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Abstract - The installation of multiple sensors in vehicles 

for acquisition and analysis of data is gaining popularity, 

owing to the increasing diversity, miniaturization and inex-

pensiveness of sensors. However, these sensors are not nec-

essarily integrated into the same overall system. For instance, 

an owner-installed dashboard camera may not be connected 

to the factory-installed network of the vehicle. Therefore, it 

is important to synchronize data from multiple sensor sys-

tems to analyze the relation between the time series datasets 

of multiple sensors. A time-synchronization method is popu-

lar for this purpose, but this approach is not suitable for syn-

chronizing offline sensor data. In this study, we propose a 

method for synchronizing video data with acceleration data 

from a moving vehicle’s onboard sensors that use image 

features to detect synchronization points, which are then 

matched to corresponding points in the acceleration data. 

We evaluated the performance of our method by comparing 

video data with acceleration data (both collected via 

smartphone) when the vehicle turns right or left. Using this 

approach, we found the error to be 39.103 milliseconds. We 

intend to expand and further optimize our methodology by 

extracting and comparing data from different driving scenar-

ios. 

Keywords: autonomous driving, multimodal, data synchro-

nization, motion estimation of a vehicle. 

1 INTRODUCTION 

The installation of multiple sensors in vehicles for 

acquisition and analysis of data is gaining popularity, owing 

to the increasing diversity, miniaturization, and 

inexpensiveness of sensors. Autonomous driving is one of 

the applications using this approach, as autonomous vehicles 

have multiple sensors, such as global positioning system 

(GPS) receivers, cameras, and acceleration, laser, and radar 

sensors [1][2]. In addition, many consumer-grade vehicles 

use dashboard cameras (dashcams), which include a GPS 

receiver and/or some acceleration sensors. However, these 

sensors are not necessarily connected to the same central 

system, for instance, a dashcam is usually separated from 

other sensors within a vehicle (Fig.1). In this situation, 

multiple systems are therefore used for analyzing data 

acquired from multiple sensors. Vehicles that do not possess 

any sensors are rare. For some events such as a traffic 

accident in which the car is involved, if someone who was 

not involved in the accident (e.g., policeman or insurance 

representative) is investigating the driver’s role in the 

accident, even if not at fault, the driver has to provide some 

form of proof of innocence. If the driver uses 

unsynchronized dashcam video and other sensing data, the 

proof depended on using the data separately. So, even if the 

driver could prove innocence by using synchronized data 

(for example, proving that the driver “was correctly braking 

when the accident occurred” by using integrated camera 

video and acceleration data), that driver may not be able to 

prove it by using the data separately. Many consumer-grade 

vehicles do not come with a camera installed, so it is 

common for drivers to equip a car with an after-market 

dashcam. For commercial-transportation vehicles [3], 

synchronization among multiple sensors (such as a dashcam 

and other sensors that are original equipment in a vehicle) is 

important. 
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Synchronization of acquisition times of different sensor 

data is very important for analyzing and enabling correlation 

between these data. If sensor data are acquired in a single 

integrated system, acquisition times are synchronized 

seamlessly; however, data obtained by multiple systems 

may not be synchronized because of different times 

recorded by the separate systems. Because this commonly 

occurs when a vehicle owner installs a dashcam or some 

other after-market device, as vehicles generally do not have 

a synchronization method for such situations, an extra 

system must be added.  

Precise time differences between systems are needed to 

correct the discrepancies and enable data synchronization. 

Typical correction methods involve synchronizing system 

times or inserting timestamps in the sensor data [4][5], but 

because separate system clocks are different, system times 

become incorrect after multiple synchronizations over a long 

period of time. Too, when data from multiple systems are 

analyzed after all the data are recorded, differences between 

data-acquisition times cannot be obtained because the 

unsynchronized system times are not known when the data 

are recorded. Thus, if time synchronization is not in effect 

during data acquisition, it is impossible to synchronize data 

at a specific time to enable full use of all data. 

