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Abstract - New types of malware are appearing every day,
and malware attacks have become an urgent problem. Cur-
rent methods of detecting malware use malware signatures,
which need to be identified and registered in advance. How-
ever, the daily appearance of new types of malware makes
such identification and registration impractical. A more prac-
tical approach is to identify malware on the basis of traffic
behavior since each malware type displays a unique behavior.
We have developed a method for detecting malware infection
using traffic models based on the similarity between traffic
of malware samples. Malware-infected traffic is divided into
clusters on the basis of traffic behavior, and a model repre-
senting each cluster is created. These models are used to
identify target traffic samples as infected or normal. This
method should enable the detection of infection caused by
a new type of malware if the malware’s traffic behavior is
similar to that represented by one of the models. Simulation
evaluation demonstrated that the proposed method can effec-
tively identify malware-infect traffic with high accuracy. And
we discussed the created models and effectiveness using the
models created by proposed method. We also discussed the
detection of unknown malware using the models created by
proposed method.

Keywords: security, malware, malware detection, traffic,
clustering

1 INTRODUCTION

New types of malware are appearing every day, and mal-
ware attacks have become an urgent problem. Current meth-
ods of detecting malware use malware signatures, which need
to be identified and registered in advance. However, the daily
appearance of new types of malware makes such identifica-
tion and registration impractical. A more practical approach
is to identify malware on the basis of traffic behavior.

This paper focuses on infection detection, which we
broadly classify as malware detection, intrusion detection,
and infection detection. Intrusion detection typically involve
techniques for detecting unauthorized access from a network
before a malware infection occurs. Infection detection in-
volves techniques for detecting an existing malware infec-
tion from network traffic as usual. Malware infections have
become more difficult for users to detect, so infections have
spread more widely without users knowing that their comput-
ers are being used maliciously. Therefore, infection detection

for personal computers and middleboxes in the network such
as routers and firewalls is an important measure for preventing
the spread of infection.

The research reported here focused on the use of traffic data
to detect infection. This approach determines the features of
normal communication traffic and of infected traffic and uses
pattern recognition techniques to detect infections. Infection
detection based on traffic data uses only the incoming and out-
going communication traffic of the target machine. Basically,
traffic is generated if there is an infection, so this method
holds promise as a means of detection from outside the tar-
get machine. That is, malware infections are externally de-
tected by observing the target machine’s traffic patterns when
it connects to a network.

Each malware type displays a unique behavior and a unique
communication pattern when an infected terminal is con-
nected to a network. The unique communication pattern com-
prises association confirmation of the infected terminal to the
internet, surveying of the network environment, communica-
tion between the command and control (C&C) server and the
infected terminal, and so on. Whether the malware is known
or unknown, some malwares exhibit common communication
behavior when the terminal is infected with malware.

In this paper, we propose malware infection detection using
the traffic models based on the similarity between malware-
infected traffic samples. It works by creating feature values
on the basis of the time series of the traffic data, clustering
malware-infected traffic samples in accordance with the simi-
larities between them, and creating a representative model for
each malware cluster. Detection of unknown malware infec-
tion is important research theme. The target of this paper is
to classify the malware infection traffic as malware infection.
This paper focuses on the detection method of malware infec-
tion included in the unknown malware infection. Malware-
infected traffic is divided into clusters on the basis of traffic
behavior. A model of each cluster is created, and the models
are used to identify target traffic as infected or normal. This
method will enable infections caused by new types of mal-
ware to be detected if the resulting traffic behavior is similar
to that represented by one of the models.

This paper is organized as follows. Section 2 introduces
related work, Section 3 describes the proposed method, Sec-
tion 4 describes the evaluation method, Section 5 presents the
key results, Section 6 discusses the results, and Section 7 con-
cludes the paper with a brief summary of the key points and a
mention of future work.
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2 RELATED WORK

There have been various studies of malware detection using
traffic data. Some used the definitions provided by security
vendors for detecting malware infection, and some did not.

Studies in the first group (e.g.,[1]-[5]) classified malware
traffic samples into groups on the basis of the definitions and
created models of infected traffic for each group. However,
security vendor definitions are not always based on the char-
acteristics of infected traffic. It is thus better to create models
on the basis of the characteristics of infected traffic.

