearly never show such a simple behavior.
Although damping roughly behaves exponentially, strong de-
viations appear from such a simple exponential decay, show-
ing amplitude fluctuations, sudden drops, especially right af-
ter tone onset or a decay much longer than expected. Indeed
literature shows viscoelastic damping to result in a spectral
band-gap, and multiple damped bands end up in a complex
amplitude spectrum, as discussed in the introduction.

To account for this, internal damping can be expressed as
a complex and frequency dependent Young’s modulus E(s)
with the complex frequency

s = α+ ıω . (2)

Then the stress-strain relation in the frequency domain be-
comes

σ(s) = E(s) ϵ(s) , (3)

with stress σ and strain ϵ. To implement this in a model, the
multiplication in the frequency domain can be transformed
into the time-domain as a time convolution like

σ(t) =
∫ ∞

0

ϵ(t − τ) h(τ) dτ . (4)

Here h(τ) is a function representing the time domain of
the complex Young’s modulus E(s). The present stress is the
result of all previous strains weighted by h(τ). An inverse
Laplace transform is used to transfer E(s) into h(τ) like

h(τ) =
1

2πı

∫ s=γ+ı∞

s=γ−ı∞
E(s)esτds . (5)

Here γ is a constant for all ω and need to be chosen such
that the solution converges. The choice of γ, together with
E(s), determines the damping strength, and therefore is cho-
sen to meet a desired damping. Still for all E(s), γ is a con-
stant.

This solution converges to the non-viscoelastic case when
E(s) does not have any real part. In this trivial case with con-
stant Young’s modulus E0 the inverse Laplace transform is

h(τ) = E0 δ(τ) , (6)

where δ(t) is the Kroneker delta function with δ(0) = 1 and
δ(τ ̸= 0) = 0. An unusual material with internal damping
only at frequency ω0 has

h(τ) = E0 δ(τ) + Re{E(s)} esτ , (7)

with damping amplitude Re{E(s)}.
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Therefore a frequency-dependent internal damping spec-
trum can be written like

h(τ) =
∫

s
Re{E(s)} esτds . (8)

Each spectral component of a sound is damped with its own
damping parameter µ(s) and therefore has a time series like

u(s, t) = A(s) e−µ t eı ω t . (9)

Note that it is necessary to clearly distinguish between the
real part of the Young’s modulus Re{E(s)}, the real part of the
inverse Laplace integrations γ, and the decay µ. Re{E(s)} is a
material property, the viscoelasticity of the vibrating material.
Re{E(s)} can be measured experimentally by examining the
phase relation between stress and strain of a material under vi-
bration of frequency s. γ is a signal processing tool which de-
fines the frequency range, or the filter Q of damping. Indeed
real viscoelasticity appearing at a certain frequency has also
a Q-value. Therefore also this parameter can be measured.
Still as additional sound properties appear with viscoelastic-
ity, like amplitude modulation, side bands or mode coupling,
defining a simple filter Q is only a rough approximation of the
viscoelastic behaviour. Therefore the relation between γ and
Q is not straightforward. Finally, µ is only an analysis pa-
rameter, the damping exponent of the resulting time series, as
best fit to the decay of the respective frequency. Again as the
real damped time series shows beatings and non-exponential
decay behaviour, µ is a rough estimate. Eq. 9 is therefore
an oversimplification of the real process, and therefore γ will
only be a rough estimation of the general decay of single fre-
quencies. Only the whole viscoelastic equation is suitable to
model real behaviour, which is caused by the combination of
Re{E(s)} and γ.

2.2 Complex Young’s Modulus and Complex
Tension

There is a temporal delay between stress and strain which
can be expressed as an angle δ, the phase relation between
stress and strain for a single frequency. δ is often measured as
this phase relation, and in the literature often written as

tan δ = EI/ER , (10)

the relation between the imaginary and real parts of the
complex Young’s modulus.

The stress-strain relation is also the definition of the Young’s
modulus. In the case of a membrane we do not have a Young’s
modulus, so we need to transfer the idea.

Strain is dimensionless and refers to the potential energy
of the system caused by displacement differences. The stress
is weighted force applied to the structure in order to obtain
the strain. In the dynamical case this force can have differ-
ent parts, the acceleration of the system, damping, or external
forces. The unit of the Young’s modulus is that of stress, force
over area, as strain is dimensionless.

The stress-strain relation is therefore a force balance, ac-
cording to Newton’s idea of mechanical systems in which all
interactions can be written as a sum of forces (actio-reactio).