Furthermore, if external time, such as GPS time, is used 

for synchronization, GPS receivers are needed for all 

systems, but if this external time is in error, such as when 

vehicles are passing through a tunnel or an urban area 

containing many buildings, this error is not detected during 

synchronization. Also, the cumulative cost of a GPS 

receiver for each sensor can be considerable, so it would be 

advantageous for synchronization to be possible without 

having to purchase multiple GPS receivers. 

We have developed a method for synchronizing sensor 

data by extracting the data ranges of different vehicle 

motions through analysis of the characteristics of sensor 

data, without needing additional devices to record time data, 

thereby providing a more cost-effective method for 

synchronizing data from multiple sensors in a vehicle. 

2 OUR PROPOSED METHOD AND RE-

LATED STUDIES 

2.1 Proposed Method 

In this study, we aimed to synchronize video and accel-

eration data recorded by sensors in a vehicle, where each 

sensor was connected to a different system (Fig. 2). We in-

tended to perform synchronization after rather than simulta-

neously with data acquisition. 

Although the data-acquisition times for the various devices 

were approximately the same, the exact differences in times 

between the systems were unknown because the system 

clocks differed. Thus, for instance, because the differences 

in time between the camera and acceleration data were not 

always constant, if the synchronization was performed at 

one data point, it did not necessarily mean that all data 

points could be synchronized in a similar way. This was 

resolved by synchronizing some points of the data and 

correcting the data between these synchronizing points using 

the differences in time at the said points. Video and 

acceleration data also have many different characteristics, 

therefore reference points related to characteristics common 

to both data types are required for synchronization to be 

possible. Therefore, we propose a synchronization method 

that is based on the detection of vehicle-motion behavior 

from sensor data and matches ranges of data. The fact that 

we did not use time data to detect vehicle motion meant that 

the inconsistency in the differences in time (resulting from 

different clocks in the systems for each sensor) was 

negligible. 

2.2 Proposed Vehicle-Motion Events 

Because our method requires the use of multiple 

synchronization points, vehicle-motion events must be 

easily detectable and occur frequently while driving. 

However, easily detectable events such as passing over a 

bump (video result: vertical displacement; acceleration 

result: vertical vibration) and heavy braking (video result: 

variation in moving vector of objects; acceleration result: 

variation of acceleration in the direction the vehicle is 

moving) do not necessarily occur frequently in a given 

journey. Accordingly, we focused on extracting the required 

data from very common events such as when a vehicle is 

turned right or left, with the beginning and end of these 

turning events treated as synchronization points. It rarely 

occurs that a car is driving without turning right/left (i.e., the 

car is moving only straight ahead or back). In car-related 

studies, such as those concerning automonous driving, those 

algorithms/methods are evaluated by driving a variety of car 

motions, such as changing lanes, turning right/left at an 

intersection, or passing [6]-[12]. That means a car is not just 

moving straight ahead. Therefore, we chose to use the time 

when the car is turning right/left as a synchronizing point. 
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Figure 2: Proposed system 
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2.3 Proposed Method 

For synchronization between data that have different 

characteristics, it is necessary to convert the data and/or 

isolate the characteristics that make the data mutually 

comparable. For example, in order to match with 

acceleration data, car speed can be calculated by a bird’s-

eye view created by camera images [13]. If the speed is 

calculated correctly, synchronization of video data (each 

frame being the converted speed of the car) and acceleration 

data is possible, but according to Morimoto et al. [13], 

calculation accuracy is not good when the car is moving 

slowly. For example, when the speed is 20 km/h, the error is 

>10%, which means the synchronization error is >10%. 

Sometimes synchronization is impossible because the 

pattern of the speed differences and the values of the 

acceleration data are very different. Because such low-speed 

driving sometimes occurrs in urban areas, their study [13] is 

not suitable for our research. 

