
Regular Paper

Compression Algorithm Contribution for Infected-host Detection

Yasushi Okano†, Kazunori Kamiya†, Atsutoshi Kumagai†, Taishi Nishiyama†,
Bo Hu†, Masaki Tanikawa†, and Kazuhiko Ohkubo‡

†NTT Secure Platform Laboratories, Japan
‡Kyowa Exeo Corporation, Japan

†{yasushi.okano.ye, kazunori.kamiya.ew, atsutoshi.kumagai.ht, taishi.nishiyama.pt,
bo.hu.cf, masaki.tanikawa.ym}@hco.ntt.co.jp

‡k.ookubo@en2.exeo.co.jp

Abstract - Machine learning is being actively used to
detect malware-infested hosts and their malicious com-
munications. When applying machine learning, design-
ing the right feature is the key for accurate detection.
BoW (Bag of Words)-based feature extraction is widely
applied in natural language processing and also utilized
for malicious communication detection. However, BoW-
based feature extraction does not always scale for han-
dling network logs that often have new data sequences.
By focusing on the fact that new data sequences in net-
work logs are in many cases mostly similar but partly
different, we propose a new detection method based on
a data compression algorithm. Since the compression
algorithm has a characteristic that data size after com-
pressing is related to similarity of data, a compression
algorithm based feature can be utilized for classification.
According to our evaluation results with real-field proxy
logs in an enterprise network, the proposed method has
better at detection than a BoW-based detection method.
In particular, its true positive rate (TPR) in a low false
positive rate (FPR) area (0.5%) is over 30% higher than
that for the BoW-based method. In addition, the results
show that the proposed method effectively detects an in-
fected host communicating with malicious URL that in-
cludes partially modified string from original malicious
logs.

Keywords: malware, log analysis, data compression,
machine learning

1 INTRODUCTION

Malware is becoming more sophisticated and has so
many variants that anti-virus software does not detect
all of them. In fact, it is reported that over 127.5 million
pieces of malware were registered in 2016 [1]. To com-
pliment the fact that detection at the endpoint is not
always successful, network log analysis is one solution
that monitors logs taken from network devices such as
proxy and firewall and finds malicious communications
derived from infected hosts.
In current log analysis, many monitoring rules have

been deployed. Examples include network scans being
detected once the number of different destination IP ad-
dresses from one source IP address exceeds a predefined

threshold and a specific malware infection being deter-
mined if one host accesses a blacklisted URL. Many mon-
itoring rules are based on operators’ elaborations on cre-
ating rules, deciding thresholds, and maintaining black-
lists. However, as malware has evolved to become able
to change communication patterns easily, heuristic rule
creation adds cost to operations and has difficulty catch-
ing up with malware modification. As a result, machine
learning is gaining attention for automatically detecting
evolving malware and for helping operations.
In applying machine learning for network log analy-

sis, first, machine learning calculates feature values from
network logs. For instance, feature values range from
the length of a string, frequency of terms in device logs,
and so on. Second, machine learning will classify the
data into legitimate or malicious on the basis of feature
values. In this process, infected hosts and malicious com-
munications are detected.
There are many detection algorithms from LR (Logis-

tic Regression), SVM (Support Vector Machine), Ran-
domForest, and DNN (Deep Neural Network). However,
the most critical factor for accurate detection is design-
ing the right feature for the problem.
BoW (Bag of Words)-based features are widely ap-

plied in natural language processing and also utilized to
detect malicious communications. However, BoW-based
feature extraction does not always scale for handling net-
work logs, which often have new data sequences.
By focusing on the fact that new data sequences in

network logs are in many cases mostly similar but partly
different, we propose a compression algorithm based fea-
ture and apply it to supervised learning for detecting
malicious communications and infected hosts.
Simply put, a compression algorithm based feature is

one form of the compression rate of data, which means
how small the data becomes after being compressed. When
the data sequence is similar to that in existing malicious
data, the compression rate should be small because this
data sequence is effectively compressed. On the other
hand, if another data sequence is totally different from
that in existing malicious data, the compression rate
should be large. In this sense, the compression rate can
be useful for finding if one data sequence is similar to
that in malicious data. Consequently, the compression

International Journal of Informatics Society, VOL.11, NO.3 (2020) 167-175 167

ISSN1883-4566 © 2020 - Informatics Society and the authors. All rights reserved.

rate can contribute to detecting malicious communica-
tions.

