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Abstract - Elliptic curve signatures as ECDSA have fea-
tures that the processing is faster and the signature length is
shorter than those of RSA signatures with same security. The
use of elliptic curve signatures was decided for the V2X com-
munication with limited bandwidth. However, higher pro-
cessing speed is required.

In an elliptic curve signature using 256-bit prime p, thou-
sands of modular multiplications X · Y mod p performed
according to a signature algorithm are dominant. Therefore,
how to speed up multiplications and mod p computations is
one of the objectives of researches on elliptic curve signa-
ture implementations. One of speeding up method of reduc-
tion mod p is to use a special form of prime called pseudo
Mersenne prime such that p = 2n − k, where k is a small
value. However, in an elliptic curve signature, computation
of mod l with another integer l, which is the order of a base
point, is also required although the number is a few.

In this paper, the authors give a program to construct el-
liptic curves such that reduction mod l can be computed as
mod a pseudo Mersenne prime. The program found ellip-
tic curves 638y2 = x3 + 10x2 + x mod p = 2256 − 58097,
82y2 = x3+18x2+x mod p = 2256−507225, and 3805y2 =
x3 + 18x2 + x mod p = 2256 − 979077 1.

Keywords: Elliptic Curve, Elliptic Curve Signature, Mod-
ular Multiplication, Pseudo Mersenne Prime

1 INTRODUCTION

Recently, elliptic curve signatures as ECDSA are often used
in the TLS communication and block chains. In Europe, it
was decided to use an elliptic curve signature in the V2X
communication [5]. Elliptic curve signature compared with
RSA signature has the advantage that signature generation/
verification is faster and signature length is shorter with same
security. However, signature verification in the V2X commu-
nication requires further speeding up.

Elliptic curve is a cubic curve given by

y2 = x3 + ax+ b (Weierstrass form), or
By2 = x3 +Ax2 + x (Montgomery curve),

where x and y are variables. A remarkable feature of elliptic
curve is that an operation + is defined2 in the set of points on
E, and the set forms a group for the operation [15].

1This work was supported by JSPS KAKENHI Grant Number 16K00188.
2The operation + is conventionally used for the operation, however, it is

different from ordinary addition.

Dominant processes of the operation +, which is explained
in Sec.2.2, is modular multiplications

X · Y mod p (1)

for X,Y ∈ Fp = {0, 1, 2, · · · , p − 1}, where p is typically a
256-bit prime. The calculation of (1) is divide into

Z ← X︸︷︷︸
256 bit

· Y︸︷︷︸
256 bit

, (2)

W ← Z︸︷︷︸
512 bit

mod p︸︷︷︸
256 bit

. (3)

Dominant operation of elliptic curve cryptosystems (ECCs)
including elliptic curve signatures is thousands of modular
multiplications (1). Therefore, it is important to speed up
(2) and (3) to speed up processes of elliptic curve signatures.
As explained in Sec.2.4, using Montgomery curve rather than
Weierstrass form reduces the number of modular multiplica-
tions required for signature generation and verification. More-
over, when a coefficient A of Montgomery curve is 6, 10, 14,
and 18, the number of modular multiplications is further re-
duced.

Karatsuba method, use of high speed multiplier, and par-
allel implementation speed up integer multiplications. Mont-
gomery reduction [8] that can be applied to arbitrary odd num-
ber p is a famous method for reduction mod p. Also, when p
is a pseudo Mersenne prime written as p = 2n−k, k < 2n/2,
reduction mod p can be very efficient.

Curve25519 [1] is a Montgomery curve

E25519 : y2 = x3 + 486662x2 + x

for a pseudo Mersenne prime p = 2255 − 19. Curve25519 is
secure and suitable for high-speed implementation of ECCs
and then it has attracted attention in recent years. Some of
NIST curves [11], which are elliptic curves for ECCs stan-
dardized by NIST, also use pseudo Mersenne prime.

In public key encryptions as ECElGamal and key agree-
ments as ECDH using elliptic curves, required reduction is
mod p only. On the contrary, in elliptic curve signatures, re-
quired reductions are not only mod p but also mod l, where
l is the order of a base point.