Another method is to convert optical flows to be 

comparable to events characterized by other sensor data. 

Fridman et al. [14] devised a method to synchronize sensor 

data using optical flow by detecting vibrating events or 

steering events; this method is good for relative 

synchronization but cannot enable absolute synchronization. 

Giachetti et al. [15] developed a method for estimation of 

egomotion using optical flow; however, it is obviously not 

useful for vehicles traveling on a flat road, where vertical 

displacement is negligible. 

There are a lot of synchronization methods that focus on 

acceleration and camera imagery. For example, Tanaka et al. 

[16] described a method using a correlation value between 

sensor data without consideration of time, but it is 

applicable to acceleration data only and thus is not suitable 

for our system. 

3 DETERMINING SYNCHRONIZAION 

POINTS USING IMAGE FEATURES AND 

CHARACTERISTICS OF ACCELERATION 

DATA 

3.1 Overview 

Our method consists of three functions, 1) detecting 

“turning right” and “turning left” events using image fea-

tures, 2) detecting “turning right” and “turning left” events 

using acceleration data, 3) detecting synchronization points 

using detected events. 

We describe the functions in the following sections. 

3.2 Detecting “Turning Right” and “Turning 

Left” Events Using Image Features 

We used the optical flows of image features for detecting 

behaviors of the vehicle as “turning right” or “turning left” 

from camera images. Because the optical flows of image 

features of stationary objects have vectors that are opposite 

in direction to those of a moving vehicle, we can acquire 

vectors from stationary objects that correspond to those of a 

moving vehicle. We can calculate the tendencies of the vec-

tors from the optical flows of image features using whole 

frames. These image features are not solely on stationary 

objects; however, there are not many objects that move 

around the vehicle, so the tendencies of the vectors that can 

be regarded as a vector are the same as those of a vector that 

shows the movement of the vehicle. Fig. 3 depicts the opti-

cal flow when a vehicle turns right, showing how at this 

point a vector that is opposite to that of the moving vehicle 

can be acquired (i.e., a vector in which the direction is from 

the left to the right of the image as drawn). 

When a vehicle is turning right or left, the optical flows 

from the image features on stationary objects are opposite to 

the direction in which the vehicle is moving. Thus, if a cam-

era is recording in front of a vehicle, when the vehicle is 

turning right, optical flows turn left. Conversely, when a 

vehicle is turning left, optical flows turn right. Moreover, if 

a vehicle is not moving right or left, optical flows do not 

change, meaning that the direction of optical flow is very 

useful for detection of a vehicle-motion event. 

Meanwhile, the vertical direction of the optical flow varies 

with the position of each image feature within the camera 

image. Fig. 4 is an example of “turning left,” which shows 

that the vertical direction of the optical flow for each image 

feature varies from one to another. 
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Figure 3: Optical flow when car is turning right 

Figure 4: Optical flows of “turning left” event 
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3.3 Detecting “Turning Right” and “Turning 

Left” Events Using Acceleration Data 

In this study, we hypothesized that we could acquire ac-

celeration data in the horizontal direction. If a vehicle is 

moving and the velocity in the horizontal direction is always 

zero unless a vehicle does not turn right or left, we can de-

tect the event of right/left turning by detecting whether the 

velocity in the horizontal direction is zero. This can be 

achieved using sensor data by calculating integration of the 

acceleration value. However, a vehicle is moving in the hor-

izontal direction even if it is not turning right/left; therefore, 

we cannot detect vehicle-motion events by confirming that 

the velocity of the vehicle is zero.  

When a vehicle turns right or left, the driver operates the 

steering wheel to move in the horizontal direction. Thus, this 

operation is equal to accelerating the vehicle in the horizon-

tal direction, so the start of this operation causes a signifi-

cant change in acceleration (Figs. 5 and 6). This means that 

this operation can be detected from the change in accelera-

tion. The start and the end of this turning operation can be 

detected as a peak or inflection in the acceleration  

In general, raw acceleration data from acceleration sensors 

includes some noise and bias that must be removed before 

calculating the peak or the inflection. 