Some studies in the second group ([6]-[8]) created models
of infected traffic on the basis of the characteristics of infected
traffic but did not consider the time series of the traffic data
and the similarities between malware-infected traffic samples.
Other studies ([9]-[11]) created models of infected traffic on
the basis of the characteristics of infected traffic considering
similarities between malware-infected traffic samples but did
not consider the time series of the traffic data. Still other stud-
ies ([12], [13]) created models of infected traffic on the basis
of the characteristics of infected traffic considering the time
series of the traffic data but did not consider the similarities
between malware-infected traffic samples.

Traffic data is a stream of network information, and previ-
ous studies have demonstrated the effectiveness of consider-
ing the time series of traffic data. Consideration of the similar-
ities between malware-infected traffic samples is also neces-
sary for representing common characteristics of infected traf-
fic.

Therefore, in our study, we created feature values by con-
sidering the time series of each malware traffic sample. Next,
we divided the malware samples into clusters on the basis of
their similarities. Then, we created models representing the
common characteristics of the infected traffic for each clus-
ter.

3 PROPOSED METHOD

Our method is based on the detection of malware-infected
traffic by using models representing each common traffic
characteristic of malware. Proposed method conducts three
parts shown in Fig. 1. As outlined above, feature values are
created by considering the time series of the traffic data, mal-
ware samples are clustered by considering the similarities be-
tween them, and a representative model is created for each
malware cluster. Labels (Step 1) · · · (Step 6) used in the fol-
lowing subsection correspond to the step numbers in Section
4.2.1 , in which we describe the proposed method as an ex-
perimental procedure with experimental datasets.

3.1 Create Feature Values by Considering
Time Series of Traffic Data

(Step 1) Extract features of training data
To create a feature vector representing the time series of the

traffic data, the time series is divided into 1-s time slots, as
shown in Fig. 2. The traffic data is a set of packets captured
from network traffic. The time slots are then grouped into
intervals lasting a defined number of seconds for analysis.
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Figure 1: Outline of proposed method
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Figure 2: Division of time series of traffic data into 1-s time
slots

Dividing time-varying traffic into time slots with a fixed
duration and monitoring that traffic in units of time slots en-
ables normal and infected traffic to be distinguished by focus-
ing on the overall temporal variation in that traffic. In this
work, we set the time-slot width to 1 s and determined the
features for every time slot. The feature values are calculated
for each time slot, and a feature vector concatenating the fea-
ture values is created for each time slot. In this study, we used
minimum packet size per time slot, number of SYN packets
per time slot, ratio of SYN packets to TCP packets per time
slot, and number of ACK packets per time slot as the feature
values. In our previous study, we analyzed traffic data after a
malware infection and clarified which features would be the
most effective in the detection of infection. It focused on us-
ing traffic data to detect infections and on the use of features
that do not change much over time from those of the training
data. In the evaluation, minimum packet size per time slot,
number of SYN packets per time slot, ratio of SYN packets
to TCP packets per time slot, and number of ACK packets
per time slot as the feature values were effective features[9].
In this study, we represented the time-slot information as a
four-dimensional feature vector by concatenating the feature
values.

3.2 Cluster Malware Samples by Considering
Similarities Between Malware Infected
Traffic Samples

(Step 2) Create codebook for training data
To represent the traffic data as a code sequence, the set of

feature vectors created as described in Section 3.1 is clustered
(in this study, we used the LBG + splitting vector quantization
algorithm [14]), and code is created for each cluster. A cluster
is a mass of feature vectors and is divided on the basis of
the distribution of data in the feature space. The code is the
representative value of the cluster. The codebook is the code
set. For example, when four-cluster clustering is applied, four
codes (a, b, c, and d) are created. And we call the set of four
codes the codebook.
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Figure 4: Example transition pattern

(Step 3) Create time-series representation of training data
The distances between the feature vector of target time slot

and the code for each cluster is calculated, and a search is
made for the nearest code. The time slot is then shifted, and
a search is again made for the nearest code shown in Fig. 3.
This series of nearest codes is called a “transition pattern.” An
example transition pattern is shown in Fig. 4.