Therefore it is straightforward to replace the strain with the
spatial differentiation of the membrane, another force term,
and the Young’s modulus by force over area density. As the
area density is hardly complex, clearly the tension is the pa-
rameter we can refer to as complex and frequency dependent.
Then the viscoelastic membrane equation reads∫ ∞

τ=0
h(τ)

T(x,y)
ν

(
∂2u(x,y,t − τ)

∂x2
+

∂2u(x,y,t − τ)

∂y2

)
dτ =

∂2u(x,y,t)
∂t2

.

(11)
Note that in this equation the damping term with damping
constant D and first derivative of displacement with respect to
time was omitted, as it is no longer necessary. All damping
can be modeled using the viscoelastic term. Still viscoelastic-
ity is not the only cause for damping. Another major damping
is that of radiation loss. This again is complex and beyond the
scope of this paper. Due to complex mode shapes, the radia-
tion loss of complex geometries can be calculated analytically
only for very simple geometries. There is no general analyt-
ical solution. Still roughly this damping is exponential with
respect to frequency. Therefore one might still keep the first-
order differential term with respect to time as a damping term
of external damping.

2.3 Analytical Proof of Non-Exponential Time
Decay of Viscoelastic Damping

Now we can analytically decide, if the viscoelastic decay is
exponential in time or not. Solving this equation is not trivial,
both for the spatial part v(x,y) as well as for the temporal w(t)
with

u(x,y,t) = v(x,y) w(t) . (12)

As we are interested in the temporal development of single
frequencies, we can leave the exact solution of v(x,y) for a
later stage, and assume that when finding this solution, which
is subject to some boundary condition, it can be differentiated
with

∂2w(x,y)
∂x2

+
∂2w(x,y)

∂y2
= b(s) w(x,y) , (13)

where b(s) is a constant depending on s. Then Eq. 11 sim-
plifies to

T(x,y) b(s)
µ

∫ ∞

τ=0

h(τ)w(t − τ) dτ =
∂2w(t)
∂t2

. (14)

Basically, b(s) w(x,y) could be the solution of any set of
linear differential equations, and we will use this later, study-
ing the model with a 0-dimensional mass-spring system. The
viscoelastic model for such a system would be

K
∫ ∞

τ=0

h(τ)w(t − τ) dτ =
∂2w(t)
∂t2

, (15)

where K is the spring stiffness.
It is interesting to see that inserting the expected exponen-

tial damping solution into Eq. 14 or Eq. 15, similar to Eq.
9,

w(t) = A e−αteıωt (16)
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is obviously not solving it. This means that the model of
a frequency-dependent viscoelasticity, as time delay of pre-
vious strains entering the present stress, does not necessarily
lead to the straight solution of an exponential decaying wave.

2.4 Memory Effect of Viscoelasticity
This is reasonable when remembering the physical reason-

ing of viscoelasticity as a delay of previous strains acting to
a present stress. Such a system has a memory, and previous
vibrations will act on the present one. In most cases this leads
to a damping, as the additional acceleration produced by the
previous strains counteracts the present acceleration, there-
fore reducing it and therefore damping the system.

Still the previous strains might also act as an additional ac-
celeration, which then is driving the system. Considering a
strong viscoelastic damping, where most of the energy is gone
after 10 ms. If the h(τ) is longer than 10 ms and still acts un-
til 15 ms, the acceleration supplied by h(τ) after 10 ms does
not find a vibration on the geometry which it could counteract
anymore and will drive the system again. This means that the
strain stored in system has a kind of a memory and will act as
an energy supply.

This additional energy will again be subject to viscoelastic
damping later on again, and so the system will decay on the
long run. But in such a situation we would expect an ampli-
tude beating on top of a generally exponential decay. Such
amplitude beatings are indeed found experimentally quite of-
ten. Of course they may have many reasons, like degener-
ated or close modes interacting and beating, or like complex
couplings in complex geometries which musical instruments
most often are. Still viscoelastic damping can also be a source
of such amplitude beatings.

To go one step further in this discussion, when increasing
the memory time, which in our model is decreasing γ, the
amount of stored strain acts will increase the damping but
will also increase the driving. Then the total damping be-
havior will be a combination of damping and driving, and we
will expect a peak for strongest damping at a certain value
of γ, which we will indeed find in the model results later on.
Therefore the relation between the strength of viscoelastic-
ity γ and the resulting decay exponent µ is highly nonlinear.
Again there is no analytical solution to this relation and there-
fore one task below is to calculate the relation for a parameter
space of both parameters, together with the third parameter
changing µ, which is the viscoelasticity Re{E(s)}.