The order l of a base point on Curve25519 and NIST curves
is not pseudo Mersenne prime. Hence, when implementing
a signature using these curves, we have to use Montgomery
reduction to compute reduction mod l. However, when im-
plementing an elliptic curve signature by hardware and ap-
plying the high-speed reduction for mod p and Montgomery
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reduction for mod l in-creases the hardware scale. Apply-
ing Montgomery reduction for both of mod p and mod l in-
creases computation time. Therefore, it is desirable to be able
to compute mod l by same way of mod p.

The purpose of this paper is to make a program to find
Montgomery curves such that mod l can be computed by same
way of mod p for pseudo Mersenne prime and A = 6, 10,
14, and 18, and to give examples of such curves.

Sec.2 explains the definition of elliptic curve, operation +,
scalar multiplication, coordinate system, secure elliptic curve,
and Curve25519. Sec.3 introduces ECDSA that is the most
popular elliptic curve signature. Sec.4 introduces efficient re-
duction methods. Sec.5 is the contribution of this paper. Sec.5
proposes a requirement for elliptic curves to be suitable for
ECDSA. Then, Sec.5 makes a program to find elliptic curves
that meet the requirement, and gives examples of such curves.
Sec.?? concludes this paper and gives future work.

2 ELLIPTIC CURVE

Sec.2 introduces subjects of elliptic curves required for this
paper. For details for subjects of Secs.2.1, 2.2, and 2.3, refer
to [15] or [4].

2.1 Definition of Elliptic Curve
Elliptic curve is a cubic curve given by

E : y2 = x3 + ax+ b (Weierstrass form) (4)

or

E : By2 = x3 +Ax2 + x (Montgomery curve) (5)

with variables x, y. When used in cryptosystems, Montgomery
curve (5) is often selected because it can reduce the cost of
cryptographic processes.

For a prime p, the set Fp is defined as

Fp = {0, 1, 2, · · · , p− 1}

Then, elliptic curve E can be considered on Fp. We consider
an elliptic curve

E′ : y2 = x3 + 2

on F5 as an example. For x, y ∈ F5 = {0, 1, 2, 3, 4}, when

y2 = x3 + 2 mod 5

is satisfied, (x, y) is regarded as a point in E′ on F5. For
example, (2, 0) is a point in E′ on F5 because

02 = 23 + 2 mod 5

is satisfied. (1, 1) is not a point in E′ on F5 because

12 ̸= 13 + 2 mod 5.

Executing a program (written for PARI/GP [12]) of Fig. 1,
we see that all points in E′ on F5 are

{(2, 0), (3, 2), (3, 3), (4, 1), (4, 4)}.

\\Finding points on elliptic curve
{

p=5;
for(x=0,p-1,

for(y=0,p-1,
if((yˆ2-(xˆ3+2))%p==0,

print([x,y]);
);

);
);

}

Figure 1: Program for finding Fp points on E′

The set adding this set with the point at infinity O 3 is written
as E′(F5).

E′(F5) = {(2, 0), (3, 2), (3, 3), (4, 1), (4, 4),O} (6)

The order of E(Fp), #E(Fp), is defined as the number of
points in E(Fp). Hence, the order of E′(F5) is 6. The trace
of E(Fp) is defined as an integer t such that

#E(Fp) = p+ 1− t.

When a Montgomery curve E : By2 = x3 + Ax2 + x on
Fp has the trace t, another Montgomery curve E′ : B′y2 =
x3 +Ax2 + x has the trace t or −t. In other words, we have

#E′(Fp) = #E(Fp) or 2p+ 2−#E(Fp).

When #E′(Fp) = 2p + 2 − #E(Fp), E′ is called the twist
of E.

Let E be an elliptic curve and L the order of E(Fp). Then,
it is known that

p+ 1− 2
√
p ≤ L ≤ p+ 1 + 2

√
p (7)

is held (Hasse’s theorem). That means L is close to p. Con-
versely, for a prime p and an integer L satisfying (7), Weier-
strass form elliptic curve E exists such that #E(Fp) = L.
On the other hand, when E is a Montgomery curve, the order
is always a multiple of 4.