3.4 Detecting Synchronization Points 

Based on the above method for detecting right/left turning 

events from video or acceleration data, we propose a method 

to synchronize video and acceleration data.  

Our method comprises two functions. The first is a func-

tion that detects ranges of the frame that indicate the vehicle 

is turning right or left. The second is a function that calcu-

lates the difference between these ranges and the range of 

acceleration data by searching points that correspond with 

the desired data. To reduce the searching range, the times of 

the systems are approximately similar and the difference in 

time is not known. However, the start of the searching point 

(the point that would match the point of the other sensor if 

the difference were zero) can be determined. 

In videos, “turning right/left” events have characteristics 

such that the optical flows tend to turn left/right. We there-

fore use these characteristics for detecting the ranges of the 

frames (Fig. 7), as follows: 

1) Obtain the optical flows of the image features be-

tween successive frames; 

2) Calculate the tendency of the vectors of the optical 

flows by classifying the vectors into 16 bins based on 

the direction of the vector, and select the bin that in-

cludes the majority of the vectors; 

3) Calculate the range by counting the frames in which 

the bin of the start frame is the left bin (bins 7 and 8 in 

Fig. 7) or the right bin (bins 1 and 16 in Fig. 7) if the 

bin is near the former frame (within two consecutive 

bins). 

The ranges calculated by the method are regarded as “turn-

ing left (continuously classifying left bin)” or “turning right 

(continuously classifying right bin).” Fig. 7 shows an exam-

ple of classifying a “turning right” event and the event pre-

ceding it. 
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Figure 5: Acceleration change in “turning left” event 

 

Figure 6: Change of acceleration in “turning left” event 

Figure 7: Bin differences in “turning right” event 
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In our earlier research [17], we discussed how the possibil-

ity of incorrect detection of a turning right/left event was 

controlled for checking whether such an event was a combi-

nation of more than one event. This may arise when another 

action occurs simultaneously with the vehicle turning right 

or left, such as riding on a curb or heavy braking. Thus, if 

the number of frames between two of the “turning right/left” 

events is very small (a few frames) and if these situations 

are the same (i.e., these situations are “turning right/right” 

and vice versa), these situations should be regarded as one 

event (Fig. 8). 

After calculating the range of the frames, the matching 

points between the start/end frame of the desired range and 

the acceleration data are calculated. The data is examined 

for the presence of peak or an inflection point of the acceler-

ation. A peak or an inflection point of the acceleration data 

closest to the start point is regarded as the corresponding 

point of the start/end frame. 

After calculating the range of the frames, the matching 

points between the start/end frame of the desired range and 

the acceleration data are determined. The data is examined 

for the presence of acceleration peaks or inflection points. 

Either one closest to the start point is regarded as corre-

sponding to the start/end frame. 

After calculating the corresponding point of the start frame 

(point C1) in the acceleration data (point A1) and the corre-

sponding point of the end frame (point C2) in the same data 

(point A2), A1 and A2 are corrected to have the same range 

of time between the range from C1 to C2 and the range from 

A1 to A2. In detail, point A1 is moving to A1′ and point A2 

is moving to A2′ . Therefore, “(time of A2′)−(time of 

A1′) = (time of C2)–(time of C1)” and “(time of A1)−(time 

of A1′) = −[(time of A2)−(time of A2′)].” Accordingly, 

A1′ and A2′ are calculated as follows: 

 

one ‘turning right’ situation

riding on the curb
→situation is separated

detecting
one ‘turning right’ situation

 

 

 

 

 

 

Δtc = (time of C2)−(time of C1) 

Δta = (time of A2)−(time of A1) 

diff = (Δtc − Δta)/2 

time of A1′ = (time of A1)−diff 

time of A2′ = (time of A2)+diff 

 

Hence, D1 = (time of C1)−(time of A1′), which is the dif-

ference in time between the start frame of the video and the 

start of the acceleration data of that range, and D2 = (time of 

C2)−(time of A2′), which is the difference in time between 

the end frame of the video and the end of the acceleration 

data of that range. D1 and D2 are not always identical. 

