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Abstract - Deep learning-based image recognitions have
achieved high accuracy; however, its application to many ac-
tual business systems remains difficult. First, deep learning
requires extensive training data, which are often difficult to
obtain for particular businesses. Second, actual business en-
vironmental scenes change owing to various factors, such as
the time of day, season, and weather. Consequently, typi-
cally, there is a domain gap between the training and tar-
get images, which often reduces recognition accuracy. To
address these problems, a method to automatically generate
training data that is not affected by scene changes using com-
puter graphics (CG) has been proposed. However, domain
gap problem between the CG generated images and actual
images remains. Recently, Cycle-Consistent Adversarial Net-
works (Cycle-GAN) have been proposed to translate an image
from one domain to a fake image of another domain. In this
study, a method to use a model trained with CG images is pro-
posed. In this method, actual images are translated into fake
CG images using a Cycle-GAN. An experimental evaluation
demonstrates improved accuracy; the proposed method is ap-
plied to an inventory estimation of parts in a bulk container
using deep learning regression model.

Keywords: deep learning, GAN, Cycle-GAN, regression
model, stock-taking, computer graphics, CG, image recogni-
tion

1 INTRODUCTION

Currently, deep learning has been applied effectively to var-
ious fields [6], [4]. Its effectiveness has been demonstrated
in the ImageNet Large Scale Visual Recognition Challenge
[12]. And, image recognition accuracy has improved rapidly
[19]. With improved accuracy, deep learning has been used
with a wider range of image processing applications, such as
face recognition, medical image analysis, and plant disease
detection [20], [8], [17]. Additionally, an increasing number
of images have been stored on cloud servers; therefore, ob-
taining sufficient images for training data has become easier.
However, obtaining sufficient images as training data for in-
dividual businesses remains difficult and time-consuming.

In previous studies, I have investigated stock-taking in a
machine factory. Typically, in a machine factory, most parts
are stored in bulk containers, and for stock-taking, counting
the parts manually through a superficial visual examination is
impossible. Thus, to count the parts, they must be removed
from the container, which needs heavy work-load. To address

this problem, I investigated applying deep learning to inven-
tory estimation using image recognition and confirmed that
practical accuracy could be achieved using a deep learning
regression model [14]. This study was performed in a lab-
oratory where images of lightweight marbles and nuts were
used for the training and test data; 1,600 original images were
increased to 8,000 by padding.

However, applying this method to an actual factory was dif-
ficult. First, to capture images for training data, heavy parts
must be repositioned manually. Additionally, typically, there
are thousands of bulk containers in a factory, and capturing
images of the parts in each bulk container is not practical.
Second, since the scene in an actual factory changes due to
various factors, such as the time of day, season, and weather,
there may be a domain gap between the training and target
images. Such domain gaps can reduce recognition accuracy
[21].

To address the first problem, we have previously developed
a method to generate sufficient training data automatically us-
ing computer graphics (CG) [13]. In this study, I propose an
inventory estimation system that uses CG generated training
data and target data created from images of actual parts. To
eliminate the domain gap between the actual and CG images,
the actual images are translated to fake CG images before the
inventory estimation. Thus, it is expected that inventory esti-
mation accuracy can be maintained regardless of the change
of scenes.

Here, this translation is performed using a Cycle-Consistent
Adversarial Network (Cycle-GAN) [24], which is a type of
generative adversarial network (GAN) [6]. A Cycle-GAN
model is trained using different image groups, such as zebras
and horses, where images of one group (zebras) are automat-
ically translated into fake images of another group (horses).
For some types of objects, it has been shown that images
can be translated into highly accurate fake images using this
trained model.

In this study, the objective is to verify the feasibility of us-
ing a Cycle-GAN to improve the estimation accuracy of the
above-mentioned inventory estimation system [13]. It com-
prises a regression model trained with CG images, and the
target data of actual images.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related works, the author’s previous studies,
and states the primary goal of this study. In Section 3, a
method to estimate inventory using a training data genera-
tor and Cycle-GAN is described. The effectiveness of using
fake CG images translated by a Cycle-GAN is evaluated in
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Figure 1: Parts inventory in bulk containers

Section 4. Evaluation results are discussed in Section 5, and
conclusions and suggestions for future work are presented in
Section 6.