The number of occurrences of each transition pattern per
time interval (for example 40 s) is counted, and the ratio of
each target transition pattern to all types of transition patterns
is calculated, as shown in Fig. 6. The time interval is then
shifted, and the number of occurrences of each transition pat-
tern per time interval is again counted, and the ratio of each
target transition pattern to all types of transition patterns is
calculated.

(Step 4) Calculate similarity(correlation coefficient) be-
tween each pair of samples in training data

To evaluate the similarities between two malware traffic
samples, their correlation coefficient is calculated using the
occurrence frequency ratios, like those shown in Fig. 5. The
correlation coefficient represents the correlation between each
sample’s digital sequence of the number of transition patterns
× the number of time intervals. The coefficient is calculated
using

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2,
(1)

where x and y are the probability variables, x̄ is the mean
value of x, ȳ is the mean value of y, and n is number of tran-
sition patterns × the number of time intervals.

Calculation of the correlation coefficient requires that the
n of x equals the n of y, as shown in Fig. 6. However, each
malware traffic sample has a variable number of time inter-
vals because each malware sample has a variable number of
infected time intervals. The number of time intervals is thus
adjusted by applying dynamic programming matching (DP
matching) to the digital sequences of the two samples. The
correlation coefficient is calculated using the adjusted digi-
tal sequences. DP matching adjusts the time lengths of the
two samples by considering the time-series information and
stretching the parts that are similar between the samples.
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Figure 5: Example occurrence frequency ratios
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Figure 6: Calculate correlation coefficient

3.3 Create Representative Model for Each
Malware Cluster

(Step 5) Create representative model for each malware
cluster for training data

A representative model is created for each malware cluster
by extracting a representative malware sample.

The malware samples are classified using hierarchical clus-
tering based on correlation coefficients (we used the nearest
neighbor method as hierarchical clustering). A high corre-
lation coefficient means the similarity is high. The malware
sample that has the most traffic samples with a correlation co-
efficient greater than an upper threshold is selected as the ini-
tial representative malware sample for the cluster. Since the
optimal number of clusters is unknown in advance, hierarchi-
cal clustering is used as it does not require advance setting
of the number of clusters. We extracted the malware sam-
ple that had the most malware’s traffic samples with a corre-
lation coefficient greater than the threshold(upper threshold)
as the initial representative malware sample for the cluster.
By the same token, the malware samples for which the cor-
relation coefficient between the two malware traffic samples
is less than the threshold (lower threshold) are deselected in
each cluster to remove the samples for which the correlation
is weak. This clustering is repeated until all training samples
are divided into clusters.

The extracted malware traffic sample for a cluster is used
as a representative model for that cluster in order to model
sequential traffic data that actually occurred.

3.4 Detection of Infection

(Step 6) Calculate similarity between two samples in test-
ing data

The time-series features of the testing data are created us-
ing Steps 1 and 3. The similarity between each representative
cluster model and the target malware traffic sample is calcu-
lated, and the similarity between the model of normal traffic
and the target malware traffic sample is calculated. The two
similarities for each sample are compared, and the sample is
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identified as infected or normal.

4 EVALUATION

4.1 ExperImental Datasets
We used the anti-Malware engineering WorkShop (MWS)

Datasets [15] for our evaluation. In particular, we used the
CCC (Cyber Clean Center) DATAset and the D3M (Drive-
by Download Data by Marionette) Dataset for training. As
malware-infected traffic data, we used 317 malware samples
(151 from CCC DATAset 2010, 156 from CCC DATAset
2011, and 10 from D3M 2012) for the training data such that
the data used for training were older than the data used for
testing. The normal traffic data used for training were cap-
tured between 2011 and 2015.

We also used the CCC DATAset and D3M Dataset for test-
ing. As malware-infected traffic data, we used 200 malware
samples (177 from CCC DATAset 2011, 15 from D3M 2013,
5 from 2014, and 3 from D3M 2015) for the testing data such
that the data used for testing were newer the data used for
training.