Therefore, the difference value (ΔE) at time E (between 

A1′ and A2′) is calculated as follows: 

 

 
 

For synchronizing point X in the range other than at a 

right/left turning event, the difference (Δd1) between the 

point X and point X1 (the end frame of the range of the 

right/left turning that occurs immediately before the point 

X), and the difference (Δd2) between point X and point X2 

(the start frame of the range of the right/left turning event 

that occurs immediately after the correcting point X) is used. 

The time difference ΔX at point X is calculated as follows: 

 

 
 

4 FUNDAMENTAL EVALUATION OF 

OUR METHOD 

We evaluated the fundamental accuracy of our method. 

The data and our evaluation method are described as follows. 

4.1 Data Setting 

We used video data and acceleration data acquired by a 

smartphone in a vehicle. The camera recorded the front view 

of the vehicle. The acceleration sensor recorded accelera-

tions in three dimensions: the direction in which the vehicle 

moved, the horizontal direction of the vehicle, and the verti-

cal direction of the vehicle. Fig. 9 shows the course we trav-

ersed with the smartphone-equipped vehicle.  

The recorded time was also acquired for these data (cam-

era frames and acceleration data). 

For an evaluation, we decided on evaluation events (syn-

chronization timing) to check a video and extract frames that 

correspond to the start or end point of turning right/left. We 

also calculated the acceleration data at each frame by linear 

interpolation. If those data are to be used in applying our 

method, the difference must be zero at all evaluation points, 

but some points had nonzero difference values because of 

noise. Accordingly, in this evaluation, we investigated ro-

bustness of our method. 

In this evaluation, the number of right/left turning events 

was 26, and these were all used for evaluation of the method. 

 

Figure 8: Separating one “turning right” situation 

into two situations 
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To reduce noise in the acceleration data, we used a 

smoothing process, and we applied an interpolation process 

to adjust the sampling rate of the acceleration data to the 

interval between the frames of the video (30 fps). 

The ranges calculated by the method in some cases had 

overlapping subranges, which showed ranges that correlated 

with the same right/left turning event. Accordingly, we add-

ed a merge process within our method so as to match one 

range to one event. In that process, some ranges that have 

the same frames got merged into one range. 

In addition, a range of one right/left turning event was 

sometimes split, so one event was sometimes described by 

more than one range. Accordingly, we added a concatenate 

process within our method so as to ascribe one range to one 

event. In that process, two ranges having an interval of one 

or two frames got merged into one range. 

4.2 Parameter Setting 

We searched for peaks or inflection points from the start 

point in the acceleration data. During evaluation, the search 

range was defined as 30 samples (corresponding to 1 sec.). 

From the ranges calculated by the method, we extracted 

those spanning ≥120 frames (i.e., >4 sec.). This parameter is 

based on the result of an examination described by Fukuda 

et al. [18], using elapsed time of a turning right event as 

being 3–6 sec. 

4.3 Experimental Results 

We evaluated the 26 situations by calculating the differ-

ence between the start time of camera frames and the syn-

chronized time of the acceleration data during right/left turn-

ing events, after applying our method (Fig. 10). 

In Fig. 10, the calculated value (difference between camera 

frame and acceleration data) for each event is shown, to-

gether with the absolute value of each calculated data point. 

The average value is 39.103 milliseconds (= 1.173 frames), 

and the standard deviation is 46.026 milliseconds (= 0.824 

frames). Event 14 has a large error compared to that of other 

events. That is because acceleration data are not varying at 

that point, so the shift in synchronization points is larger. 