2.2 Operation +

Let E be an elliptic curve given by Weierstrass form (4) or
Montgomery curve (5). Then, the operation + in E(Fp) is
defined as follows.

1. For any P ∈ E(Fp),

P +O = O + P 4.

2. In the case of P = (x1, y1), Q = (−x1, y1) ∈ E(Fp),

P +Q = O.
3When considering an elliptic curve in the real plane, O is intuitively

(∞,∞) and then O is called “the point at infinity.” When also considering
an elliptic curve in Fp, O is called the point at infinity [16, IV.1]. Although O
is a special point, it can be dealt with as normal one in projective coordinate
system. Refer to [16, Appendix A] for details.

4O plays a role of zero element in the operation.
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Table 1: Computation of Pi + Pj on E′(F5)

P0 P1 P2 P3 P4 P5

P0 P0 P1 P2 P3 P4 P5

P1 P1 P0 P4 P5 P2 P3

P2 P2 P4 P3 P0 P5 P1

P3 P3 P5 P0 P2 P1 P4

P4 P4 P2 P5 P1 P3 P0

P5 P5 P3 P1 P4 P0 P2

3. In the case of P = (x1, y1), Q = (x2, y2)∈E(Fp), x1̸=
x2, and P ̸= Q, P +Q = (x3, y3) is computed as

λ =
y1 − y2
x1 − x2

,

x3 = λ2 − x1 − x2,

y3 = λ(x1 − x3)− y1.

 (8)

4. In the case of P = Q = (x1, y1) ∈ E(Fp), P + Q =
(x3, y3) is computed as

λ =


3x2

1 + a

2y1
E: Weierstrass

3x2
1+Ax1+1

2By1
E: Montgomery,

x3 = λ2 − 2x1,

y3 = λ(x1 − x3)− y1,


(9)

where a, A, and B are coefficients of Eqs. (4) and (5). Eqs.(8)
and (9) are called addition formula and doubling formula, re-
spectively.

For any P,Q,R ∈ E(Fp), the following are held.

1. (P +Q) +R = P + (Q+R)

2. P +O = O + P = P

3. For P = (x1, y1) and Q = (−x1, y1), P +Q = O.

4. P +Q = Q+ P

That the above holds means that E(Fp) forms a group. This
property is very significant, and it is also used for cryptosys-
tems.

Let E′(F5) of (6) be written as

E′(F5) =

{
P0 = O, P1 = (2, 0), P2 = (3, 2),

P3 = (3, 3), P4 = (4, 1), P5 = (4, 4)

}
. (10)

Then, all results of Pi + Pj are given by Table 1.

2.3 Scalar Multiplication
For a base point P ∈ E(Fp) and a natural number n, addi-

tions of n terms of P ,

nP = P + P + · · ·+ P

is called scalar multiplication. For P ∈ E(Fp), the order of P
is defined as the smallest positive integer l such that lP = O.

For the order L of E(Fp) and the order l of P ∈ E(Fp),
the followings are held (Lagrange’s theorem).

1. l is a divisor of L.

2. LP = O.

Let E′(F5) be of (10). Then, we see that 2P1, 3P1, 4P1,
· · · are

2P1 = P1 + P1 = O,
3P1 = 2P1 + P1 = O + P1 = P1,

4P1 = 3P1 + P1 = P1 + P1 = O,
5P1 = 4P1 + P1 = O + P1 = P1,

6P1 = 5P1 + P1 = P1 + P1 = O,

and 2P4, 3P4, 4P4, · · · are

2P4 = P4 + P4 = P3,

3P4 = 2P4 + P4 = P3 + P4 = P1,

4P4 = 3P4 + P4 = P1 + P4 = P2,

5P4 = 4P4 + P4 = P2 + P4 = P5,

6P4 = 5P4 + P4 = P5 + P4 = O.

Hence, the order of P1 ∈ E′(F5) is 2, and the order of P4 ∈
E′(F5) is 6. Also we see Lagrange’s theorem holds.