2 RELATED WORK

In this section, the author’s previous studies and related
studies are described. Also, the objective of the current study
is discussed. The parts inventory in a machine factory is man-
aged based on a theoretical inventory planned using a pro-
duction management system. However, actual and theoretical
inventories often differ due to product defects, work errors,
work delays and so on. Therefore, manual stock-taking must
be undertaken. However, manual stock-taking needs heavy
workload because, typically, parts are stored in bulk contain-
ers (Fig. 1) and to obtain an accurate count of individual parts,
the parts must be removed from containers.

On the other hand, in recent years, with the progress of
deep learning, the accuracy of image recognition has improved
and image recognition has been applied to various fields [8],
[12], [17], [19], [20]. Therefore, my colleague and I devel-
oped and evaluated a method to estimate inventories using im-
ages taken from the outside of the bulk containers. First, we
evaluated results obtained using a deep learning multi-class
classification model and found that it could achieve a certain
estimation accuracy.

Also, we demonstrated how this method could be applied
to actual inventory management [10]. The method produced
some estimation errors; however, we found that the number of
out-of-stock parts could be reduced by increasing the safety
stock according to the error range. Also, accuracy could be
improved by comparing the estimated inventory with the the-
oretical inventory. Note that in the multi-class classification
model, inventory quantities are treated as discrete classes, and
an inventory estimated from a bulk container image is consid-
ered a discrete class (quantities) [4].

However, preparing training data for that study was ex-
tremely time-consuming. Lightweight marbles and nuts were
used to represent parts; 1,600 different original images were
captured by repeatedly rearranging these items manually. The
1,600 images were padded to create 8,000 images; 6,000 were
used as training data, and 2,000 were used as test data. How-
ever, in an actual factory, using this process to obtain train-
ing and test data is not practical because typical parts are ex-

tremely heavy and there are thousands of bulk containers.
Therefore, I developed a training data generator and deter-

mined that a model trained using CG generated data could
achieve a certain accuracy [13]. It became evident that based
on a machine drawing of the part, the shape of the CG model
of the part could also be created relatively easily. In con-
trast, given various textures and illumination environments, a
trial and error process was required to obtain the color tone of
parts. Note that, compared to the types of parts, the number of
textures was small because the parts were made using limited
types of materials, such as iron and aluminum.

In the multi-class classification model, training data must
be prepared for each inventory quantity. That is, when inven-
tory quantities fluctuate over a wide range, it is necessary to
prepare a large amount of training data. Therefore, accuracy
was evaluated using a regression model [14], which estimates
an inventory as a continuous quantity [4]. As a result, com-
pared to the multi-class classification model, high estimation
accuracy was obtained when actual images were used for both
the training and test data. Also, similar accuracy could be ob-
tained for plural parts when estimation was performed with
CG images using models trained with CG images.

However, when estimation was performed with actual im-
ages using the regression model trained with CG images, esti-
mation accuracy was reduced significantly due to differences
in color tone between the actual and CG images, i.e., the do-
main gap. Other studies have also found that image recog-
nition accuracy deteriorates due to the domain gap between
training and target images [21]. This suggests that apply-
ing deep learning to stock-taking in an actual factory will be
problematic because factory conditions are not stable. Conse-
quently, the domain gap occurs in both the training and target
images.

Besides, in 2015, the automatic generation of images us-
ing DeepDream, which is an image processing method that
uses deep learning, was reported. Since then, studies on auto-
matic image generation and image style conversion by apply-
ing deep learning have been actively conducted [4], [18]. It
has been shown that a GAN method can be used to generate
a fake image from a genuine image. This method comprises
a generator network (hereinafter, ‘generator’) that generates
a fake image and a discriminator network (hereinafter, ‘dis-
criminator’) that classifies images as fake or genuine [7]. By
training both networks together, it is possible to generate a
fake image that is close to the genuine image. Various meth-
ods to generate fake images based on the GAN have been pro-
posed [15], such as pix2pix, DiscoGAN and UNIT [9], [11],
[16].