The CCC 2010 and CCC 2011 attack data include commu-
nications prior to malware infection. Thus, given the purpose
of our evaluation, we extracted from this attack traffic only
the traffic following malware infection using the method de-
scribed by our group et al. [9].

4.2 Experimental Methods
To evaluate the effectiveness of the proposed method, we

compared its detection performance with that of three refer-
ence methods.

4.2.1 Detection Using Proposed Method

As shown in Fig. 7, using our proposed method, we per-
formed six basic steps .

(Step 1) Extract features of training data

Step 1-1 We divided the traffic data into 1-s time slots. We
used the packet header information because the payload
information was often encrypted.

Step 1-2 From each time slot, we extracted four features that
we had determined to be effective for infection detec-
tion: minimum packet size per time slot, number of
SYN packets per time slot, ratio of SYN packets to TCP
packets per time slot, and number of ACK packets per
time slot. The four features are evaluated as effective
features for infection detection in [9].

Step 1-3 We normalized the extracted feature values by using
the min-max method.

Step 1-4 We represented the time-slot information as a four-
dimension feature vector by concatenating the normal-
ized values.

(Step 2) Create codebook for training data

Step 2-1 We applied the LBG+splitting vector quantization
algorithm to the vectors with the cluster number set to
four.

Step 2-2 We calculated a representative vector (cluster cen-
ter) for each malware cluster and collected the vectors
into a codebook representing the characteristics of each
cluster.

(Step 3) Create time-series representation of training data

Step 3-1 We calculated the distances between the feature
vector of time slot and each code. And we assigned
code of minimum distance to the time slot. The time
slot is then shifted, and a search is again made for the
nearest code.

Step 3-2 We assigned a code to all time slots.

Step 3-3 We counted the frequency of each transition pat-
tern in each time interval and represented the ratio of
the frequencies as time-series information. There were
16 transition patterns (a→a, a→b, · · ·, d→c, d→d) be-
cause we used four codes. We set the time interval to
10, 20, 30, 40, or 60 s. For example, when we set the
time interval to 10 s, we calculated the frequency of
each transition pattern in each 10-s interval (comprising
ten time slots) and calculated the ratio of the frequen-
cies of each transition pattern. We then shifted the time
interval and calculated the frequency of each transition
pattern per interval and calculated the ratio of each tar-
get transition pattern to all types of transition patterns.

(Step 4) Calculate similarity (correlation coefficient) be-
tween each pair of samples in training data

We calculated the correlation coefficient between each
pair of malware samples. A total of 50,086 (=317 C2)
correlation coefficients were calculated for each inter-
val. We adjusted the time length (number of transition
pattern × number of time interval) of each pair of mal-
ware samples by using DP matching.

(Step 5) Create representative model for each malware clus-
ter for training data

We performed hierarchical clustering using the correla-
tion coefficients calculated in Step 4. In multi-variant
analysis, the correlation between each pair of samples
was evaluated using the following criterion based on
correlation coefficients C [16].

0.0 ≤ C ≤ 0.2 : barely correlated

0.2 ≤ C ≤ 0.4 : weakly correlated

0.4 ≤ C ≤ 0.7 : a little strongly correlated

0.7≤ C ≤ 1.0 : strongly correlated

The calculated correlation coefficients were used as
measures of the similarity between malware-infected
traffic samples. The higher the coefficient, the stronger
the correlation. The malware samples for which the
correlation was very high were grouped together. On
the basis of the above criteria, a coefficient greater
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than 0.7 generally means that the correlation is very
strong. Therefore, we set the upper threshold to 0.7.
The lower the coefficient, the weaker the correlation.
The malware samples for which the correlation was
very low were removed from the cluster. On the basis
of the above criteria, a coefficient less than 0.2 gener-
ally means that the correlation is very weak. Therefore,
we set the lower threshold to 0.2. Given these criteria,
we selected the malware sample that had the most traf-
fic samples with a correlation coefficient greater than
0.7 as the initial representative malware sample for the
cluster. To keep a somewhat high correlation between
each pair of malware traffic samples in the cluster, we
deselected the malware samples that did not correspond
to more than 70% of samples in the cluster; that is, the
correlation coefficient was more than 0.2.