Algorithm 1 (Binary method) and Algorithm 2 (Montgomery
reduction) are algorithms for computing a scalar multiplica-
tion. Let n be a k-bit integer, and

n = (nk−1, nk−2, · · · , n0)2

be the binary representation of n. Then, Algorithm 1 takes
k doubling formulas and k/2 addition formulas on average,
and Algorithm 2 takes k doubling formulas and k addition
formulas.

Algorithm 1 (Binary method)
Input: P ∈ E(Fp), n = (nk−1nk−2 · · ·n0)2 ∈ N
Output: nP ∈ E(Fp)
1. Q← P
2. for i = k − 2 down to 0
3. Q← 2Q
4. if ni = 1 then Q← Q+ P
5. end for
6. return Q

Algorithm 2 (Montgomery ladder)
Input: P ∈ E(Fp), n = (nk−1nk−2 · · ·n0)2 ∈ N
Output: nP ∈ E(Fp)
1. Q0 ← O, Q1 ← P
2. for i = k − 1 down to 0
3. if ni = 0 then Q1 ← Q0 +Q1, Q0 ← 2Q0

4. if ni = 1 then Q0 ← Q0 +Q1, Q1 ← 2Q1

5. end for
6. return Q0
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2.4 Coordinate System

Addition formula (8) and doubling formula (9) needs a di-
vision, whose cost is high, to compute λ. Hence, we would
like to compute both formulas without division.

For a point (x, y) in the xy coordinate system, another co-
ordinate system that uses X,Y, Z satisfying x = X/Z, y =
Y/Z to represent (x, y) as (X,Y, Z) is called the projective
coordinate system. In the projective coordinate system, ad-
dition formula and doubling formula can be computed with-
out division. Hence, the projective coordinate system (or its
variants) is generally used in cryptographic implementations.
Algorithms 3 and 4 are addition and doubling formulas for
Weierstrass form in the projective coordinate system. In these
algorithms, Roman face means temporal variables.

Algorithm 3
(Addition for Weierstrass on projective coordinates)
Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2) ∈ E(Fp)
Output: P +Q = (X3, Y3, Z3) ∈ E(Fp)
1. Y1Z2← Y1 · Z2

2. X1Z2← X1 · Z2

3. Z1Z2← Z1 · Z2

4. u← Y2 · Z1 − Y1Z2
5. uu← u2

6. v← X2 · Z1 − X1Z2
7. vv← v2

8. vvv← v · vv
9. R← vv · X1Z2
10. A← uu · Z1Z2− vvv− (R+ R)
11. X3 ← v · A
12. Y3 ← u · (R− A)− vvv · Y1Z2
13. Z3 ← vvv · Z1Z2

Algorithm 4
(Doubling for Weierstrass on projective coordinates)
Input: P = (X1, Y1, Z1) ∈ E(Fp), a of Eq.(4)
Output: 2P = (X3, Y3, Z3) ∈ E(Fp)
1. XX← X2

1

2. ZZ← Z2
1

3. w← a · ZZ+ 3XX
4. s← 2(Y 1 · Z1)
5. ss← s2

6. sss← s · ss
7. R← Y 1 · s
8. RR← R2

9. B← (X1+ R)2 − XX− RR
10. h← w2 − 2B
11. X3 ← h · s
12. Y3 ← w · (B− h)− 2RR
13. Z3 ← sss

Let P = (X,Y, Z) be a point on a Montgomery curve in
the projective coordinate system. Then, X and Z coordinates
of nP can be computed from X and Z coordinates of P us-
ing Algorithm 2 (Montgomery ladder) [9]. In this case, Algo-
rithms 5 and 6 are used. For details for these algorithms, refer

Table 2: The cost of Algorithms 3,4,5,6

Cost Purpose
Algorithm 3 14M + 7add Addition for Weierstrass

Algorithm 4 11M +Ma + 12add Doubling for Weierstrass

Algorithm 5 6M + 6add Addition for Montgomery

Algorithm 6 4M +MA′ + 4add Doubling for Montgomery

Table 3: Cost of scalar multiplication of nP , where n is k-bit

Used curve Used algorithms Cost
Weierstrass Algorithms 1,3,4 18kM + kMa + 18k add

Montgomery Algorithms 2,5,6 10kM + kMA′ + 10k add

to [4]. By the way, although omitted, reduction mod p is re-
quired at every step of Algorithms 3, 4, 5, and 6. For details
for them, refer to [2].

