
Regular Paper

A Distributed Internet Live Broadcasting System for Multi-Viewpoint Videos

Satoru Matsumoto*, Tomoki Yoshihisa*, Tomoya Kawakami**, and Yuuichi Teranishi***

*Cybermediacenter, Osaka University, Japan
** Graduate School of Information Science, Nara Institute of Science and Technology, Japan

***National Institute of Information and Communications Technology, Japan
smatsumoto@cmc.osaka-u.ac.jp

Abstract—With the recent popularization of omnidirec-
tional cameras, multi-viewpoint live videos are now often
broadcast via the Internet. Multi-viewpoint live broadcasting
services allow viewers to change their viewpoints arbitrarily.
To reduce the computational load of video processes such as
effect additions, various distributed Internet live broadcast-
ing systems have been developed. These systems are de-
signed for single-viewpoint live videos, in which the screen
images (images to be watched by viewers) are the same for
all viewers. However, in multi-viewpoint Internet live
broadcasting services, the screen images differ according to
the viewpoint selected by the viewer. Thus, one of the main
research challenges for multi-viewpoint Internet live broad-
casting is how to reduce the computational load of adding
effects under different screen images. In this paper, we pro-
pose and develop a distributed multi-viewpoint Internet live
broadcasting system. To distribute the computational load of
video processes, our proposed system adopts ECA (event,
condition, action) rules. For the systems using ECA rules, it
is difficult to determine whether effects should be added on
the server side or the player side. To determine this to re-
duce the computational load effectively, we classify ECA
rules.

Keywords: Streaming Delivery, Internet Live Broadcasting,
Multi-viewpoint Camera

1 INTRODUCTION

With the recent popularization of omnidirectional cameras,
multi-viewpoint live videos are often broadcast through the
Internet. In multi-viewpoint Internet live broadcasting ser-
vices, viewers can arbitrarily change their viewpoints. For
example, major live broadcasting services such as YouTube
Live and Facebook provide 360° videos in which each user
can select their desired viewpoint. In recent Internet live
broadcasting services, viewers or broadcasters have been
able to add video or audio effects to the broadcast videos.
To reduce the computational load including them for adding
such effects, a number of distributed Internet live broadcast-
ing systems have been developed [1], [2].

These systems are designed for single-viewpoint live vid-
eos, and the screen images (images to be watched by view-
ers) are the same for all viewers. Therefore, screen images
can be shared among processing servers, and the computa-
tional load can be reduced by exploiting distributed compu-

ting systems. However, in multi-viewpoint Internet live
broadcasting services, the screen images differ according to
the viewpoint selected by the user. Thus, screen images can-
not be shared among processing servers. Here, one of the
main research challenges for multi-viewpoint Internet live
broadcasting systems is how to reduce the computational
load required to add effects under different screen images.

In this paper, focusing on this challenge, we propose and
develop a distributed multi-viewpoint Internet live broad-
casting system. In our proposed system, video effects that
can be shared among viewers are added by some distributed
processing servers (i.e., on the server side). Video effects
that cannot be shared among viewers are added by video
players (i.e., on the player side). In such systems, it is diffi-
cult to determine whether it is better to add effects on the
server side or player side. To determine this so as to effec-
tively reduce the computational load, we use grouped rules.
Moreover, we develop a distributed multi-viewpoint Internet
live broadcasting system adopting our proposed rules system.

The remainder of this paper is organized as follows. In
Section 2, we introduce some related work. We describe the
design and the architecture of our proposed system in Sec-
tion 3. Evaluation results are presented in Section 4 and dis-
cussed in Section 5. Finally, we conclude this paper in Sec-
tion 6.

2 RELATED WORK

Some systems for distributing video processing loads have
been proposed. Most of them fix load distribution proce-
dures in advance. However, starting Internet live broadcast-
ing is easy in recent years, and it is difficult to grasp which
machines start Internet live broadcastings. Therefore, con-
ventional systems establish load distributions at server side.