Among such methods, a Cycle-GAN can be applied to trans-
late an image from one domain into an image of another do-
main. For example, an image of zebras is translated into a
fake image of horses by training a Cycle-GAN model with
the image group of zebras and horses [24]. Figure 2 shows
the structure of a Cycle-GAN model, where X and Y show
different groups of images such as zebras and horses.

In Fig. 2, image x of group X is translated to a fake image
ŷ of group Y by generator G, and discriminator DY deter-
mines whether ŷ is a genuine or fake image of Y . Further-
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Figure 2: Structure of Cycle-GAN model

more, x̂ is reconstructed from ŷ by generator F , and Cycle-
consistency loss, which is the loss between x and x̂, is eval-
uated. In this study, the feasibility of applying Cycle-GAN
to solve the domain gap problem between training and target
data in regression models is evaluated.

I assume a case where the Cycle-GAN model is used for
quantity estimation from images, such as stock-taking of parts
in bulk containers. In other words, I attempt to show that esti-
mation accuracy can be improved by translating actual images
to fake CG images using Cycle-GAN. Here, Fig. 2 shows the
case of translating X to a fake image of Y . Similarly, images
of Y are also translated to fake images of X , and the discrim-
inator and cycle-consistency loss evaluation are performed.
In this way, similar to a GAN, by training the generator and
discriminator together, images of one group can be translated
into high-precision fake images of another group.

Also, given the structure of the Cycle-GAN model (Fig.
2), image translation can be performed automatically between
unrelated image groups X and Y . Therefore, by applying
the Cycle-GAN model to the above-mentioned inventory es-
timation, actual images of bulk containers taken under vari-
ous scene conditions can be automatically translated into fake
CG images generated by the training data generator. Most
importantly, since CG images can be generated as in a fixed
environment, it is expected that the domain gap problem can
be solved.

Currently, Cycle-GAN has been applied to data transla-
tion in various fields such as videos, voices, and human im-
ages [2], [5], [21]. Also, various image translation models
have been proposed using the concept of Cycle-GAN, such
as Combogan, Sem-GAN, CYC-DGH, and CinCGAN [1],
[3], [22], [23]. However, to the best of my knowledge, no
study has applied Cycle-GAN to image recognition and eval-
uated accuracy improvement by eliminating the domain gap
between the training and target images.

In this study, the feasibility of applying Cycle-GAN to solve
the domain gap problem between training and target data in
regression models is evaluated. I assume a case where a re-
gression model trained with CG images is used for quantity
estimation from actual images, such as stock-taking of parts
in bulk containers. In other words, I attempt to show that esti-
mation accuracy can be improved by translating actual images
to fake CG images using Cycle-GAN.

Parts Parts

CG Parts

Domain gap with scene change

Static domain by CG generator

Translation

Figure 3: Domain gap in factory and generation of a static
domain images

Bulk container

Model

(trained)

Figure 4: Inventory estimation system dataflow

3 INVENTORY ESTIMATION PROCESS
USING TRAINING DATA GENERATOR

Section 2 discussed the two problems when applying deep
learning to parts inventory estimation in an actual factory, i.e.,
preparation of a large amount of training data and domain
gap among images due to scene changes. The method shown
in Fig. 3 is proposed to address these issues. First, a large
amount of training data (‘CG parts’ in Fig. 3) is generated
by the training data generator using CG mentioned in Section
2 under specified conditions. Second, the target parts images
(‘Parts’ in Fig. 3) in the factory are translated into fake images
of CG parts (fake CG images). As a result, the domain gap
between the training and target images is eliminated.

Figure 4 shows the data flow of the inventory estimation
system, in which a Cycle-GAN is used to translate actual im-
ages into fake CG images. As shown in the dashed box in Fig.
4, training data for the Cycle-GAN model are prepared as fol-
lows. Actual images are created from pictures of factory bulk
containers, and CG images are generated using the training
data generator. This system uses the regression model trained
with CG images, as shown in the black hatched round box
shown in Fig. 4. This regression model comprises convolu-
tional layers with pooling layers and fully connected layers,
as shown in Fig. 5. Note that the mean square error (MSE) is
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Figure 5: Structure of regression model

Figure 6: Target nut images

used for its loss function.
As shown in Fig. 4, the actual image of each bulk container

is captured by a camera installed around the containers, and
the inventory is estimated from this image. To suppress the
increase in the inventory estimation error due to the domain
gap between the actual and CG image, the captured image is
translated into a fake CG image using the Cycle-GAN model.
Then, the regression model estimates inventory quantity using
this fake CG image.