To push this even further, with extreme values of γ we will
even expect the driving to be larger than the damping, and the
system will not decay but increase in energy. This is no physi-
cal case anymore in terms of normal viscoelastic damped sys-
tems. Still it is a feature which we might use to model energy
supply to a system. Of course this need to be done carefully,
as a real energy supply by a string or another coupled part of
a musical instrument might follow different rules.

Still the beating found is perfectly physical and known from
strongly viscoelastic damped systems, e.g. when rotating an
egg. When suddenly rotating an egg with a hand, the hard
wall of the egg will follow the acceleration without delay,
still the proteins inside the egg are driven only by the eggs

wall and follow the movement only with a visible delay. This
takes energy from the wall rotation, and it will slow down
considerably. But then one can visually experience the wall
to again accelerate, as the energy in the proteins are again act-
ing on the walls with a considerable delay. Then the walls in-
deed have been accelerated again after some time. Therefore
in principle such energy supply due to memory is a physically
expected behavior, and might play a role with musical instru-
ments with higher frequencies as we will see in the results
section.

2.5 Discretization
When implementing the equations on a GPU, the integral

cannot be performed over an infinite time span. It is memory
expensive to store previous strains for all nodal points of the
membrane geometry and perform convolutions for all node
points at each calculated time point. Therefore the equation
restricts the integration time to T. Additionally the calculation
is time discrete. This transforms Eq. 3 into

σt =
N−1∑
τ=0

ϵt−τhτ , (17)

with strain σt at discrete time point t and N samples to use.
Also the integral of the discrete viscoelastic function hτ be-
comes a sum, where only integer multiples of the periodicity
T = N / r at sampling rate r can be used like

hτ =
1

2πı

N∑
k=1

Ek e
γ τ/reı ωk τ/r, with τ = 0, 1, 2, 3, ...N − 1

(18)
where Ek are now the discrete complex values for frequen-

cies

ωk = 2π k / r with k = 1,2,3,...N . (19)

As the calculation itself is kept in the time domain, h(τ)
need to be real and therefore is rewritten like

hτ = E0 δ(τ) +
1

2π

N∑
k=1

Re{Ek} eγ τ/r sin(ωk τ/r + ϕk),

with τ = 0, 1, 2, 3, ...N − 1 (20)

The Kroneker delta function sums up all imaginary parts of
the Ek and for itself behaves like the non-viscoelastic case, as
shown above. The following sum can be performed only for
those ωk where Re{Ek} ̸= 0 and is zero for all others. The
sine functions need to be used for the transient case, where a
drum is hit by a stick, or a guitar string by a finger, etc. There,
starting from t = 0, the strains only build up, starting from
ϵ(0) = 0. Then the phase ϕk = 0. When using a cosine term,
the convolution would be out of phase with the strains and
therefore no viscoelastic damping can occur. Depending on
the musical instrument investigated, ϕk can be any function,
in the present study ϕk = 0 for all k.

Note that the Young’s modulus in the case of no viscoelas-
tic damping is now purely imaginary instead of real and only
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get a real part when viscoelastic damping takes place. The
reason is the use of s= α+ ıω, where ω is the frequency and
α the damping. This is no loss of generality, as also stress and
strain are defined as functions of s like σ(s) and ω(s), and
therefore in terms of no viscoelastic damping their relative
phases are zero as physically true.

Now as total damping consists of internal plus radiation
damping, a term for modeling radiation damping is missing.
The omitted temporal derivate term would not serve here well,
as radiation damping is only roughly related to a simple expo-
nential decay, the derivative term leads to, as discussed above.
Radiation loss depends on the eigenmode shape of the radiat-
ing body and therefore also need to be modeled frequency-
dependent, just like internal damping. Radiation damping
could therefore be modeled geometrically by adding the air
volume around the drum to the model. Still this would make
computational time very much higher.

Still radiation loss can be calculated in alternative ways. If
the geometry is simple, like with a circular drum, radiation
loss can be calculated analytically. Alternatively, radiation
loss can be calculated for more complex geometries when the
vibration modes are known. Then radiation can be calculated
as forward propagation by integrating the mode vibration into
the air surrounding the drum. The amount of cancellation of
energy due to phase differences in the modes determines the
energy loss of this mode due to sound radiation. As the Finite-
Difference model suggested here calculates the mode shapes
anyway, this approach can be used to determine the energy
loss due to radiation.