We will estimate the cost of theses algorithms in the num-
ber of modular multiplications because the cost of modular
addition/subtraction is much smaller than one of modular mul-
tiplication. Let M , Ma, MA′ , and add denote a modular mul-
tiplication in Fp, a modular multiplication in Fp with a con-
stant a, a modular multiplication in Fp with a constant A′, and
a modular addition/subtraction in Fp, respectively, where a is
of (4), and A′ = (A+2)/4 for A of (5). Then, the cost of the
algorithms are given by Table 2. Note that MA′ is for A′ ·C at
step 7 of Algorithm 6. Also, the cost of scalar multiplication
are given by Table 3. We see that the cost of a scalar multipli-
cation on a Montgomery curve is less than one on Weierstrass
form.

2.5 Secure Elliptic Curve
The security of ECCs including digital signature depends

on the maximum prime factor l of the order L = #E(Fp),
not the size of p [13]. Attack time against ECCs is roughly
proportional to

√
l and then the larger l is, the more secure

ECCs are. Therefore, we have to select elliptic curve E such
that

L = #E(Fp) has a big prime factor (11)

for ECCs. Also, it is desirable that

2p+ 2− L that is the order of the twist of E
has a big prime factor (12)

according to [3]. Moreover, we have to select E such that

L ̸= p, p± 1 (13)

according to [6], [14].

2.6 Curve25519
Curve25519 is a Montgomery curve

E25519 : y2 = x3 + 486662x2 + x
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Algorithm 5
(Addition for Montgomery on XZ coordinates)
Input: Q1−Q0=(X1, Z1), Q0=(X2, Z2), Q1=(X3, Z3)

Output: Q0 +Q1 = (X4, Z4) ∈ E(Fp)
1. A← X2 + Z2

2. B← X2 − Z2

3. C← X3 + Z3

4. D← X3 − Z3

5. DA← D · A
6. CB← C · B
7. X4 ← Z1 · (DA+ CB)2

8. Z4 ← X1 · (DA− CB)2

Algorithm 6
(Doubling for Montgomery on XZ coordinates)
Input : R = (X1, Z1), A

′ = (A+ 2)/4 for A in Eq.(7)
Output: 2R = (X4, Z4) ∈ E(Fp)
1. A← X1 + Z1

2. AA← A2

3. B← X1 − Z1

4. BB← B2

5. C← AA− BB
6. X4 ← AA · BB
7. Z4 ← C · (BB+A′ · C)

with p = 2255 − 19 [1]. The order L = #E25519(Fp) is

L = 22 · l,
l = 2252 + 27742317777372353535851937790883648493,

where l is a 253-bit prime. Curve25519 meets the security
requirement in Sec.2.5.

Curve 25519 has been applied in many cryptographic li-
braries such as NaCl [10], and Curve 25519 was added to
Special Publication 800-186, which specifies the approved el-
liptic curve used by the US federal government by NIST in
2017.

3 ECDSA

ECDSA is a digital signature using an elliptic curve. ECDSA
consists of system parameter held by all users, key generation
for generating each user’s (private key, public key), signature
generation for generating a signature using a user A’s secret
key, and signature verification for verifying the signature us-
ing A’s public key.

System parameter
A sufficiently large (e.g. 256-bit) prime p, an elliptic curve E
such that E(Fp) meets the security requirements (11), (12),
and (13), and a base point G ∈ E(Fp) of which the or-
der is l are selected. Also a hash function H : {0, 1}∗ →
{0, 1, 2, ..., l − 1} is selected. (p, l, E,G,H) is the system
parameter.

Key generation
User A choose s ∈ [1, l−1] at random, and computes Y = sG
(scalar multiplication) in E(Fp). Then, s and Y are A’s pri-
vate key and public key, respectively.