For the regression model’s training data, the shape of the
part is important relative to maintaining estimation accuracy.
Also, a single camera monitors many bulk containers; thus it
is necessary to create training data images not only from just
the above direction but also from the direction of the camera
for each bulk container. Using the training data generator, the
shape of the CG part model can be created easily based on a
drawing of the machining of the target part, and the camera
position of the CG can be designated at rendering based on
the actual camera position. In other words, the training data
generator can generate a large amount of training data auto-
matically for the parts in each bulk container.

Therefore, the Cycle-GAN model is only used to eliminate
the domain gap due to the color tone of the actual and CG
images. It primarily depends on the scene change shown in
Fig. 3 and part texture due to its material. Here, there are
relatively few types of part materials as mentioned in Section
2, thus Cycle-GAN model training is performed for only each
of these materials. In other words, for the training data, CG
images are generated by the training data generator, and the
actual images are created by collecting images of parts made
of the same material. As discussed in Section 2, relative to the
Cycle-GAN training data, it is not necessary to associate an
individual actual image with an individual CG image. Thus, it
is possible to accumulate actual images without investigating

Figure 7: Structure of experimental system

part quantities.

4 EXPERIMENTS AND EVALUATIONS

4.1 Experimental Environment

Figure 4 shows the experimental environment used to eval-
uate the effect of translating actual images to fake CG images
using the Cycle-GAN in inventory estimation. First, images
of nuts placed in a bowl were used as the target parts, which
were captured from above as shown in Fig. 6. For example,
Fig. 6 (1) shows an actual image created from the picture
of the nuts, and Fig. 6 (2) shows a CG image generated by
the training data generator. Here, 100 images were prepared
for each nut quantity from five to 80 for every five, for each of
these (1) and (2). In total, 1,600 images were prepared and di-
vided into training (1,200 images) and test (400 images) data.

The structure of the experimental system is shown in Fig.
7. In this experiment, the Cycle-GAN model was trained us-
ing training data comprised of actual and CG images. The
training was performed as batch processing, and the number
of batch per epoch was 1000. Here, discriminator loss (d loss)
and cycle-consistency loss (g loss) were monitored every 200
batches. Simultaneously, the test data (i.e., actual and CG
images) were translated into fake images. Then, each origi-
nal image was reconstructed from each fake image. Figure 8
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(1) Fake CG image translated from actual image

(2) CG image and images translated from it

Figure 8: Images generated by Cycle-GAN model

shows examples of these data.

The Cycle-GAN model was saved, and the target data for
inventory estimation, which were actual images prepared sep-
arately, were translated into fake CG images using this saved
model. Here, the actual images comprised 16 types of quan-
tity groups, similar to the training and test data for the Cycle-
GAN model, i.e. five to 80 for every five. Also, 50 images
were prepared for each group, i.e., 800 images in total. To
evaluate the estimation error automatically, the number of
nuts in each image was added as a correct label.

The experimental system was implemented on a PC with
Windows 10 using Python and Keras. Note that TensorFlow
was used for the Keras backend, and OpenCV was used for
image conversion. The images were converted to 128 × 128
pixels and used for training and estimation. For the train-
ing data generator, a nut and bowl were modeled using the
Blender (a 3DCG modeling tool). Here, the nuts were placed
into the bowl using Blender’s physical simulation function.
Note, Blender’s physical simulation and rendering processes
were automated using Python.