In this paper we are interested in viscoelastic damping alone.
Addition other dampings would make the solution a combi-
nation of them and it would be hard to distinguish the strength
of each damping one from another.

2.6 Membrane Model Properties
A circular drum was modelled with a radius of 10 cm a

membrane tension T = 1.7 × 106 N and an area density of
µ = 10−3kg / m2 which results in a fundamental frequency
f0 = 306 Hz for the undamped membrane. A regular rectan-
gular grid of 104× 104 nodal points was used laying over the
circular membrane, where only grid points in the membrane
area were used. The boundary conditions were fixed, so the
displacement at the rim was urim = 0, but all possible slopes
∂urim
∂x and ∂urim

∂x were allowed.
Three frequencies were tested, the fundamental frequency

f0 = 306 Hz, f0 = 1092 Hz and a high frequency f1 = 4174
Hz. These frequencies are peaks in the undamped membrane
and the influence of viscoelastic damping on them was tested.

The calculations were performed on a Graphics Process-
ing Unit (GPU) with massive parallel computation. Still the
model is not real-time and - depending on the GPU used -
calculating one second of sound with a sample rate of 96 kHz
takes between five to ten seconds.

The spatial grid was implemented on the GPU using three
vectors of length 104 × 104 = 10816 vector entries, one for
displacement, one for velocity, and one for displacement stor-
age. The acceleration memory was implemented as a vec-
tor of 104 × 104 × 1000 = 10816000 entries. The CUDA

language was used, implementing the model on an NVIDIA
GTX 1070 GPU on a laptop. The calculations for acceleration
at a present time point, for velocity at a present time point, and
for viscoelastic damping using the acceleration memory vec-
tor were implemented for all 10816 nodal points in parallel.
The new accelerations on the grid were added to the end of the
circular acceleration memory vector, and the pointer of this
vector was shifted by one vector entry. After performing one
time step the new calculated displacements were transferred
to the displacement storage vector. From this displacement
storage vector, in the next time step, the new accelerations
etc. were calculated.

2.7 Post-Processing

To calculate the exponential decay parameter µ from the
resulting time series of the model, a Wavelet transform at f0
was performed using a complex Morlet wavelet. For adjacent
time points the amplitude of the peak frequency was taken,
resulting in a time series of this peak. An exponential de-
cay of this amplitude leads to a steady slope when taking the
logarithm of the amplitude time series, a method well known
from room acoustics. This slope was calculated using a linear
fit model with the data. With very fast decays only the part
of the series was used which lies before the amplitude starts
fluctuating strongly (see example below).

As viscoelastic damping applied to a single frequency is
partly like a filter, for now simplifying by neglecting the am-
plitude modulation or the sideband effect, the frequency width
of this filter is calculated from the time series too. As we deal
with a musical signal having discrete eigenvalues this is not a
straightforward process, like it would be when we would con-
sider a continuous spectrum. The only way to estimate the
influence of damping of a target frequency f0 onto a neigh-
bouring frequency f1 is to calculate both damping coefficients
µ0 and µ1. In analogy to the filter quality definition of Q = f /
∆f, with ∆ f the frequency width of half the amplitude as the
center frequency of the band gap, we define the filter quality
Q like

Q =
µ0

µ1
/∆f , (21)

where ∆f = |f0 − f1|. Q therefore gets higher with a nar-
rower band gap, as one might be used to from filter Q val-
ues. In cases the neighbouring frequency f1 is not affected
by the damping, µ1 = 0. In these cases calculating Q from
it does not make sense anymore, as this frequency no longer
tells about the width of the band gap. In these cases no Q
is displayed anymore. We will have this case below, and as
there f1 is the closest peak next to f0 we cannot tell about the
bandwidth anymore. Still this is not a problem, as defining
a band gap only makes sense if there is an effect on neigh-
boring frequencies, which no longer is the case there. These
values are therefore of particular interest, in these cases one
frequency can be damped without any effect to the rest of the
spectrum.
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3 RESULTS

To test the decay behavior, at first the model is applied to
a 0-dimensional mass-spring system. Then results for the
membrane are presented, discussing frequency dependency,
Q-values, as well as stability.

3.1 Viscoelastic Damping of a Mass-Spring
System

The most simple case of viscoelastic damping is that of a
mass-spring system of Eq. 15, which is modeled here with
D= 109 and mass m=1. The initial values are for the velocity
v(0) = 0 and the displacement u(0) = 1, which were chosen
to easily fit an exponential decay curve to the resulting time
series u, starting at u(0) = 1.