We evaluated the proposed method with real proxy
logs taken from an enterprise network. The results show
that the proposed method is better at detection than
the BoW-based method. In particular, the results show
that the proposed method effectively detects an infected
host communicating with a malicious URL that includes
a partially modified string from original malicious logs.

Overall, our research makes three contributions.

1. We first apply the compression algorithm feature
to supervised machine learning to detect malicious
communications and infected hosts.

2. We evaluate the proposed method with real enter-
prise proxy logs and demonstrate that the proposed
method performs better than a BoW-based classi-
fier.

3. We analyze true positive and false negative use
cases and clarify that the proposed method effec-
tively detects partially modified strings from orig-
inal malicious logs.

2 RELATED WORK

2.1 Classification Based on
Compression Algorithm

Benedetto et al. [2] proposed relative entropy. Al-
though patterns of the same consecutive code or similar
repeated code are effectively compressed, patterns of dif-
ferent code are not. Relative information volume of data
sequence x against data A is linked to how well data is
compressed. Based on this observation, Benedetto et al.
define relative entropy as how well new data x will be
compressed with existing data A. Consequently, this is
formulated as follows.

CA(x) = Z(A cat x)− Z(A) (1)

where Z is the function to output the data size after
compression, and cat is the function to concatenate the
first and second data sequences. Sometimes, normalized
relative entropy is also used, which is defined to divide
relative entropy by the size of data x.

Relative entropy has been applied to classification prob-
lems in several research areas [3] - [7]. To classify data
x into group A and B, data x is normally classified into
the more similar group. Relative entropy can be used as
one index of expressing similarity; when relative entropy
with group X is small, data x is similar to group X.

Bratko et al. [5] applied relative entropy to classify
spam e-mails. They reported that it was more accurate
than BoW based classification.

Nishida et al. [6] introduced a smoothing parameter
and set the score in accordance with the following equa-
tion to classify malicious tweets from twitter logs.

Score =
CA(x) + γ

CB(x) + γ
(2)

where γ is a smoothing parameter that should be set
large to alleviate the impact of minor letters appearing
a few times in a data string. Data x is classified as A
if the score is small and B otherwise. This scoring tech-
nique enables us to apply a compression algorithm for a
classification problem of comparably long data. Nishida
et al. [6] also demonstrated that classification of twit-
ter logs with this scoring mechanism has better accu-
racy than feature extraction with morphological analysis
and classification with a CW(Confidence-Weighted lin-
ear classification) method [8].
Different compression algorithms are used depending

on their purposes. It is reported that LZSS (gzip), LZW
(compress), PMP (rar) are applicable for text data [3]-
[6]. Adachi et al. [7] reported that bzip is applicable for
music pieces.

2.2 Method of Extracting Feature from
URL String

The BoW method is widely used to extract features
from strings. BoW decomposes string text into words by
separation of letters or morphological analysis and then
generates each word as a one-dimensional feature. Since
a URL is deemed as a one text string, BoW features can
be extracted. Kumagai et al. [9] proposed BoW-based
feature generation to apply LR supervised learning with
L1 regularization and demonstrated that their method
has better area under curve (AUC) than blacklist based
detection.
Nelms et al. [10] proposed describing a URL attribute

with a regular expression and applying unsupervised learn-
ing to generate a malware-specific URL access template.
By comparing a target URL and the above template,
the method successfully detects malware communication
even when malware slightly modifies its access pattern.
In the security context, on the basis of knowledge on

malware analysis, many kinds of statistical features have
been proposed [11] such as the length of a URL and ratio
of vowels in a URL.