We consider the cause to be data-acquisition error or bad 

noise filtering, and we intend to further investigate this kind 

of error. 
In our experiment, we obtained a timing error of ~40 

milliseconds between the video data (from an added 

dashcam) and the acceleration data measured by the factory-

installed sensor in the vehicle. We propose a method for 

synchronization of the data from each of these sensors. If 

another sensor is added to the vehicle (e.g., a radar sensor at 

the front of the vehicle) is synchronized with acceleration 

data, this sensor will also be synchronized to video data. 

For evaluating the accuracy of our method, we examined 

the accuracy of object detection by multiple sensors. When 

multiple sensors detect the same object, the detection results 

should theoretically be the same if sensor data are correctly 

synchronized. However, if synchronization is not correct, 

there is an error that, in the case of a moving vehicle, 

equates to a measurable distance. For example, in detecting 

pedestrians moving at 80 m/min, an error of 40 milliseconds 

equates to a 5.3 cm difference in distance, whereas in 

detecting cars moving at 60 km/h, this error is 66.7 cm. 

Accordingly, these distances can be considered negligibly 

small. 

For calculating optical flows, we have to select two frames. 

If the interval between those two frames is short, the length 

of the optical flow tends to shorten. This means that the 

optical flow is significantly affected by the error resulting 

from the matching. By enlarging the interval between these 

two frames, the impact of the matching error can be smaller. 

However, enlargement of the interval means that the 

accuracy of the detecting ranges of the right/left turning 

event decreases, because the accuracy depends on the 

intervals. This may result in the process failing to detect 

some ranges. To avoid this problem, we evaluated the 

accuracy by alternating the intervals. Fig. 11 shows the 

average and the standard deviation of the errors at some 

intervals from no frame (optical flow is calculated using 

consecutive frames) to nine frames. 

In Fig. 11, the average of errors is greatest at the interval 

“0frame” (more than 120% of the average at other intervals), 

and the average of errors and sum of average and standard 

deviations is smallest at the interval “6frames”. Although 

some intervals have greater averages or standard deviations, 

Fig. 11 seems to show that the magnitude of the average is 

inversely proportional to the magnitude of the interval. Fig. 

12 shows the ratio of a number of corrected events to a 

number of detected events, which shows that the smaller the 

magnitude of an interval, the larger the ratio.  

Figs. 11 and 12 show that both increasing and decreasing 

intervals have disadvantages, which suggest that use of the 

same optical flow for both detecting ranges of data and 

synchronizing data is not optimal. However, in our study, 

the use of the interval “0frame” for detecting range and the 

interval “6frames” for synchronizing data does appear to be 

acceptable. 

 

 

 

 

 

Figure 9: Course used in driving experiment 
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Figure. 10: Evaluation results 
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Figure. 11: average/standard deviation of errors and frame intervals 

 

Figure. 12: Ratio of corrected events and frame intervals 
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In right/left turning events, moving radius and velocity of 

a car varies by situation. When the car is slowly turning, 

noise in the acceleration data may affect the result. Table 1 

shows the moving radius (calculated by using the positions 

and algorithm (Fig. 13), velocity calculated approximately 

by integrating acceleration data and subtracting the 

integrated data at the point that the car is stopped nearest to 

but before the point because of drifts of the acceleration, and 

the difference value (Fig. 10)). In this evaluation, we applied 

noise reduction to the acceleration data, so it is assumed that 

the effect of the noise is small. Too, the correlation between 

errors and velocities is −0.151. That value means velocities 

are affected but only slightly. However, the correlation 

between errors and moving radius is 0.554, meaning that 

large radii tend to produce larger errors. We will investigate 

this more precisely in the future. 