MediaPaaS encodes, re-encodes, and delivers video using
a server machine provided by cloud computing services [2].
Different from MediaPaas, our proposed system establishes
load distributions using PIAX [3], a P2P agent platform. The
system has multiple servers to broadcast videos, and once a
client (video recording terminal) connects to a server to
broadcast its recorded video, one of the servers is randomly
selected by the load distribution server. The loads caused by
broadcasting videos are distributed among the servers. In [1],
we confirmed that the video processing time for encoding
and distributing videos can be reduced by distributing the
processing load to some servers.

International Journal of Informatics Society, VOL.11, NO.2 (2019) 117-124 117

ISSN1883-4566 © 2019 - Informatics Society and the authors. All rights reserved.

An Internet live broadcasting system that allows the view-
ing of recently recorded videos (playback) was proposed in
[4]. Several methods have been proposed for reducing the
delay time for the distribution of videos in live Internet
broadcasting. SmoothCache 2.0 [5], video data from other
peers are cached and distributed among a P2P network. As a
result, the communication load and delay times are reduced.
Dai et al. also proposed a distributed video broadcasting
system using P2P networks to reduce delay times [6]. In the
HD method proposed in [7], communication traffic is re-
duced by simultaneously transmitting image data to a num-
ber of viewers using one-to-many broadcasting with one-to-
one communication. Even in our proposed system, these
delay reduction methods can be applied when delivering
videos, but our current research considers the addition of
video or audio effects.

Gibbon et al. proposed a system that performs video pro-
cessing by transferring the data captured by a camera to a
computer with high processing capabilities [8]. Ting et al.
proposed a system that directly stores images captured by
computers with low processing power in external storage
devices, such as cloud storage [9]. However, these systems
target stored video data and cannot be applied to live Inter-
net broadcasting.

J. Bae et al. proposed a concept of blocks to classify pro-
cessing flows into several patterns. A block is a minimal
unit that specifies the behaviors represented in a process
model [10]. A. Frömmgen et al. proposed a learning algo-
rithm of complex nonlinear network nodes by genetic algo-
rithm and ECA rules in [11]. As described in these papers, it
is important to learn effective sequences to execute ECA
rules. These are not focused on multi-viewpoint image pro-
cessing. We propose a model focused on image processing
with multi-viewpoint image processing.

3 DISTRIBUTED INTERNET LIVE

BROADCASTING SYSTEM

In this section, we explain our previously developed
cloud-based live broadcasting system using ECA (event,
condition, action) rules. After that, we explain our proposed
multi-viewpoint Internet live broadcasting system.

3.1 Different World Broadcasting System

3.1.1 Summary

In our previous research [1], we constructed a different-
world broadcasting system using virtual machines (VMs)

provided by a cloud service. These machines work as the
different world broadcasting servers that add video effects.
In general, a number of VMs can easily be used in a cloud
service. The use of multiple VMs as different world broad-
casting servers enable a high-speed addition of effects by
distributing the load among different world broadcasting
servers. Therefore, we implemented a distributed live Inter-
net broadcasting system using the cloud service and evaluat-
ed its performance. In our developed system, video effect
additions are executed on the VMs provided by the cloud
service.

Processing loads on different world broadcasting servers
can be distributed by considering the load distribution when
selecting a server. In conventional systems, load distribution
is established by connecting processing servers via a load
balancing mechanism such as a load balancer. In this meth-
od, when the load distribution mechanism needs to switch to
another server while the video is being transmitted, the con-
nection is interrupted. For this reason, it is difficult to switch
servers while keeping smooth video plays. Therefore, in the
different world broadcasting system, the load balancing
mechanism selects a different world broadcasting server
based on the requests.

3.1.2 System Architecture

The system architecture of the different world broadcast-
ing system is shown in Fig. 1. There are three types of ma-
chine. The first is the client, which has cameras and records
live videos. The second is the different world broadcasting
servers, which execute processes for videos such as encod-
ing, decoding, or video effect additions. The third type is the
viewer, which plays the live videos. Each client selects a
different world broadcasting server that executes the desired
video effect, and transmits the video effect library and the
recorded video to the different world broadcasting server.
The different world broadcasting server is a VM of the
cloud service that executes video processing on the video
transmitted from the clients according to their requests. The
video processed by the different world broadcasting server
is delivered to the viewers via the video distributions service.
In the system, viewers receive the processed video after se-
lecting the server or channel of the video distributions ser-
vice.