(Step 6) Calculate similarity between two samples in testing
data

Step 6-1 We created the time series features of the testing
data using Steps 1 and 3.

Step 6-2 We created a model of normal traffic using Steps 1
to 5.

Step 6-3 We calculated the cumulative minimum distance
between each representative cluster model and the tar-
get malware traffic sample and calculated the cumula-
tive minimum distance between the model of normal
traffic and the target malware traffic sample.

Step 6-4 We compared the two distances for each sample. If
the distance between the representative cluster model
and the sample was greater than that between the model
of normal traffic and the sample, the sample was identi-
fied as normal. Otherwise it was identified as infected.

4.2.2 Detection Using Time-Slot Method

For detection using time slots, we did not use both the
time-series information and the similarity between malware-
infected traffic samples. Instead, we created four codes from
the malware infection training data using Steps 1 to 2 and cre-
ated four codes from the normal training data using Steps 1 to
2.

We calculated the distances between the vector for the tar-
get time slot and the four codes for infection. Of the four
distances calculated, the minimum one was selected as the
similarity for infection. Moreover, the distances between the
vector for the target time slot and the four codes for normal
were calculated. Of the four distances calculated, the mini-
mum distance was selected as the similarity for normal. Next,
we compared the two similarities. If the one for infection was
smaller than the one for normal, the time slot was identified
as infected. If the one for normal was smaller than the one for
infection, the time slot was identified as normal.

We applied the same process to all time slots of each mal-
ware traffic sample. If the ratio of the number of infected time
slots to number of all time slots was more than the threshold

(20%, 50%, or 70%), we identified the target traffic sample as
malware-infected.

4.2.3 Detection Using One Representative Model

For detection using one representative model, we used the
time-series information. We did not use the similarity be-
tween pairs of malware samples. The average malware traffic
sample of the training data was treated as the representative
model of malware-infected traffic.

We created the time-series information for the target mal-
ware traffic samples using steps 1 to 3 above. We calculated
the mean ratio of the frequencies of each transition pattern for
all malware traffic samples and selected the sample that was
closest to the mean as the representative model of malware-
infected traffic.

For testing, we created time-series information for the mal-
ware traffic samples using steps 1 to 3 above. We calculated
the cumulative minimum distance between the target sam-
ple and the model of infected traffic. We also calculated the
cumulative minimum distance between the sample and the
model of normal traffic and identified the sample as normal
or malware-infected on the basis of the two distances.

4.2.4 Detection Using Models Based on Security Ven-
dor’s Definitions

For detection using models based on a security vendor’s def-
initions, we used the time-series information and clusters for
classification. We did not use the similarity between malware-
infected traffic samples.

We created time-series information for the target malware
traffic sample using steps 1 to 3 above. Next, we divided
the training malware traffic samples into clusters defined by
the security vendor: BKDR, PE, Mal, TROJ, andWORM. We
calculated the mean ratio of the frequencies of the transition
patterns of the malware samples in each cluster. We selected
the sample in each cluster with the frequency closest to the
mean as the representative model of malware-infected traffic.

We calculated the cumulative minimum distance between
the model of malware-infected traffic and target traffic sample
and calculated the cumulative minimum distance between the
model of normal traffic and target sample. We identified the
sample as normal or infected on the basis of the distances.

5 RESULTS

5.1 Identification Rate of Proposed Method
The identification rate of the proposed method by chang-

ing the time interval is summarized in Table 1. The time in-
terval is the duration during which the code transitions were
counted, as described in section 3.2. The number of patterns
of infected traffic is the number of hierarchical clusters, as de-
scribed in section 3.3. The identification rate is the number of
correctly identified malware-infected traffic samples divided
by the total number of such samples in the testing data.