The calculation was performed for four values of γ = 1,
1/10, 1/40 and 1/140, as shown in Fig. 1. The respective
functions h are plotted within each case at the right lower
corner. To each plot an exponential function was fitted by
hand, starting at u(0) = 1 and meeting the next peak. The gray
curve is the integral of the viscoelastic force acting back on
the respective time point. In the general model σ = E ϵ the
displacement u would be the stress σ, and the stored acceler-
ation corresponds to strain ϵ, which acts on the stress with a
memory, the integral of the strains at the previous time points
with h(τ). A sample rate of 96 kHz was used in the simulation
to be the same as with the following example of a membrane.

Theory expects with no damping (γ = 1) a phase alignment
between stress and strain, which is the case, and can be seen
in the top plot of Fig. 1. The small time gap between the two
curves comes from the time integration algorithm, delaying
the acting integrated strain to the next sample point of the
stress.

Also according to theory, with viscoelastic damping, strain
and stress are out of phase with the strain leading, as shown
with γ = 1/10 in the second plot from top. The function h(τ)
is very short in this case and acts on the strain less than 1 ms.
Still the damping is already strong with a fast decay over 5
ms.

Still when fitting an exponential curve to u(t), as e.g. with γ
= 1/10, the curve does not fit the model results perfectly. The
exponent µ of this fit was chosen by hand, starting at unity
with t=0 and meeting the first peak of u(t). With following
peaks the error increases. This becomes worse with higher
damping case of γ = 1/40 (third plot from top).

This deviation of the decay of u(t) from an exponential de-
cay is even worse for γ = 1/140. Here an amplitude and fre-
quency modulation appears and u(t) is far from having a sim-
ple decay behavior. The deviations of decay in the first two
examples γ = 1/10 and γ = 1/40 are therefore no artifacts of
the calculation, but a basic behavior of viscoelastic damping.

The reason for this behavior appears when examining the
integrated strain curve in gray e.g. with γ = 1/140. It only in-
creases over two periods, as integration time is relatively long
here, and previous u(t) enter over up to 6 ms. Still damping
acts on u(t) right from the start, decaying u(t) fast.

Now the damping appears as the stored acceleration over
time and is counteracting the acceleration at the present mo-

Figure 1: For viscoelastic damped time series u(t) of a mass-
spring system with spring constant D = 109 vibrating at 1536
Hz, viscoelastic function h with a length of 10 periods of f,
and for four inverse Laplace transform real kernel values γ
= 1, 1/10, 1/40 and 1/140 (top to bottom). In each case h is
inserted as a side plot within each case. An exponential fit is
applied in all cases by hand to meet the first peak of u(t). In
all cases such an exponential fit does not meet the results. For
smaller γ an amplitude and frequency modulation appears.
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Figure 2: Spectra of the viscoelastic damped mass-spring sys-
tem shown in Fig. 1 for no damping, γ = 1/10, 1/40, 1/140
and the additional case of 1/350. The original frequency at
f = 1536 Hz is decaying with lower γ. At the same time
sidebands appear, which become considerably strong with
γ = 1/350. These sidebands are the result of the amplitude
and frequency modulation of the decaying time series u(t) for
small γ.

ment damping the system. Still if the system is already damped
quite strongly and the stored acceleration is strong too, the
counteraction overshoots, and part of the stored acceleration
is now no longer acting as damping but as an energy sup-
ply. This is a fundamental physical behavior of viscoelastic
damping, which was tried to illustrate with the example of
the rotating egg above.

The back and forth of damping and enhancing of u(t) by
the integrate d strain in the system leads to an amplitude, but
also to a frequency modulation.

Fig. 2 shows the spectra of the time series of Fig. 1 for γ =
1/10, 1/40, 1/140 and additionally γ = 1/350. The case of γ =
1 is plotted too.

The decay at f clearly becomes stronger with decreasing
γ, and the peak is gone with γ = 1/40. Still with γ = 1/140
two sidebands appear above and below f. With γ = 1/350 a
series of these sidebands appear above and below f. These are
the results of the amplitude and frequency modulation of the
mass-spring system by the viscoelastic damping.