・・・・・・

・・・・・・

・・・・・・

Video recording
terminal

Different World
Broadcasting Servers

Video receiving
terminal

Video distribution service

1.Server Selection Policy

3.Process dispatching

2.Server selection

VM

PIAX

Cloud service

Figure 1: System architecture of the
different world broadcasting system

DWServer

PEffector

DWServer

PEffector

DWServer

PEffector

Search active group

(A new client connects to a server in the discovery valid group)

ECA rules：
Request event ➡

In case of vector type effect : recommended

In case of scalar type effect : not recommended etc・・・

P : process

Video Processing
terminal

PDistribution
source

Video Processing
terminal

PDistribution
source

Video Processing
terminal

PDistribution
source

Video Processing
terminal

PDistribution
source

Figure 2: Load distribution mechanism using PIAX

118 S. Matsumoto et al. / A Distributed Internet Live Broadcasting System for Multi-Viewpoint Videos

ｙ

x

ｚ

Ｏ
Ｒ

Ｐ（ｘ,ｙ,ｚ）

Ｐ'

Q

w

（ｘ,ｙ）

(1)

Figure 4: An image of the coordinate conversion

3.1.3 Load Distribution Mechanism

Figure 2 shows the load distribution mechanism of our de-
veloped system. The client software and the client side PI-
AX system are installed in the client. The different world
broadcasting server software and the server side PIAX sys-
tem is installed on the different world broadcasting servers.
PIAX [3] is an open-source, Java-based platform middle-
ware that enables efficient server resource searches using
the resource search function of the overlay network. The
PIAX systems used by the client and the different world
broadcasting servers connect with each other via the overlay
network. The client side PIAX system searches the overlay
network according to the client software requests. The sys-
tem selects a different world broadcasting server from the
list, and then the client side PIAX system returns the IP ad-
dress of the selected server and listens to the stated port
number of the server software. The client software then es-
tablishes a connection with the different world broadcasting
server and starts transmitting the video. New connections
from the client are controlled based on the load state of the
different world broadcasting server.

3.2 Extension of Different World Broadcast-

ing System

Figure 3 shows an overview of our designed multi-
viewpoint Internet live broadcasting system. As shown in
the figure, our system converts the coordinates of videos
from polar to rectangular when different world broadcasting
servers execute processing. After that, the video images are
delivered to viewers.

 In this section, we first explain image conversion of
multi-viewpoint videos and our design of ECA rules for
multi-viewpoint videos. Then show some examples of ECA
rules.

3.2.1 Image Conversion of Multi-Viewpoint

Videos

With omnidirectional cameras, it is not realistic to take
dozens of omnidirectional images from a certain viewpoint
and synthesize them on a computer to create a panoramic
image. Instead, we create multi-viewpoint videos from pan-
oramic images. The lower left part of Fig. 5 shows two pan-
oramic images (front and back) for a multi-viewpoint video.
These panoramic images were obtained from cameras using
fisheye lenses. It is necessary to convert these images into a
planar image. There are many methods that obtain wide im-
ages from car-mounted fisheye lenses and correct the distor-
tion [12]. Figure 4 shows how to obtain a wide image from a
panoramic image in our proposed system. As shown in this
figure, the wide images are obtained by assuming an imagi-
nary hemispherical border for the panoramic images. The
converted wide image is shown in the upper left part of Fig.
5. The conversion transforms virtual hemispherical polar
coordinates into rectangular coordinates using the equation
(1). In our proposed system, the distributed processing of
polar/rectangular coordinates is performed using a different
world broadcasting server.

Figure 5: Server software and client software

Figure 3: An overview of our designed distributed
multi-viewpoint Internet live broadcasting system

International Journal of Informatics Society, VOL.11, NO.2 (2019) 117-124 119

Table 1: Events in Communication
Event Name Description
Receive_Data Occurs when receives data.
Finish_Transmission Occurs when data transmission

finishes.
Computer_Request Occurs when recommend server

request.
Change_Server Occurs when DWS server is busy

Table 2: Variables for Conditions in Communication
Variable Name Description
Data[] Received data
Transmission_Result Result of transmission
Turn-around-avg Turn around time average
T-around-avg-diff Turn around time average previ-

ous differential

Table 3: Actions in Communication
Action Name Description
Dispatch Launch Dispatcher