Signature generation
User A generates a signature of a message m ∈ {0, 1}∗ as
follows.

1. Computing m′ = H(m).

2. Choosing r ∈ [1, l − 1] at random, and compute

U = rG︸︷︷︸
scalar mul. on E(Fp)

= (ux, uy),

u = ux mod l.

3. Using the secret key s to compute

v = r−1(m′ + su) mod l.

4. The pair (u, v) is the signature of m.

Signature verification
A recipient of the message m with signature (u, v) verifies
the signature as follows.

1. Computing m′ = H(m).

2. Computing d = v−1 mod l.

3. Computing U ′ = (m′d)G︸ ︷︷ ︸
scalar mul. on E(Fp)

+ (ud)Y︸ ︷︷ ︸
scalar mul. on E(Fp)

.

4. Computing u′ = (the x coordinate of U ′) mod l.

5. If u = u′ then the signature is accepted, and if u ̸= u′

then it is rejected.

Thus, the dominant processes of ECDSA is scalar multiplica-
tions in E(Fp)

5. Signature generation of ECDSA takes one
scalar multiplication and signature verification of ECDSA takes
two scalar multiplications. Therefore, we see that

in order to speed up processes of ECDSA,
it is important to speed up scalar multiplication.

As seen Table 3, using not Weierstrass form but Montgomery
curve reduces the number of modular multiplications required
for a scalar multiplication.

4 MODULAR REDUCTION

In order to speed up ECCs including ECDSA, it is impor-
tant not only to reduce the number of modular multiplications
but also to reduce the cost of one modular multiplication. This
section introduces efficient reduction methods.

4.1 Montgomery Reduction
The Montgomery reduction (Algorithm 7) [8] is a method

for efficiently calculating X mod N for general odd number
N and X given in Montgomery representation6.

5The dominant process of not only ECDSA but also all ECCs is scalar
multiplications.

6For Montgomery representation, refer to [8] or [4].
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Algorithm 7 (Montgomery Reduction)
Input: odd number N of n bits, R = 2n,

N ′ = (−N−1) mod R, natural number u < RN
Output: u mod N in Montgomery representation
1. t← u
2. k← tN ′ mod R
3. t← t+ kN
4. t← t/R
5. if t ≥ N then t← t−N
6. return t

4.2 Reduction modulo Pseudo Mersenne
Prime

When a prime p is written as

p = 2n − k, k < 2n/2,

it is called pseudo Mersenne prime. For pseudo Mersenne
prime p, reduction mod p can be computed at high speed us-
ing by Algorithm 8 [7]. Notice that u/2n in step 1 and v/2n

in step 3 are integer divisions and then they are performed by
shift operations.

Algorithm 8 (Reduction mod pseudo Mersenne prime)
Input: prime p = 2n − k (k < 2n/2),

integer 0 ≤ u ≤ (p− 1)2

Output: u mod p
1. u0← u mod 2n, u1← u/2n

2. v← u1 · k + u0
3. v0← v mod 2n, v1← v/2n

4. w ← v1 · k + v0
5. if w ≥ p then w ← w − p
6. return w

5 CONTRIBUTIONS

5.1 Program to Search Elliptic Curve Suitable
for ECDSA

The purpose of this paper is to make a program to search
for elliptic curves that is secure and suitable for high-speed
implementation of ECDSA (especially by hardware imple-
mentation), and to give examples of such an elliptic curves.
Specifically, we will search curves that meet the following re-
quirements.

Elliptic Curve Requirements to Search

1. According to Table 3, scalar multiplication in Mont-
gomery curve takes fewer modular multiplications than
scalar multiplication in Weierstrass form. Hence, Mont-
gomery curve is selected.

2. According to Table 3 again, scalar multiplication in Mont-
gomery curve with A′ = 1, 2, 3, 4, 5, that is, the co-
efficient A = 2, 6, 10, 14, 18, requires fewer modular

multiplications than other As 7. Therefore, we take
A = 2, 6, 10, 14, 18.