Therefore, as a first result of the method we find that a vis-
coelastic damped system does not have a simple exponential
decay, as expected analytically, as shown above. This implies
that Eq. 9 is not a solution of the system, which is expected,
as it is no solution of the viscoelastic differential equation 11.
We therefore find that the naive replacement of a real Young’s
modulus by a complex one, often assumed in modal analy-
sis, leading to a simple exponential decay of the respective
partial may be a good approximation with very slowly de-
caying modes, but is not sufficient for fast decays. Still most
structures of musical instruments, like wooden plates or mem-
branes, especially at high frequencies often have a very fast
decay, and therefore can show a very complicated decay be-
havior and a decay time not meeting that of an exponential
decay.

The example is only 0-dimensional. Therefore the appear-
ing side bands clearly come from the modulation of the vi-
brating point mass. Still with higher-dimensional geometries,

Figure 3: Damping exponent µ calculated as interpolation
from the time series of the model at f = 4174 Hz for four
different amounts of periods of f: 10, 25, 35 and 50 periods.
In each case Re{E(s)} was increased from 0 to 0.0003 in ten
equal steps, and the inverse Laplace real part of integration γ
was used from 1/10 to 1/100 (10 periods), 1/25 to 1/250 (25
and 35 periods) and 1/50 to 1/500 (50 periods). These values
were used to stay within a stable region of the model. The
resulting µ have a peak around γ = 1/150, independent from
the amount of periods used. µ decreases after this peak, indi-
cating a growing influence of driving energy caused by longer
delays.

like with the membrane discussed next, the energy of the side
bands might meet other vibrating frequencies present at the
side band frequencies. Then we have an energy transfer be-
tween two modes, a mode coupling. Such a mode coupling is
hard to distinguish from other effects in a higher-dimensional
geometry. Still as the 0-dimensional case is clearly showing a
mode coupling, we do expect such an energy transfer between
modes also for all higher-dimensional cases.

3.2 Viscoelastic Membrane

To test the membrane model it is damped at one single fre-
quency only, here at f1 = 4174 Hz, later also at f0 = 1092
Hz and f0 = 306 Hz. The model has three tunable parame-
ters for one frequency, the real part of the Young’s modulus
Re{E(s)}, the inverse Laplace transform integration real con-
stant γ, and the length of h(τ), the time series corresponding
to E(s).

As shown with the mass-spring model, the damping is not
an exponential decay. Still to arrive at an estimate about the
damping strength, such an exponent µ is still calculated, using
a complex Morlet wavelet transform with a very long wavelet
number of 60 wave periods, as discussed above. Other meth-
ods could be used, like detecting the last amplitude of the
damped frequency in time above a certain threshold. Still
with amplitude modulated sounds, easily present in musical
instruments, this might lead to artifacts as well. The prob-
lem of defining such a parameter is also one of measuring
damping from a recorded sound, which is not at all trivial,
and beyond the scope of this paper.

Fig. 3 shows all three parameters discussed above changed
within a parameter space. Four cases of the length of h(τ)
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Figure 4: Damping exponent µ for three target frequencies
damped by the model: 306 Hz, 1092 Hz, 4174 Hz over their
stable parameter range for γ and Re{E(s)}. The basic prop-
erty of a maximum damping at a certain γ is present in all
cases.

are shown in the amount of periods of f1, 10, 25, 35 and 50
periods. The up axis is the resulting damping exponent µ as
calculated from the resulting time series by exponential fit of
the amplitudes from the wavelet transform. The other axis
are Re{E(s)}, which in all cases has been varied in ten equal
steps from 0 to 0.0003, and the Laplace transform real param-
eter γ. This has different variations, depending on the amount
of periods used, it was varied from 1/10 to 1/100 (10 periods),
1/25 to 1/250 (25 and 35 periods) and 1/50 to 1/500 (50 peri-
ods). The parameters were set this way to ensure a stable al-
gorithm. When increasing the parameters beyond the shown
region, the resulting time series will constantly and exponen-
tially increase in amplitude, which is unphysical as there is
no additional energy supply to the system. In other words,
for values beyond the shown parameter spaces the algorithm
blows up. Therefore we have a trade-off between stability and
computational cost, as longer h(τ) means more computation
time and memory.

In three cases, 25, 35 and 50 periods, there is a peak of
maximum damping µ. Damping increases with increasing
Re{E(s)} as expected, but also when lowering γ from high
values to lower ones. The peak in all three cases is around
γ = 1/150. The 10 period case does not reach this γ and
therefore the peak is not present there.

After γ = 1/150 the damping exponent µ decreases again.
This is expected remembering the results of the mass-spring
system, as with smaller γ the viscoelasticity also acts as a
delayed energy supply. The fact that the peaks of maximum
decay µ are independent of the length of h(τ) is according to
theory.