3.2.2 Example of ECA Rules Set

In multi-viewpoint Internet live broadcasting services, the
screen images differ according to the viewpoint selected by
the user. Thus, the processes for adding effects are usually
executed on the users’ computers. On the other hand, gen-
eral processes for Internet live broadcasting such as video
encoding, video distribution are executed on the broadcast-
er’s computer or the distribution servers. This means that
processes for distributed multi-viewpoint
Internet live broadcasting systems have some types. We
design three types for ECA rules. One is the effect type that
is related to video effects. The viewers’ computers are suita-
ble for the execution of this type because they do not need to
transmit video data to others. Other one is the communica-
tion type and the rules in this type is executed on the com-
puters performing communications. The last one is the pro-
cessing type. The DWB servers are suitable for the execu-
tion of this type because they execute these processes.

3.2.3 Design of ECA Rules for Multi-

Viewpoint Videos

Video effects have various procedures. For example, the
face detection process is generally performed before the
mosaic effect is applied to the detected face. The “Timer” or
“Message” functions of the ECA rules in the proposed sys-
tem can define such procedures. If the procedure is defined
in order-dependent ECA rules, the system needs to execute
the rules according to the sequence. Otherwise, if the ECA
rules do not depend on the processing request, the system
can execute the rules concurrently. This reduces the pro-
cessing time compared with order-dependent ECA rules. In
the current system, it is impossible to process ECA rules in
parallel. The parallel processing of cloud computing ser-
vices is left as a future task. Lists of events, conditions, and
actions are described in our previous research [1]. We list
some of them in Tables 1-3. Figure 6 shows an example of
two ECA rules. In this example, the servers with IP address-
es 192.168.0.5 and 6 are assigned as initial machines for the
video processing requests from video recording terminals
for the condition named “Num_Find_Object” and “Spheri-
cal_coordinates_Convert.”

In cases where the processes of ECA rules have a se-
quence, the system should execute the processes in the order
of the sequence. For example, Fig. 7 shows an example of
the sequences of ECA rules. Some example sequences fol-
low:

• 1. Is it a fisheye lens image? → Perform full spherical
coordinate transformation → Human detection.

• 2. Are humans in the image → Who? → Match with a
specific person → Blur is applied.

• 3. Are humans in the image → Is it a known person
registered in the DB? → If it is an unregistered person,
blur.

The ECA rules are classified into hierarchies of detection,
conversion, inquiry, and pixel processing.

3.2.4 Implementation of Proposed System

We developed a distributed live Internet broadcasting sys-
tem using Microsoft Azure as a cloud service. The different

world broadcasting servers run on the VMs provided by

Frame Get

Plane

Image

Not Human Human

Known

Rectangle

Not Known

Blur

Fisheye

Image

Plane

convert

Not Human Human

Person A

Red

Rectangle

Other person

Initialization

Convert

Recognize

Drawing

Figure 7: Examples of hierarchical ECA rules

Figure 6: Examples of ECA rules

120 S. Matsumoto et al. / A Distributed Internet Live Broadcasting System for Multi-Viewpoint Videos

Table 4: Specifications of Microsoft Azure VMs
OS Microsoft Windows Server 2016
Microsoft Azure
Plan

Standalone Server Microsoft Corporation
Virtual Machine x64-based PC

CPU Intel E5-2697 v3 Equivalent 2.4GHz
Main memory 3.584GB

Table 5: Specifications of Client PCs
Client PC1 Client PC2 Client PC3

OS Microsoft Win-
dows 10 Pro
Version
1709,1511

Microsoft Win-
dows 10 Pro
Version
1709,1511

Microsoft
Windows 10
Pro Version
1709,1511

CPU Intel i7-7660U
Equivalent
2.5GHz

Intel i5-6300U
Equivalent
2.4GHz

Intel i3-
4020Y
Equivalent
1.5GHz

Main
memory

8.00 GB 8.00 GB 4.00 GB

Azure. Each VM is logically connected through a virtual
network, which is one of the services provided by Microsoft
Azure. Figure 5 shows a screenshot of the server software
and client software. When starting the process of adding
video effects, it provides an interface of the different world
broadcasting server software. Using the client software, we
can visually check the result of applying the selected effects.
The client software holds the IP address of different world
broadcasting servers from which video processing can be
requested. If the “Apply distributed processing” checkbox in
the client software dialog box is selected, the client software
requests the different world broadcasting server to execute
the video processing specified by the pull-down menu of the
initial IP address.