3 PROPOSAL

We propose applying a compression algorithm based
feature to apply supervised learning to detect malicious
URLs and infected hosts. Since a large part of malware
uses HTTP as a communication protocol with C2 servers,
it can be mixed with normal Web access and is hard for
operators to distinguish. Thus, in our research, we focus
on analyzing HTTP proxy logs and detecting malicious
URLs to find infected hosts.
An important observation on malware communication

in HTTP is that they tend to access C2 servers with
a slightly modified URL string in order to slip through
blacklist-based detection with minimum engineering ef-
fort. In this case, simple blacklist matching does not

168 Yasushi Okano et al. / Compression Algorithm Contribution for Infected-host Detection

Raw Logs 1. Preprocessing	

2. Compression	

3. Feature
Generation	 4. Training	

5. Feature
Generation	 6. Detection	

Prediction
Model

Compress
Model

Result	

Training
Phase	

Prediction
Phase	

Malicious URLs
Legitimate URLs	

Test URLs 	

Malicious URLs
Legitimate URLs	

Figure 1: Overview of proposed method

Table 1: Dataset

Number of hosts Number of logs Collection Period Log Type

Malicious Logs 71,310 7,152,479 Feb. 2015 - Jul. 2015 Sandbox logs

Legitimate Logs 1,940 36,581,398 Feb. 2014 - Mar. 2014 Proxy logs in enterprise

catch up with malicious URLs since malware may have
various URL access patterns even if its modifications are
small. In this sense, we expect the compression algo-
rithm based feature to correctly describe the similarity
between a slightly modified malicious URL and a known
malicious URL.
To the best of our knowledge, our proposal is the first

to apply a compression algorithm to detect malicious
communication URLs and infected hosts. In addition,
our method is different from existing compression al-
gorithm based methods in that we use a compression
algorithm-based score as a feature in supervised learning
and the feature can be combined with other features.
Furthermore, our research considers a URL structure
that has many kinds of attributes such as FQDN, PATH,
and QueryString to generate a multi-vector compression
algorithm feature for each attribute.
Figure 1 shows an overview of the proposed method.

The flow of our proposal is as follows.

1. Input raw logs and execute preprocessing to obtain
malicious URLs, legitimate URLs and test URLs

2. Compress malicious URLs and legitimate URLs to
generate compress model

3. Input malicious URLs and legitimate URLs with
application of compress model to generate com-
pression algorithm features, namely Zpos(Malicious
Compression Rate) and Zneg(Legitimate Compres-
sion Rate). Zpos and Zneg are defined in equation
(3) and (4) respectively. Features are calculated
for each attribute of a URL.

4. Train classifier with compression algorithm features
and generate prediction model

5. Generate compression algorithm features from test
URLs with application of compress model

6. Detect malicious URLs and infected hosts with ap-
plication of prediction model

As with preprocessing, suitable data must be selected
in machine learning for correctly estimating a classifier’s
performance. We execute two-phase cleansing in this
process. First, we delete duplicate URLs in legitimate
and malicious logs. This is because hosts may access the
same URLs repeatedly. To correctly estimate a classifier,
we leave first-to-appear logs in a dataset and eliminate
duplicate logs.

Second, we eliminate URLs included in both malicious
and legitimate logs, since having the same logs in both
datasets may degrade the classifier’s performance. In
fact, there are many cases in which the same URLs are
included in both logs. For instance, some service URLs
are automatically accessed from specific applications in-
stalled in many environments. Search engine URLs are
also often accessed from infected hosts for connectivity
checks and included in malicious logs.

As for the compression algorithm features, we define
Zpos and Zneg as follows.

Zpos(x) =
Cpos(x) + γ

L(x) + γ
(3)

Zneg(x) =
Cneg(x) + γ

L(x) + γ
(4)

where Cpos and Cneg are relative entropy between data x
and malicious log(pos) or legitimate log(neg), L is data
size of x, and γ is a smoothing parameter.

International Journal of Informatics Society, VOL.11, NO.3 (2020) 167-175 169

4 EVALUATION METHOD

4.1 Dataset

The dataset used for all evaluations is shown in table
1.
Malicious logs are taken from an in-house sandbox [12]

where we run over 70K malware downloaded on a daily
basis from a malware-sharing site and collect pcaps to
extract URL information. Legitimate logs are taken from
real-environment proxy in an enterprise network.

4.2 Evaluation Indices

Evaluations are executed on the basis of a holdout test
that uses previous data in time series as the training
dataset and evaluates with later data in time. Evaluation
indices are AUC , partial AUC (pAUC) [13], and true
positive rate (TPR)0.5% [14].
AUC is the area under the curve drawn on a 2D surface

of a false positive rate (FPR) and TPR by changing the
score threshold. pAUC is the area under the curve of a
limited range of a FPR [p1, p2]. Considering the TPR as
a function having a FPR as a variable, AUC and pAUC
are defined as follows.