The identification rate was 100% for time intervals of 10,
20, 30, and 40 s, meaning that it is robust against the time
interval.
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Figure 7: Overview of experiment

Table 1: Identification rate of proposed method
Time No. of patterns Identification

interval (s) of infected traffic rate (%)
10 17 100
20 15 100
30 12 100
40 12 100
60 11 99.0

Table 2: Identification rate of time-slot method
Rate of infected time slots (threshold) Identification rate

20% 87.0%
50% 22.5%
70% 16.5%

5.2 Identification Rate of Other Methods

To evaluate the effectiveness of proposed method, we com-
pared its identification rate with those of the three reference
methods. The identification rate of the time-slot method (sec-
tion 4.2.2) is shown in Table 2. The rate of infected time slots
is the number of time slots identified as infected divided by
the total number of infected time slots in each traffic data.
It is used for identifying whether a traffic sample is infected
or normal. The identification rate of the one-representative-
model method (section 4.2.3) is shown in Table 3. The iden-
tification rate of the security-vendor-definition-based method
(section 4.2.4) is shown in Table 4. The number of patterns
of infected traffic is five because the data used included five
malware families.

Table 3: Identification rate of one-representative-model
method

Time No. of patterns Identification
interval (s) of infected traffic rate (%)

10 1 12.5
20 1 14.5
30 1 25.5
40 1 32.5
60 1 52.5

Table 4: Identification rate of security-vendor-definition-
based method

Time No. of patterns Identification
interval (s) of infected traffic rate (%)

10 5 47.5
20 5 78.0
30 5 92.0
40 5 87.5
60 5 98.5

6 DISCUSSION

6.1 Representative models

We first discuss the effectiveness of increasing the number
of models, i.e., the number of patterns of infected traffic. As
shown in Tables 1, 2, 3, 4, the proposed method had the high-
est identification rate.

To evaluate [the effectiveness to represent some models of
infected traffic, we analyzed the main transition pattern of
each model. As described in section 3.3, a transition pattern is
the transition of the codes in a time slot. To analyze the main
transition pattern of each model, we show the traffic features
of each code by analyzing the traffic data near the code. The
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Table 5: Traffic Features of Each Code
Code Feature(s)
a SYN send
b ACK send
c UPnP, CBrowsing,

SSL communication (digital sign etc.)
d DNS communication (name resolution),

RST/ACK send, UPnP

Table 6: Main transition pattern of each model with proposed
method

Traffic No. representative Main
pattern of model transition

malware pattern
samples

0 219 BKDR IRCBOT dd
1 79 WORM DOWNAD a→ a
2 6 WORM DOWNAD a→ a, Cd→ d
3 3 WORM DOWNAD b→ b
4 2 TROJ KRYPTIK c→ d, Cd→ c
5 2 WORM DOWNAD d→ d, Ca→ a
6 1 WORM DOWNAD a→ a, Cd→ d
7 1 TROJ MAILBOT a→ a, Cd→ d
8 1 WORM DOWNAD b→ b
9 1 BKDR SMALL b→ d, Cd→ b

10 1 WORM DOWNAD d→ d, Cc→ c
11 1 WORM ALLPLE a→ a

results are summarized in Table 5. Each code represents one
or more traffic features.

The main transition pattern of each model with the pro-
posed method is shown in Table 6.The proposed method
created 12 representative models, and each traffic pat-
tern had bias of main transition pattern. In contrast, the
one-representative-model method created one representative
model, as shown in Table 7. A comparison of the main
transition patterns of proposed method with that of the one-
representative-model method shows that the latter is included
in the main transition patterns of proposed method. It also
shows that there is a big difference between the identification
rate of the two methods. Therefore, the number of traffic pat-
terns with the latter method is insufficient. A greater number
of models is needed to represent the infected traffic. The tran-
sition pattern depends on the number of feature classes. If the
feature is classified to more complex classes, it is unavoidable
that combination explosion will occur. In this study, we set to
four codes for vector quantization algorithm.