To training the Cycle-GAN model, its hyper-parameters
were set as follows. λ was set to 10.0, which is the strength of
the cycle-consistency loss against discriminator DY (Fig. 2)
and DX (discriminator for generator F ). The argument of the
Adam optimizer was set to Adam(0.0003, 0.5). Similarly,
for the regression model, the reduction rate of the learning
rate was 0.1, the minimum learning rate was set to 10−10,
dropout was not used, the output dimension of the fully con-
nected layers was 128 (except for the last layer), and the best
model in the training transition was saved. Note that the out-
put dimension of the last layer of a regression model is one.

4.2 Evaluations

Figure 9 shows the transition of d loss and g loss of the
Cycle-GAN model and the MSE of the inventory estimated
by the regression model according to the training progress of
the Cycle-GAN model. As can be seen, the MSE decreased as
training progressed and became the smallest at batch number
1000 of epoch 12. Then the MSE increased. Note that d loss
fluctuated greatly before the MSE became the smallest and
became a very small value several times at batch number 1000
of epoch 8, batch number 600 of epoch 5 and so on. However,
there was no tendency for the MSE to improve at these times.
Similarly, no clear correlation between g loss and MSE was
observed.

Figure 8 shows an example of the input and output images
of the Cycle-GAN model when the MSE became the small-
est value. Figure 8 (1) shows (from the left) the actual im-
age, the fake CG image translated from the actual image, and
the reconstructed image obtained using the fake CG image.
Each corresponds to x, ŷ, and x̂ in Fig. 2. Similarly, Fig. 8
(2) shows a CG image, its fake actual image, and the recon-
structed CG image. Inventory estimation was performed by
the regression model using the fake CG image at the center in
Fig. 8 (1). The original image at the left in Fig. 8 (2) is a CG
image and the translated fake CG image in (1) was generated
as a fake image of this CG image.

Next, to evaluate the effect of images translated using the
Cycle-GAN on inventory estimation, i.e., the effect of fake
CG images, we performed a comparative evaluation using CG
images, fake CG images, and actual images. Figure 10 shows
the MSE results for these image types. As can be seen, using
fake CG images, MSE improved by approximately 2.8 times

International Journal of Informatics Society, VOL.12, NO.1 (2020) 41-48 45



Figure 9: Transition of MSE in inventory estimation with
Cycle-GAN training

MSE

Figure 10: MSE of estimated inventory with different image
types

compared to using actual images. However, MSE deteriorated
by approximately 9.2 times compared to using CG images.

Figures 11, 12 and 13 show histograms of the estimation
errors for CG images, fake CG images, and actual images.
In each figure, the horizontal axis shows the error; thus the
position of 0 is the correct estimation quantity. Note that ‘un-
der’ gives the total number of images for which estimation
error was −15 or less, and ‘over’ represents the case for 15 or
greater. Besides, the quantities were estimated by the regres-
sion model; thus estimation errors were also decimal values.
Therefore, the graph in Figs. 11, 12 and 13 was created after
rounding off estimation errors to integers. The vertical axis
shows the rate of the number of occurrences of each error,
and each figure shows cases of five, 20, 40, 60, and 80 nuts as
shown in the legend.

As shown in Fig. 11, in the case where inventory was es-
timated using CG images using the regression model trained
with CG images, the distribution of estimation error was ap-
proximately within ±5. Conversely, as shown in Fig. 13,
when using actual images for the same model, the distribution
was spread across a wider range, i.e., between −10 and over.
Note that errors became over in the 40 and 60 nuts cases. As

Rate(%)

Err.

Figure 11: Histogram of error distribution with CG images

Rate(%)

Err.

Figure 12: Histogram of error distribution with fake CG im-
ages

shown in Fig. 12, when using the fake CG images, the error
distribution improved (except the case of 80 nuts) compared
to using the actual images, i.e., the distribution was within
±9. However, deviation to the negative direction increased
with 80 nuts.

Furthermore, for inventory estimation using fake CG im-
ages, the magnitude and deviation of the errors were evaluated
for each quantity of nuts using the mean absolute error (MAE)
and the average error. Figure 14 shows the transition of MAE
and average error with increasing nut quantity. Here, the ver-
tical axis shows the errors, and the horizontal axis shows nut
quantity. In the range of five to 20 nuts, both the MAE and the
average error were approximately 4. At 25 nuts, deviation in
the positive direction increased. When nut quantity was over
25, the deviation in the negative direction increased linearly
as nut quantity increased.