AUC =

∫ 1

0

TPR dFPR (5)

pAUC =

∫ p2

p1

TPR dFPR (6)

Through our evaluation, we set [p1, p2] = [0, 0.1].
TPR0.5% is the TPR value for a low FPR, specifically

FPR = 0.5%. In security operations, a low FPR is cru-
cial since the final judgment is done by operators. pAUC
and TPR0.5% are important indices to estimate detection
capability with a low FPR.

4.3 Selection of Compression Algorithm

The first evaluation is aimed at selecting a suitable
compression algorithm. Several kinds of compression al-
gorithms are used in existing research, so through our
evaluation, we can select one algorithm that performs
with both good accuracy and the least CPU (central pro-
cessing unit) time.
We tested major compression algorithms LZSS (zip,

LZ77), LZT [15] (a variant of compression algorithms
LZW and LZ78), bzip2, and LZMA. To limit CPU time,
since some compression algorithms take a very long time,
we sampled 10 K malicious logs from Dec. 2014 and Jan.
2015 Sandbox logs and 10 K legitimate logs from Feb.
2015 and Mar. 2015 Proxy logs. In addition, we take the
URL as only one attribute to generate a feature vector
and execute a simple scoring calculation as follows.

Score =
Zneg

Zpos
(7)

The process of registering a training dataset to a com-
pression algorithm feature generator differs depending on

how the compression algorithm works. Now, we overview
the compression algorithm and its characteristics.

LZSS utilizes a sliding dictionary, which compresses
data by only recording relative position and data sizes
when the target data matches the longest data in the pre-
vious sliding window. Thus, one characteristic of LZSS
is that data outside of the sliding window are not consid-
ered for compression. In general, a 32 kB sliding window
is widely utilized. However, we implemented LZSS with
a 20 kB sliding window for lowering computational cost.
The compression rate of target data x is calculated by
combining x with each 20 kB window data and applying
LZSS and then returning the minimum compression rate
as the final score.

LZT is a variant of LZW, and both are utilized in gif
format files and compression commands. The same as
LZW, LZT compression is based on dynamic dictionary
insertion where new data sequences are added in a dictio-
nary and target data x is recognized as the dictionary ID
whose data sequence has the longest match with the tar-
get data. In LZT, dictionaries are composed with a Trie
tree. In our evaluation, the compression rate of target
data x is calculated by looking up the dictionary. Unlike
LZW, which discards new data sequences when the dic-
tionary is full, LZT swaps the LRU (least recently used)
data sequence for a new data sequence.

bzip2 and LZMA utilize block sort and Markov al-
gorithm based compression, respectively. The same as
LZSS, bzip2 needs a blocking area, and LMA needs a
sliding dictionary area. However, these areas are much
larger than those for LZSS. Hence, our implementation
stores all data for the compression algorithm where the
compression score is calculated by simply combining tar-
get data x with the training dataset and compressing it.

For implementation, we utilized an existing python li-
brary for LZSS (libz), bzip2 (libzip2), and LZMA(liblzma).
LZT is implemented in-house with cython.

In this evaluation, we set the classifier as an SVM,
and TPR/FPR as a per log-basis calculation. We set
the smoothing parameter as γ = 10 for all evaluations.

4.4 Selection of URL Attributes and
Classifier

A URL has several attributes such as the URL itself,
FQDN, Path, and QueryString. (For simplicity, in this
research, we use Path to mean both Path and QueryS-
tring.) Through our evaluation, we can select the best
URL attributes for detecting malicious URLs.

We evaluate the accuracy of URL attributes. We take
an URL itself, FQDN, Path, and combination of FQDN
and Path for testing. In this evaluation, we set the clas-
sifier as an SVM, the compression algorithm as LZT, and
TPR/FPR as a per host-basis calculation.