6.2 Effectiveness of Detection
We discuss the effectiveness of detection by proposed

method. As mentioned, the proposed method had the high-
est identification rate. To evaluate the effectiveness to repre-

Table 7: Main transition pattern of one representative model
Representative model Main transition pattern
WORM DOWNAD d→ d

Table 8: Mean value of minimum distance between represen-
tative model and all malware traffic samples

Method Training Testing
data data

Proposed method (time interval 10 s) 10.34 27.17
Proposed method (time interval 20 s) 3.02 4.45
Proposed method (time interval 30 s) 10.19 13.61
Proposed method (time interval 40 s) 5.30 5.99
Security-vendor-definition-based 12.67 15.62
method (time interval 60 s)
One-representative-model method 5603.65 3534.65
(time interval 60 s)

sent the model of proposed mehotd, we calculated the min-
imum value of the cumulative minimum distance between
each representative model and the target malware traffic sam-
ple in the training data. We calculated the mean value of the
minimum value of all combinations of representative mod-
els and all malware traffic samples in the training data. The
shorter the distance between the representative model for each
traffic pattern and all malware traffic samples in the training
data, the better the representative models represent all mal-
ware traffic samples in the training data. We calculated the
minimum value of the cumulative minimum distance between
each representative model and the malware traffic samples in
the testing data. We also calculated the mean value of the
minimum value of all combinations of representative models
and all malware traffic samples in the testing data. We did
the same for the model based on the vendor’s definitions and
the one representative model. These results are summarized
in Table8.

The proposed method (20-s time interval) had the mini-
mum distance for the training and testing data. It was about
a quarter that of the security-vendor-definition-based method
for the training data. It is about 1/1800 that of the one-
representative-model method (the method without clustering
of malware samples) for the training data. The shorter the
cumulative minimum distance, the better the models of in-
fected traffic patterns represent the features of all the traffic.
Therefore, the proposed method represents the infected traffic
pattern better than the two other methods shown in Table 8.

We investigated the transition pattern of malware samples
classified as each traffic pattern. To show the difference of
transition pattern, we show a example of the histogram of
transition pattern of two worms in Fig. 8 and Fig. 9. In these
figures, horizontal axis is transition pattern and vertical axis
is ratio of appearance transition pattern. The worm shown in
the Fig. 8 is classified as traffic pattern 0. The worm shown
in the Fig. 9 is classified as traffic pattern 1.

The outline of the histogram of two worm samples is dif-
ference each other. There are many transition patterns of d
→ d in the Fig. 8. There are many transition patterns of a→
a in the Fig. 9. Worm malwares are selected as two traffic
patterns. So worm malwares are separated into some groups.
The results demonstrate that it need to represent infected traf-
fic data with some traffic patterns.
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Figure 8: The histogram of worm of traffic pattern 0

Figure 9: The histogram of worm of traffic pattern 1

6.3 Detection of Unknown Malware

Finally, we discuss the detection of unknown malware. In
our experiments, we created models of normal and malware-
infected traffic from only training data and used the models
to identify malware traffic samples in the testing data. Six
classes of ten malwares from the security vendor’s definitions
were included in the testing data and not in the training data.
A malware class corresponds to malware with the same pre-
fix family name. Malware with the same prefix family name
is considered to be subspecific malware. The ten malware
traffic samples represented six malware classes: two were
PE SALITY malware, one was TROJ KRYPTK malware,
one was TROJ LSADCOM malware, two were TROJ SPNR
malware, three were TROJ VILSEL malware, and one was
TSPY FAREIT malware. The remaining 190 malware traffic
samples were subspecific malware found in the training data.
When we focused on the hash value of the malware traffic
samples, the training and testing data did not overlap, and the
testing data was unknown malware.

As shown In Table 1, the proposed method had an identifi-
cation rate of 100% for four of the five time intervals. That is,
all malware traffic samples in the testing data were correctly

identified, including the unknown malware traffic samples of
the malware classes included in the training data and the un-
known samples of the malware classes not included in the
training data. The proposed method is thus able to identify
unknown malware samples of a malware class not included in
the training data.

7 CONCLUSION

Our method for detecting malware-infected traffic samples
is based on the similarity between the pair of malware sam-
ples in this paper. Simulation evaluation demonstrated that
the proposed method can effectively identify malware-infect
traffic with high accuracy.

Future work includes conducting a large-scale experi-
ment to better evaluate the effectiveness of the proposed
method.Since normal traffic must be classified as normal
when practical, a method for detecting infected traffic com-
bined with a method for detecting normal traffic must be stud-
ied. In this paper, we focused on detecting malware infec-
tions (including unknown malware infections). Future work
includes investigating how to create models of normal traffic
for use in classifying unknown normal traffic.
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