3. Prime p is typical 256-bit. Moreover, p is a pseudo
Mersenne prime p = 2n−k because of efficient reduc-
tion mod p. For convenience of execution time, set
the range of k to k ≤ 220.

4. To meet the security requirement (11), the order L =
#E(Fp) is as L = 4l, 8l, 16l, where l is a prime. No-
tice there is a point P ∈ E(Fp) whose order is l.

5. To meet the security requirement (12), L′ = 2p+2−L
is as L′ = 4l′, 8l′, 16l′, where l′ is a prime.

6. To meet the security requirement (13), curves such as
L = p, p± 1 is removed.

7. L is written as L = 2n− k′, k′ < 2n/2. Then, a reduc-
tion mod l is computed by the algorithm proposed in
Sec.5.2, which is as efficient as reduction mod a pseudo
Mersenne prime.

Note Curve25519 also meets the requirements 1, 4, 5, and
7, and Curve25519 adopts not 256-bit prime but 254-bit for a
prime field. Curce25519 does not consider the requirements
2 and 7. Also refer to Sec.5.3.

The authors made a program as Fig. 2 in PARI/GP to
search elliptic curves meeting the requirements. The program
is straightforward and then it may be easy for some readers
to make a similar program. But, giving the program makes
all readers (especially PARI/GP users) generate good curves.
Notice that the program output only a prime p, a coefficient
A of Montgomery curve, the order L of E(Fp), and the order
l of a base point. At the moment, it is necessary to manually
find another coefficient B of Montgomery curve, generate a
base point whose order is l, and check L ̸= p, p− 1.

This program is briefly explained. The line

e=ellinit([0,A,0,1,0]);

sets (Montgomery) elliptic curve E : y2 = x3 + Ax2 + x to
e. The function ellap(e,p) outputs the trace of E(Fp).
Thus, Num1 is the order of E(Fp), and Num2 is the order of
the twist of E(Fp). isprime is a prime decision function.
write is an output function to text.

By this program, the following elliptic curves are found.

1. p = 2256 − 58097,
ES1 : 638y2 = x3 + 10x2 + x,
base point P = (11, 2),
L = 2256 − k′, where k′ is 125-bit integer
k′ = 25181363380428710453079967399017869328,
l = L/16, which is 252-bit prime.

7Selecting an elliptic curve with appropriate coefficients to reduce high
cost multiplication into low cost addition is one of fast implementation tech-
niques of ECCs [4, Sec. 13.2.1c]. For Montgomery curve, if A′ = 1 then
the multiplication A′ · C at step 7 of Algorithm 4 is free. If A′ = 2 then the
multiplication is performed by an addition C + C. As well, if A′ = 3 or 4
then the multiplication is performed by two additions.
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\\Checking pseudo Mersenne prime
check_mer(p)={
local(n,c,k);
n=0;
c=0;
while(c==0,

n++;
if(2ˆ(n-1)<=p && p<2ˆn,c=1);

);
if(2ˆn-p < sqrt(2ˆn),
k=floor(log(2ˆn-p)/log(2)+1);
return([n,k]),
return(0));

}

\\Main program
{
count=0;
for(a=0,4,
A=4*a+2;
e=ellinit([0,A,0,1,0]);
for(k=1,2ˆ20,

print([a,k,count]);
p=2ˆ256-k;
if(isprime(p)==1,

t=ellap(e,p);
num1=p+1-t;
num2=p+1+t;
Num1=num1;
Num2=num2;
check1=0;
check2=0;
if(num1%2==0,num1=num1/2;check1=1);
if(num1%2==0,num1=num1/2;check1=2);
if(num1%2==0,num1=num1/2;check1=3);
if(num1%2==0,num1=num1/2;check1=4);
if(num2%2==0,num2=num2/2;check2=1);
if(num2%2==0,num2=num2/2;check2=2);
if(num2%2==0,num2=num2/2;check2=3);
if(num2%2==0,num2=num2/2;check2=4);
isprime_num1=isprime(num1);
isprime_num2=isprime(num2);
if(t!=0 && isprime_num1==1