The classifier is another factor for selection. We evalu-
ate detection capability between different classifiers: Ridge
regression, linear SVM, LDA(Linear Discriminant Anal-
ysis), NB (Naive Baise), and Adaboost. To conduct fair

170 Yasushi Okano et al. / Compression Algorithm Contribution for Infected-host Detection

Table 2: Classifier Performance and Execution Time
Comparison Between Compression Algorithm

Algo. Configs CPU
Time

AUC pAUC TPR0.5%

LZSS level 6 16490s 0.968 0.0797 60.90%
LZT 24bit

dict
20s 0.973 0.0825 68.10%

bzip2 level 9 68690s 0.521 0.0057 0.40%
LZMA ― 98112s 0.975 0.0828 68.30%

comparison, we execute grid-search to select best hyper-
parameters for each classifiers. Implementation is done
by using a python scikit-learn library. In this evalua-
tion, we set the URL attribute as the FQDN and Path
combination, the compression algorithm as LZT, and
TPR/FPR as a per host-basis calculation.

4.5 Comparative Evaluation

We evaluate the proposed method in comparison with
the conventional BoW-based detection method. First,
we compared detection capabilities of the proposed and
conventional methods. We also measured detection ac-
curacy over time to find out how fast trained models
deteriorate. Computational efforts are another impor-
tant factor for practical use, so we measure CPU time
and memory usage of the proposed and BoW method.
BoW of a URL is extracted by setting /, ?,=,& as a
separator and splitting the URL. In this evaluation we
set the classifier as SVM, the compression algorithm as
LZT, and TPR/FPR as a per host-basis calculation.

5 EVALUATION RESULT

5.1 Selection of Compression Algorithm

Table 2 shows the evaluation results for different com-
pression algorithms. LZMA gives the best AUC , pAUC
and TPR0.5% but takes the longest to compute. In con-
trast, LZT gives similar AUC , pAUC , and TPR0.5% to
LZMA and computes very fast. Hence, we selected LZT
as the default compression algorithm in the later evalu-
ation. bzip2 and LZSS do not perform as well as LZMA
and LZT.

5.2 Selection of URL Attributes and
Classifier

Table 3 shows the evaluation results of different at-
tributes of a URL. From these results, the combination of
URL attributes FQDN and Path gives the best TPR0.5%

and pAUC . Hence, we select the FQDN and Path com-
bination as the default URL attribute in the later eval-
uation.
To select a suitable classifier, first, we visualize mali-

cious and legitimate features. We calculated the com-
pression algorithm feature and mapping onto a 2D sur-
face in Fig. 2 where the horizontal axis is Zpos (i.e., the

Table 3: Evaluation between URL attributes

URL attributes AUC pAUC TPR0.5%

URL 0.8965 0.0720 41.80%
FQDN 0.8956 0.0631 43.60%
Path 0.7990 0.0562 43.20%
FQDN, Path 0.9306 0.0825 65.30%

Figure 2: Compression algorithm feature mapping of ma-
licious logs (red) and legitimate logs (blue)

malicious compression rate) and the vertical axis is Zneg

(i.e., the legitimate compression rate).
This visualization shows that although some overlap-

ping areas exist, malicious logs (red legend) and legit-
imate logs (blue legend) are mapped in the upper-left
and lower-right areas, respectively. Many of malicious
and legitimate logs seems to be linearly separated on the
basis of Zpos and Zneg. Hence, these visualized results
suggest that linear classification works well.
Table 4 shows the detection capability of different clas-

sifiers. SVM gives the best TPR0.5% and pAUC . Hence,
we select SVM as default classifier in later evaluation.

5.3 Comparative Evaluation

Table 5 shows the evaluation results for the proposed
and BoW-based classification methods. From these re-
sults, the proposed method has better TPR0.5% and pAUC
than the conventional BoW-based classification method.
Figure 3 shows the TPR0.5% deterioration over time

where the vertical axis is TPR0.5% and the horizontal
axis is time in weeks. This figure shows that TPR0.5%

gradually decreases over time. However, the proposed
method always achieves a higher TPR0.5% than the BoW
method until 14 weeks have past.
Table 6 and 7 show comparison with BoW method on

CPU time and memory usage, respectively. Proposed

International Journal of Informatics Society, VOL.11, NO.3 (2020) 167-175 171

Table 4: Evaluation between classifiers

Classifier AUC pAUC TPR0.5%

Ridge α=0.1 0.9268 0.0791 59.40%
SVM C=0.025 0.9306 0.0825 65.30%
LDA 0.9291 0.0784 57.30%
NB 0.8166 0.0602 13.50%
AdaBoost 0.9420 0.0785 58.30%