As a consequence one might find that 10 periods are enough
for such a frequency, as here the maximum possible damping

Figure 5: Three examples of the decay of frequency f0 = 306
Hz for three different cases, a) Re{E(x)} = 0, γ = 1/10, b)
Re{E(x)} = 0.02, γ = 1/10, c) Re{E(x)} = 0.02, γ = 1/100.
The decays are steady transformed into a decay parameter µ
by a linear model fit. The case c) has a fast decay and con-
tinuous fluctuations afterwards. Here only the beginning has
been used to fit the linear decay model.

can be reached, next to all other damping strengths. Still this
is not perfectly the case because of two reasons. First, when
discussing the filter depth, or filter quality Q of the model,
the length h(τ) does play a crucial role, as we will see below.
Secondly, the damping curve changes with smaller γ making
larger h(τ) necessary. Therefore when reproducing a complex
damping amplitude decay curve, this might only be possible
using small γ for which large h(τ) are needed.

A maximum µ at a certain γ found with 4174 Hz is also
true for other frequencies. In Fig. 4 three cases are shown,
for 306 Hz (γ from 0.001 to 0.01), 1092 Hz (γ from 0.004
to 0.04) and again for 4174 Hz (γ from 0.004 to 0.04) with
Re{E(s)} from 0 to 0.0003 in ten steps in all cases. The
maximum damping µ in the resulting time series at a certain
γ is present in all cases. This feature holds over the whole
frequency range as expected, although γ becomes larger with
lower frequencies.

The decay of three examples for the case of f0 = 306 Hz
are shown in Fig. 5. The plot displays the peak amplitudes
over time for adjacent periods of f0. The amplitude axis is
logarithmic, therefore with an exponential decay a straight
line with a constant slope is expected. In the first case of no
damping the slope is zero. For the second case of a slightly
damped f0 the slope is very constant and the decay does not
deviate from a simple exponential one considerably. Titting
a µ to this decay is therefore straightforward. Still the third
example shows a very fast decay, followed by an amplitude
fluctuation which is overall decaying but much slower than
its beginning. The fluctuations are no noise, as the amplitude
is not small enough to end in discretization noise. Also the
periodicity is quite regular and starts at the fast decay part al-
ready. This is an example of a complex damping and closely
aligns with the results from the mass-spring model.

3.3 Damping Frequency Width Q
When damping a spectrum at a certain frequency, neigh-

boring frequencies will be effected too. This corresponds to
filter theory, where the width of the filter might be defined as
Q= ∆ f / f, where f is the frequency and ∆f is the frequency
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Figure 6: Spectra of the frequency region around f = 4174 Hz over an FFT length of 500 ms (left) and 50 ms (right). The peaks
resolved for 500 ms are blurred for 50 ms. As the length of h(τ) is between 1 and 6 ms, the damping algorithm deals with the
blurred case. Therefore the neighbouring frequencies f1 = 3860 Hz and f2 = 4587 Hz were used for calculating the damping
frequency width Q.

width over half the amplitude of neighboring damping. As
discussed in the methods section, this definition cannot triv-
ially be transferred to the present case, as we do not have a
continuous spectrum, but one consisting of discrete mode fre-
quencies. Therefore the damping of the neighboring frequen-
cies f1 and f2 below and above the damping target frequency
f are taken as a reference for the damping frequency width Q.

In the present case, again looking at 4174 Hz as the target
frequency, a bundle of single frequencies are present. Still
only when using a large Fourier transform window of about
500 ms these single frequencies are resolved. As the length
of the function h(τ) has a maximum of about 6 ms and often
is less than 1 ms, these single frequencies are not resolved
during the damping process. Therefore in the analysis the
broader peak around f = 4174 Hz, f1 = 3860 Hz and f2 = 4587
Hz are taken. The frequencies were calculated using again the
Wavelet transform using a wavelet number of 5, and detecting
the frequencies at amplitude maxima of the blurred spectral
peaks.

In Fig. 7 and Fig. 8 the Q for the case of f = 4174 Hz and
the two neighbouring frequencies f1 and f2 are shown. Both
compare f once with f1 (left plot each) and f with f2 (right plot
each). Each line represents changing Re{E(s)} for one γ.

Overall with decreasing γ, Q increases. This means that
when the function h(τ) decays slower, the sharpness of damp-
ing improves. This is expected and is analog to filter theory.
The dependency of Q on Re{E(s)} may be neglected, like
with the 10 period case for f1 (first figure, left plot). Still in
the case of f2 there clearly is a dependency on the real part of
the complex Young’s modulus, still not a trivial one.