 

 

 

 

 

event No. radius [m] 
approx. velocity 

 [m/s] 

error 

 [# of frames] 

1 5.32 1.96 1 

2 5.25 2.22 1 

4 8.69 0 1.5 

5 2.04 0 1.5 

6 37.37 0.70 0 

7 18.52 0 2 

8 31.20 0.91 1.5 

9 31.54 1.74 1 

12 45.94 1.00 1.5 

14 355.41 0.80 4 

15 232.86 2.36 2 

16 143.80 0.50 1 

23 135.38 0.60 0.5 

24 210.75 1.73 1 

25 98.92 1.76 0.5 

 

 
 

 

 

Table. 1: radius, velocity and error 

 

Figure. 13: Calculating radius using points 
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4.4 Future Work And Discussion 

In the 26 events, the average of the error frames is short, 

so it can be concluded that our methodology adequately 

accounts for the data. In future work, we will consider as-

pects such as the following: 

1) Detecting the range of the frames more precisely 

Our method detects the range of frames based on the 

tendency of the optical flow direction. If the range is 

short, the event corresponding to the range is not 

right/left turning but is similar in action to a part of the 

right/left turning event, e.g., an S-shaped curve. 

2) Handling the difference between Δta and Δtc (see sec-

tion 3.4) 

In our method, the difference between Δta and Δ
tc is divided equally and used for A1 and A2. This is 

not always true, as the difference between A1′ and 

A1 is not always the same as that between A2′ and 

A2. We can potentially resolve this issue by matching 

correlation values. 

3) Special situations: a lot of objects move in the same 

direction but other than the car’s direction, etc. 

In our method, we assumed that a lot of character-

istic points have characteristics that are the same as 

for the motion of the car, and extracted frames as the 

right/left turning frames by checking that the frame 

had optical flows of mainly left/right direction. If the 

car is not turning left/right but other objects are mov-

ing mainly left/right, and the characteristic points are 

mainly on the objects, our method may detect that 

frame as right/left turning. However, that means other 

objects are moving across the car because a camera is 

recording in front of the car, thus the situation could 

occur that when the car is stopping, it crashes into 

those objects. We expect to be able to detect that sit-

uation and remove it from among the right/left turn-

ing situations. 

In our evaluation, the video data has a situation 

where the car is stopping and waiting at the railroad 

crossing, and the situation occupies 1.4% of the 

frames, and our method was not detect that situation 

as right/left turning. 

4) Problems in obtaining image features from objects 

Our method assumes that the tendency of the opti-

cal flow direction is almost the same as the direction 

of the optical flows, based on the image features of 

the stationary object, so we assumed that multiple 

image features are acquired from an object that does 

not move in any frame. We currently use all the opti-

cal flows, but selecting the appropriate optical flows 

should enable improved detection and analysis. How-

ever, because our method applies all the frames, ex-

tensive calculation processes using optical flows will 

be required. We do not intend to use a heavily calcu-

lated method for, say, object detection, so this aspect 

will be carefully explored. 

 

 

5) Problems associated with insufficient number of im-

age features 

Some frames do not possess multiple image fea-

tures, for example when data is acquired at night. A 

frame may also be occupied by the sky or the ground 

with no lines, signs, and other objects. 

6) Utilization of camera images from other than the 

front 

As shown in Chapter 4, the installed camera is tak-

ing pictures of the front of the vehicle. Since the front 

is photographed, it is assumed that the optical flow 

swings from side to side when turning left to right.  

However, when using a camera image taken in a di-

rection other than the front, this premise changes. In 

this situation, it would not be possible to use the opti-

cal flow obtained from the captured image, so it 

would be necessary to convert these optical flows to 

match those in the front direction. 