5 DISCUSSION

In a previous study, the estimation accuracy of parts inven-
tories in bulk containers using the regression model was eval-
uated using the following data: CG data generated by the data
generator were used for training the model, and actual im-
ages were used to estimate inventory using the trained model.
As a result, although training data generation efficiency im-
proved, the problem caused by the domain gap of images oc-
curred and estimation accuracy deteriorated. Furthermore, it
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Figure 13: Histogram of error distribution with actual images

MAE/Average error

Number of nuts

Figure 14: Transition of MAE and average error

was predicted that the same problem would occur due to scene
changes in an actual factory. Therefore, to address this prob-
lem, the feasibility of translating actual images to fake CG
images using a Cycle-GAN was investigated in the current
study.

First, I performed comparative evaluations of estimation
accuracy with and without image translation using the Cycle-
GAN model. As shown in Fig. 10, this image translation
process was effective relative to improving estimation accu-
racy. In particular, as shown in Fig. 14, when the quantity
of nut was 20 or fewer, the MAE of the estimation was ap-
proximately 4. In actual factories, one of the most important
purposes of stock-taking is to prevent running out-of-stock.
For this purpose, bulk containers with small inventory quan-
tities are targeted. As discussed in Section 2, deep learning
techniques can be applied to actual factory environments by
increasing the safety stock and collating with the theoretical
inventory. For example, as shown in Fig. 12, when the in-
ventory quantity was 20 or fewer, the error was 10 or less.
Therefore, out of stock can be suppressed by increasing the
safety stock by 10. Incidentally, it has been confirmed that
the types of materials of parts were limited; thus, it is consid-
ered that the estimation method using a Cycle-GAN can be
applied effectively to multiple parts. Therefore, it is expected
that this method can be applied practically in some field even

with its current accuracy.
And, two issues related to applying the Cycle-GAN model

have been identified. The first issue is related to the method by
which the optimal Cycle-GAN model is detected. As shown
in Fig. 9, in the range of epochs I have experimented with,
strong correlations between the estimation accuracy (MSE) of
the regression model and the loss (d loss, g loss) of the Cycle-
GAN model could not be observed. In other words, from the
viewpoint of generating optimal fake CG images for the re-
gression model, the optimal model could not be detected by
monitoring only the loss transition of the Cycle-GAN models.
As a result, inventory estimation accuracy had to be examined
for all fake CG images translated by the models in each train-
ing stage, as shown in Fig 9.

The second issue is related to inventory estimation accu-
racy. As shown in Fig. 10, the MSE obtained using fake CG
images was approximately 9.2 times that of using CG images.
Furthermore, the transition of MAE varied with increasing
nut quantity as shown in Fig. 14. In particular, the MAE in-
creased at 25, 30, and 70 or greater nuts. However, to use
this method for stock-taking, it will be necessary to maintain
a certain inventory estimation accuracy regardless of the part
quantity.

To address these issues, it will be necessary to make the
loss function of the Cycle-GAN reflect the loss function of
the regression model. Using this model, it is expected that the
Cycle-GAN model can be trained to optimal for the regression
model to estimate inventory. This will be the focus of future
work.

6 CONCLUSION

Inventory estimation of bulk containers using the regres-
sion model of deep learning has achieved certain accuracy.
However, to apply this method to an actual factory, there were
two issues that needed to be addressed, i.e., a large amount
of training data must be prepared, and the deterioration of
estimation accuracy caused by the domain gap with scene
changes must be prevented.

For these problems, in this study, training a regression model
using CG images and estimating inventory using fake CG im-
ages translated from actual images by Cycle-GAN were in-
vestigated. Comparative evaluations of the model’s estima-
tion accuracy were performed using CG images, fake CG im-
ages, and actual images. As a result, inventory estimation
accuracy could be improved using fake images rather than the
original images. On the other hand, the estimation accuracy
obtained using fake CG images was less than when using CG
images.

To improve accuracy when using fake CG images, it will
be necessary to reflect the loss of the regression model into
the loss function of the Cycle-GAN model, which will be the
focus of future work.
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