&& isprime_num2==1
&& (check_mer(Num1)!=0
|| check_mer(Num2)!=0),

if(check_mer(Num1)!=0,
count++;
write("ijis.txt",k","A","Num1",
"num1);

);
if(check_mer(Num2)!=0,

count++;
print("A="A);
write("ijis.txt",k","A","Num2",
"num2);

);
);

);
);

);
}

Figure 2: Proposed program to find elliptic curves suitable for
ECDSA

2. p = 2256 − 507225,
ES2 : 82y2 = x3 + 18x2 + x,
base point P = (2, 1),
L = 2256 − k′, where k′ is 127-bit integer

k′ = 134184981501621384111934924743103436264,
l = L/8, which is 253-bit prime.

3. p = 2256 − 979077,
ES3 : 3805y2 = x3 + 18x2 + x,
base point P = (20, 2),
L = 2256 − k′, where k′ is 126-bit integer
k′ = 67240641251824776802983670794157366424,
l = L/8, which is 253-bit prime.

For the convenience of time, the authors set the search range
to k < 220, however, if the search range is expanded, more
appropriate elliptic curve may be found.

5.2 Proposed Modular Reduction
This section proposes an algorithm (Algorithm 9) 8 similar

to Algorithm 8 for computing a reduction mod l for a prime
l such that L = 2ml is written as L = 2n − k, k < 2n/2.

Notice v, v0 and k are multiples of 2m. Thus, w is also a
multiple of 2m. As well,

x is a multiple of 2m. (14)

From step 2 to 7 is same as Algorithm 8 and then we see

x = 2mu mod 2ml. (15)

By (14) and (15), we see x/2m = u mod l.
Note that v/2n in step 2, w/2n in step 4, and x/2n in step

7 are integer divisions and then they are performed by shift
operations, and 2mu in step 1 is also performed by a shift
operation.

Proposed Algorithm 9
Input : integer l such that 2ml = 2n − k (k < 2n/2),

integer 0 ≤ u ≤ (l − 1)2

Output : u mod l
1. v← 2mu
2. v0← v mod 2n, v1← v/2n

3. w← v1 · k + v0
4. w0← w mod 2n, w1← w/2n

5. x← w1 · k + w0
6. if x ≥ 2ml then x← x− 2ml
7. y ← x/2m

8. return y

5.3 Searched Elliptic Curves v.s. Curve25519
Elliptic curves searched in this paper and Curve 25519 meet

the security requirement in Sec.2.5. Both of them adopt pseudo
Mersenne prime and then reductions mod p for them are ef-
ficiently computed. However, computation of reduction mod
p may be more efficient for Curve 25519 on CPU with small

words because k of p = 2n − k is smaller,

8Although the authors do not know whether Algorithm 9 is already
known, it may be already known because Algorithm 9 is almost same as
Algorithm 8.
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The coefficient of searched elliptic curves are A = 10, 18
(A′ = 3, 5), on the other hand, one of Curve 25519 is A =
486662 (A′ = 121666). Notice that when A′ = 2, a product
with A′ is reduced to an addition. Hence, the cost of a scalar
multiplication with Curve25519 is 10kM+kMA′ +10k add,
and one with the searched curve is 10kM +11k add by Table
3. In general add is smaller than MA′ .

A reduction mod l can be computed with Algorithm 9 for
searched curves, on the other hand, it cannot be for Curve25519.
Therefore, ECDSA adopting searched curves is expected to
be faster and implemented more efficiently (when it is imple-
mented hardware or CPU with small words) compared with
the ECDSA adopting Curve25519.

6 CONCLUSION

This paper searched three elliptic curves suitable for ECDSA.
In these curves, not only the reduction mod p but also the re-
duction mod l can be computed at high speed, where p is of
Fp and l is the order of a base point. and doubling is faster
because of a coefficient of curves A = 10 or 18. ECDSA
adopting the searched curves has the same security as ECDSA
adopting Curve 25519, and it can process faster.

The authors would like to evaluate implementation results
as future work. Also, they would like to extend the search
range of the suggested program in Fig. 2 and to execute it.
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