Table 5: Evaluation with conventional BoW-based clas-
sification method

Method AUC pAUC TPR0.5%

Proposed 0.9306 0.0825 65.30%
BoW 0.9030 0.0657 32.00%

method consumes most of CPU time for compression
process and its time is longer than any other process of
BoW method. Still, once compression is completed, fea-
ture generation, training and detection are finished with
less CPU time than BoW method. As for memory us-
age, proposed method consumes small memory for com-
pression process and less memory for feature generation,
training and detection compared with BoW method. Al-
though BoW method generates one-hot vector for ev-
ery single word appeared in URL so that memory usage
tends to increase, proposed method generates compres-
sion algorithm feature vector in several dimensions so
that memory usage does not steeply increase.

6 CONSIDERATION

We consider the reason the compression algorithm fea-
ture contributes to better classifying malicious and legit-
imate logs. Figure 4 shows the histogram of Zpos of URL
attributes for both malicious and legitimate logs, where
the red and blue zone are histograms of malicious and
legitimate logs, respectively. The histogram of malicious
logs contains three peaks: A) the compression rate is
very small, B) the compression rate is as high as that
for legitimate logs, and C) the compression rate is very
high.

A sample URL that belongs to pattern A is shown
in table 8. For security reason, FQDN is masked with
’www.example.com’ and QueryString values are masked
with meta words. The first row shows the original URL
string and its length, the second row shows the LZT com-
pressed state and relative entropy with malicious logs,
and the third row shows that with legitimate logs, where
’|’ shows that data sequences between ’|’ marks are ex-
pressed in 1 code. In compressing with malicious logs,
the table shows that a 1,352-bit-long URL is compressed
to 220 bits and many data sequences are expressed as
1 code. Especially in QueryString of URL, almost one
key (e.g. ”dstid=1”) or one combination of a key and
value (e.g. ”countryid=...”) is compressed as 1 code.
This observation suggests that a QueryString key and

Figure 3: TPR deterioration over time

Table 6: CPU Time Comparison with Conventional
Method (seconds)

Method Compress Generate
Feature

Train Detect

Proposed 13,809 3,752 22 438
BoW - 7,145 950 408

value combination that exists in the training dataset is
automatically recognized and compressed as 1 code. In
contrast, a key and value combination that does not ex-
ist in the training dataset is automatically split. This is
one use case that QueryString key exists but its value is
modified in malware communication.

Other examples of pattern A for the FQDN attribute
are FQDNs having sequential numbers in host names
such as host1.example.com and host2.example.com. These
FQDNs are recognized as totally different strings by ex-
act matching, but in the compression algorithm that has
the characteristic of longest matching, two FQDNs are
recognized as similar strings. In fact, host2.example.com
is compressed as |host|2.|example.com| after training data
host1.example.com. This is another use case that FQDN
is partially modified to similar FQDN.

URLs belongings to pattern B tend to have same FQDNs
existing both in malicious URLs and legitimate URLs.
Since Path of these URLs are different, compression rate
does not get so small against both malicious logs and
legitimate logs and makes detection difficult.

A typical URL belongings to pattern C is shown in
table 9. This URL has an encoded or encrypted string.
The second row shows compression results of the URL. It
shows that the compression rate becomes large for both
malicious and legitimate logs and makes classification
difficult.

From this consideration, the proposed method is ca-
pable to detect malicious URL strings that are similar

172 Yasushi Okano et al. / Compression Algorithm Contribution for Infected-host Detection

Table 7: Memory Usage Comparison with Conventional
Method (MB)

Method Compress Generate
Feature

Train Detect

Proposed 2,401.0 15,999.8 4.7 424.4
BoW - 56,988.2 1,241.2 529.4

Legitimate Logs	Malicious Logs	
A	

B	

C	

Figure 4: Histogram of Zpos.

to but slightly different from existing malicious URLs.
Of course, attacker can totally change URL strings from
past attack vectors, in this case, proposed method does
now work well. However, assuming that many attackers
tend to use existing attackers’ tool kit to set up their at-
tack vectors and these tools are not so often drastically
modified, proposed method should still be feasible.