The reason for this behavior could be found in the fact that
the target frequency damping effects all peaks present in the
peak bundle around f2, which results in a complex amplitude
modulation of f2, caused by the beating of frequencies. As
these single frequencies in the bundle are damping with a dif-
ferent amount, depending on their distance from f, the am-
plitude modulation is not constant and might become very
complex. Then fitting a simple exponential decay to such a

complex decay could lead to such a behavior.
When examining the 50 period cases, although the basic

pattern of increased Q with decreased γ continues, the plot
looks more complex than for the 10 period case. The reason
is that with longer h(τ) the amplitude beating, as discussed
with the mass-spring system, is getting more and more promi-
nent. Combined with the very fast decay of the partial and
the problem discussed above with the beating within the fre-
quency bundle, the fit of the decay to a simple exponential fit
will again cause such a complex pattern.

In the 50 period plots we also find some curves not com-
plete and ending at some Re{E(s)} with no values on the left
anymore. This are the cases where there is no damping of
f1 or f2 anymore when damping f, and therefore Q becomes
infinity (not displayed). These cases are particularly interest-
ing, as they mean a very sharp Q with no influence of the
target frequency on neighbouring frequencies.

Similar results appear for the 25 period and 35 period case
at this frequency, therefore displaying the results is omitted
here. A gradual transition from 10 period with fairly ordered
curves to 50 period with more complex behavior can be ob-
served with the 25 and 35 period cases.

4 CONCLUSION

When implementing viscoelastic damping as a memory ef-
fect in the time-domain, the resulting amplitude drop of the
damped frequencies is not a simple exponential decay. With
small viscoelastic effects and long decay times the difference
between the real and the exponential decay might be small.
Still with strong damping present in wood or leather, an ex-
ponential decay rate is no longer a good approximation.

Furthermore, due to the memory effect beatings appear in
the decay due to energy supply from the memory to the present
vibration, leading to an amplitude increase. This leads to
an amplitude and frequency oscillation and therefore to side-
bands in the spectrum. These sidebands mean an energy trans-
fer from the target frequency of damping to neighboring fre-
quencies which causes a mode coupling.
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Figure 7: Damping width Q for the 10 period case comparing the target frequency f with f1 (left plot) and f2 (right plot). In both
cases Q increases with decreasing γ, therefore lowering the damping of the neighboring frequencies when damping the target.
For f2 a dependency of Q on Re{E(s)} appears which is not so prominent with f1.

Also the length of the memory in most viscoelastic cases
is very short, it might be below 1 ms, maybe up to 6 ms (al-
though the time constant of viscoelastic damping might be
up to weeks or years as discussed in the introduction). But
within very short time scales the frequency range of damp-
ing has a certain width, and therefore a damping width Q can
be defined as the relation of damping strength of the target
frequency to neighboring frequencies. This damping width is
larger with smaller damping functions h(τ) and smaller expo-
nents γ as expected. Still this damping width also means that
many peaks in this regions are damped simultaneously, but
with different strength, depending on their distance to the tar-
get frequency. This leads to very complex amplitude beatings
in these regions during the decay.

Many of these damping behavior found, like a very sharp
decay right after the beginning of the sound followed by a
slower decay with amplitude beating, are present in real mu-
sical instrument recordings. Such sounds are found with per-
cussion instruments like the xylophone, bass and snare drums
of a modern drum kit, or with wood blocks. They are also
found with harps, flamenco guitars, or upright pianos. All

such instruments have a complex initial transient, followed
by a pitched decaying sound. Still there are many other rea-
sons for amplitude decay, like radiation damping, energy con-
version between modes, or related things. Still viscoelastic
damping is one of the components leading to such behavior.

After understanding the behavior of viscoelastic damping
in terms of the amplitude decay, the next step is to model the
recorded damping of a real guitar top plate or piano sound-
board with the viscoelastic damping model. This is work for
future projects.
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Figure 8: Same as Fig. 7, here for the 50 period case with lower γ. The basic pattern of larger Q with lower γ repeats, still in a
more chaotic manner. This is due to very fast decay and the fact that the fitting of the damping curve to an exponential fit used to
estimate µ, from witch Q is calculated becomes more problematic. The cases where the lines end (left plot high Q, low γ mean
that there is no damping found anymore of the neighboring frequencies. Therefore here the damping Q is so sharp that it does no
longer affect neighboring modes.
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