The following is a matching example. It is as-

sumed that a feature point  in frame  is cor-

responding to a 3D relative position  

(where the X axis represents the right direction of the 

camera, the Y axis represents the optical axis of the 

camera, the Z axis represents the upward direction of 

the camera, and the origin is the camera sensor), and 

at the time in frame , the same point as   is repre-

sented the 3D relative position  , and 

 in frame , and the vehicle advances  

(described using vehicle coordinate system, X axis 

represents the right direction of the car, Y axis repre-

sents the front direction of the car, Z axis represents 

the upward direction of the car, and the origin is the 

position of the vehicle) from frame  to frame  

(Fig.14). In that case, the following equations hold, 

where  is the focal length of the camera,  is the 

pixel interval of the camera image, and  is the 

central position of the camera image. 

 

 
And, an equation  holds, where 

is  represents the transformation matrix, which 

transforms the vehicle coordinate system to the cam-

era coordinate system. So, if  and  is acquired,  

and  can be calculated from  and . 

When  and  are calculated, the feature points 

 and  in the front images are calculat-

ed, where  and 

. 

 

 
Figs.15-17 are examples of this calculation. In the 

illustrated range, the vehicle is going straight after a 

right turn. Fig. 15 shows the most frequent bins cal-

culated by the algorithm presented in this paper by 
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using the optical flows of the same range obtained 

from the front camera. Fig. 16 shows the most fre-

quent bins by using the optical flows obtained from 

camera images taken from the left side of the vehicle 

without matching. In Fig. 15, the optical flows after 

the right turn is mainly ‘right to left’, that means the 

vehicle moves the left side, but it is not shown at all 

in Fig. 16. Meanwhile, Fig. 17 shows the most fre-

quent bins by using the same optical flows but 

matched using  (, where R means 

rotation by an angle 90° around the Z axis, as well 

as , where  is the 

velocity of the vehicle and  is the interval of 

timestamp acquisition of the optical flows. Fig.17 has 

a similar tendency as Fig. 15. However, in this exam-

ple, the velocity of the vehicle must correspond with 

the frame. In the assumptions of this paper, there is a 

gap between the timestamps of the velocity of the ve-

hicle and those of the image frames, so the deviation 

will be included by the conversion method described 

above. In this paper, the gap is small, so we consider 

that the impact is minor. 

7) Expanding our method to other situations 

Our method uses all the optical flows in the frame 

to calculate the tendency of their direction. A 

right/left turning event is an appropriate situation to 

be detected using the method. However, our method 

is not suitable for some situations, such as moving 

straight ahead. In that situation, not all the optical 

flows turn in the same direction. The direction is de-

termined according to the point of the image feature 

within the frame. 

To expand our methodology, we can split a frame 

into subframes and calculate the tendencies within 

the subframes, followed by detection of the range 

based on the characteristics of those tendencies. This 

should enable data to be obtained when a vehicle is 

moving in a straight line, and thus enable sensors to 

be synchronized at any time during the journey of a 

vehicle. 

 

 

 

 

 

5 CONCLUSION 

In this study, we have proposed and evaluated a method 

to synchronize video and acceleration data from different 

sensors, connected to different systems, on a moving vehicle. 

In our method, we calculated the synchronization points by 

determining a right/left turning event from camera image 

data and acceleration data. From the camera image, we used 

the tendency of optical flows of the camera frame to detect 

the range of the event by continuously detecting the specific 

tendency of the corresponding vectors. 

From the acceleration data, we detected the situation by 

identifying the peak or inflection point of the acceleration. 

 

 

 

 

Figure. 14: The case of similar feature points 

 at different frames 

Figure. 15: Changes of bins of the case  

from images of the front of the car 

Figure. 16: Changes of bins from images  

taken from the left side of the car  
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We evaluated the fundamental performance of our meth-

od using the camera image and the acceleration data ac-

quired from a smartphone in a vehicle, and the error-frame 

average was 39.103 ms. However, some problems need to 

be addressed, such as improving the precision of detecting 

the range of an event from the camera image. 

 In addition, even though we determined that the differ-

ence between the acquisition time of video data and that of 

acceleration data is small, we will investigate a means of 

entirely removing this time difference, so as to further en-

hance the overall accuracy and utility of our method. 
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