7 CONCLUSION

We proposed a novel method for detecting malicious
communication of infected hosts by generating a com-
pression algorithm feature of URL attributes and clas-
sifying with supervised learning. Through evaluation,
we demonstrated that the proposed method has higher
detection capability than the conventional BoW-based
detection method. In particular, its TPR in a low FPR
area (0.5%) is over 30% higher than that of the BoW-
based method. In addition, we clarified how the compres-
sion algorithm works in classification and demonstrated
a real use case in which the proposed method detected
malicious URL strings that are similar to but slightly
different from existing malicious URLs.

REFERENCES

[1] https://www.av-test.org/fileadmin/pdf/security report
/AV-TEST Security Report 20162017.pdf,“ ECU-
RITY REPORT 2016/17”, AV-TEST, (2017).

Table 8: Effectively classified URL and compression state

Uncompressed URL: 1352bit:

http://www.example.com//offers/DynamicOfferScreen?
offerid=foo&distid=bar&leadp=baz&countryid=qux&
sysbit=quux&dfb=corge&hb=grault&isagg=garply&
version=waldo&external=fred&external=plugh&

Relative Entropy for Legitimate Logs: 900bit

|http://www.example.com/|/of|fers|/D|yna|mic|Off|erS|
cre|en|?o|ffe|rid=foo|&dis|tid=b|ar|&le|adp|=ba|z&c|ou
ntry|id=qu|x&s|ys|bit|=quux&|dfb|=corge&|hb=|grault
&is|agg|=garply&ver|sion=|waldo|&ex|ternal|=fred&e|x
ter|nal|=plugh&|
Relative Entropy for Malicious Logs: 220bit

|http://www.example.com//offers/DynamicOfferScreen
?offerid=foo|&distid=b|ar|&leadp=baz&|countryid=qux
&sysbit=quux&df|b=corge&hb=grault|&isagg=garply&
versio|n=wal|do&e|xternal=fred&e|xternal=plugh&|

Table 9: Poorly classified URL and compression state

Uncompressed URL: 4688 bits

http://www.example.com/api/vp/1?clk=gLg PHWA9a
SyioXkt-F4b3J9cI1ybf-t-x7VxWH5dmAWXwln-z
...(omit)

Relative Entropy for Legitimate Logs: 4420bit

|http://www.example.com/api/|vp|/1|?cl|k=|gLg| PH
|WA9|aS|yio|Xkt|-F4|b3J|9cI|1y|bf-|t-|x7|VxW|H5d|
mAW|Xwl|n-|z…(omit)

Relative Entropy for Malicious Logs: 4980bit

A|http://www.example.com/api/v|p/1|?cl|k=|gL|g |PH
|WA|9a|Sy|io|Xk|t-|F4|b3|J9|cI|1yb|f-|t-x|7V|xWH|5d|
mA|WX|wl|n-|z…(omit)

[2] D. Benedetto, E. Caglioti, and V. Loreto,“ Lan-
guage trees and zipping”, Phys. Rev. Lett., vol.88,
(2002).

[3] E. Keogh, S. Lonardi, and C. A. Ratanamahatana,
“Towards Parameter-Free DataMining”, KDD, pp.
206-215, (2004).

[4] Y. Marton, N. Wu, and L. Hellerstein, “On
compression-based text classification”, European
Conference on Information Retrieval, pp. 300-314,
(2005).

[5] A. Bratko, G. V. Cormack, B. Filipič, T. R. Ly-
nam, and B. Zupan,“ Spam filtering using statisti-
cal data compression”, Journal of Machine Learning
Research, vol.7, pp.2673-2698, (2006).

[6] K. Nishida, R. Banno, K. Fujimura, and T. Hoshide,
“ Tweet-Topic Classification using Data Compres-
sion”, DBSJ Journal, Vol.10, No.1, pp.1-6, (2011).

[7] H. Adachi, M. Okabe, and K. Umemura,“ Recog-
nition of Music Composer with Compression-based

International Journal of Informatics Society, VOL.11, NO.3 (2020) 167-175 173

Dissimilarity Measure”, DEIM2013.
[8] M. Dredze, K. Crammer, and F. Pereira, “

Confidence-weighted classification”, Proceedings of
25th International Conference on Machine Learning,
pp.264–271, (2008).

[9] A. Kumagai, Y. Okano, K., and M. Tanikawa,“Su-
pervised Classification for Detecting Malware In-
fected Host in HTTP Traffic and Long-time Evalua-
tion for Detection Performance using Mixed Data”,
IEICE-ICSS, Vol.116, No.522, pp.43-48, (2016).

[10] T. Nelms, R. Perdisci, and M. Ahamad, “ Exec-
Scent: mining for new C&C domains in live net-
works with adaptive control protocol templates”,
22nd USENIX Conf., pp.589–604, Aug. (2013).

[11] K. Bartos, M. Sofka, and V. Franc,“Optimized in-
variant representation of network traffic for detect-
ing unseen malware variants”, in USENIX Security
Symposium, pp. 807–822, (2016).

[12] K. Aoki, T. Yagi, M. Iwamura, and M. Itoh,“Con-
trolling malware http communications in dynamic
analysis system using search engine”, Cyberspace
Safety and Security (CSS), 2011 Third International
Workshop onIEEE, pp.1–6 (2011).

[13] Y. Okano, A. Kumagai, M. Tanikawa, Y. Oshima,
K. Aiko, K. Umehashi, and J. Murakami,“ Pro-
posal of selection of training data using misdetected
goodware for preventing misdetection of a static de-
tector of malware”, IEICE-PRMU, Vol.115, No.224,
pp.163-170, (2015).

[14] L. E. Dodd and M. S. Pepe.“Partial AUC estima-
tion and regression”, Biometrics, 59(3), pp.614–623,
(2003).

[15] P. Tischer, “ A modified Lempel-Ziv-Welch data
compression scheme”, Aust. Comp. Sci. Commun.
9, 1, pp.262-272, (1987).

(Received November 28, 2019)
(Revised March 30, 2020)

Yasushi Okano He received a Master de-
gree in Interdisciplinary Environmental Sci-
ence from Kyoto University in 1995, and
presently a senior research engineer at NTT
Secure Platform Laboratories. He works on
network and IoT security researches.

Kazunori Kamiya He received a Master
Degree in Frontier Science from the Univer-
sity of Tokyo in 2004, and presently a senior
research engineer at NTT Secure Platform
Laboratories. He works on network security
and network operation researches.

Atsutoshi Kumagai He received the B.S.
degree in informatics and mathematical sci-
ence form Kyoto University in 2010, and
the M.S. degree in informatics from Kyoto
University in 2012. In 2012, he joined NTT
and is currently a researcher of NTT Soft-
ware Innovation Center and NTT Secure
Platform Laboratories, Tokyo, Japan. His
research interests include machine learning,
data mining, and cyber security.

Taishi Nishiyama He received his bache-
lor’s degree in Undergraduate Course Pro-
gram of Aeronautics and Astronautics from
Kyoto University in 2014, and master de-
gree in Aerospace Engineering from Uni-
versity of Tokyo in 2016. He has worked
in machine learning and network security
at NTT Secure Platform Laboratories.

Bo Hu Bo Hu received an M.S. in wireless
network engineering from Osaka University
in 2010 and joined NTT the same year. He
has mainly been engaged in researching net-
work security technology, machine learning
and inter-cloud technology. He developed
a security orchestration architecture, a ma-
chine learning pipeline for large-scale traf-
fic analysis, and inter-cloud protocols. He
has also worked on cloud computing stan-
dardization activities in the Telecommuni-

cation Standardization Sector of the International Telecommuni-
cation Union and other standardization organizations.

Masaki Tanikawa He received a Master
degree in Systems Science from Tokyo Insti-
tute of Technology in 1995, and presently a
senior research engineer, supervisor at NTT
Secure Platform Laboratories. He works on
network security and network operation re-
searches.

174 Yasushi Okano et al. / Compression Algorithm Contribution for Infected-host Detection

Kazuhiko Ohkubo Kazuhiko Ohkubo is
the CISO of Kyowa Exeo Corporation. He
received his M.S. in electrical engineering
from the University of Tokyo in 1989. He
received his Ph.D. in business administra-
tion and computer science from the Aichi
Institute of Technology in 2019.He is a mem-
ber of IEEE.

International Journal of Informatics Society, VOL.11, NO.3 (2020) 167-175 175