4 EXPERIMENTAL EVALUATION

We evaluated the performances of our implemented sys-
tem.

4.1 Experimental System

In this evaluation, a different world broadcasting server
was running on a VM provided by the Microsoft Azure ser-
vice. Table 4 lists the specifications of the VM and OS. We
used five different VMs for different world broadcasting
servers. Open CV, parallelized by Intel’s Parallel Compu-

ting Library TBB [13], was used as a library for executing
video processing on different world broadcasting servers.
The clients were PCs installed at Osaka University. Table 5
lists the specifications of the client PCs. We attached a full
omnidirectional camera to only one PC. These PCs commu-
nicated with different world broadcasting servers via differ-
ent home optical networks to avoid network congestion.

4.2 Evaluation Environment

We used a Theta S (RICHO Co., Ltd.) omnidirectional
camera for evaluating our proposed system. Each video
frame was encoded in JPEG format, transmitted, and re-
ceived as a USB virtual camera. Image conversion and rule
processing were realized by different world broadcasting. In
the evaluation, we measured the time from the start of gen-
erating the original image data to the time that the processed
image data were obtained. To confirm the efficiency of the
proposed system, the video processing time, including the
processing time of the ECA rule and the turnaround time,
was measured as evaluation items.

This includes the following four items:
a) Preprocessing time during which the client receives data

(same as the time from the end of reception of previous
frame data to the start of the next frame data transmission).

b) Communication time, while different world broadcast-
ing servers receive frame data.

c) Processing time on different world broadcasting servers.
d) Communication time during which the client receives

frame data from a different world broadcasting server.
The video processing time is defined as the time from the

start of the video processing, excluding the video data recep-
tion time, to the end of the processing.

To select an available different world broadcasting server,
we used the PIAX overlay network described in subsection
3.1. When a different world broadcasting server overloads,
the server sends a notification to the PIAX process on the
server side and waits until the load has decreased. The turna-
round time of the evaluation was measured in two cases.
The first case is a concentrated case in which three clients
request video processing from one of three different world
broadcasting servers. The second case is a completely dis-
tributed scenario in which each of the client requests is sent
to a different server.

As the video image processing for the evaluation
experiments, face detections are executed on the processing
servers after the coordinate conversions.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300 350 400

Tu
rn

 a
ro

u
n

d
 T

im
e[

m
se

c.
]

Frame number

1 Server

PC1 PC2 PC3

Figure 8: Turnaround times under one cloud server

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300 350 400

Tu
rn

 a
ro

u
n

d
 t

im
e[

m
se

c.
]

Frame number

3 Servers

PC1 PC2 PC3

Figure 9: Turnaround times under three cloud servers

International Journal of Informatics Society, VOL.11, NO.2 (2019) 117-124 121

4.3 Influence of the Number of Servers

Processes were assigned among the different world broad-
casting servers based on ECA rules.

Figures 8 and 9 show the evaluation results of the turna-
round time under the evaluation environment described in
Section 4.1. The horizontal axis is the recorded frame num-
ber, and the vertical axis is the turnaround time. In Fig. 8,
which shows the case where the load is concentrated on a
single different world broadcasting server, the turnaround
times gradually increase. Figure 9 shows the case where the
image processing requests are distributed to three different
world broadcasting servers. In this case, the turnaround time
is less than 1500 ms, and the processing delay is around
7500 ms.

In the real environment of Microsoft Azure, the different
world broadcasting server from which PC 2 requests image
effect processing is a VM in the East Japan region. There-
fore, there were variations in the communication route, and
the turnaround time changes largely.

We also measured the turnaround time required to change
the processing server to the recommended different world
broadcasting server by PIAX. The average time required to
process a query for determining the recommended different
world broadcasting server was 16 ms.

As a result, we confirmed that the processing requests are
allocated to the different world broadcasting servers based
on the ECA rule, and the load is distributed. Moreover, we
confirmed that the turnaround time might fluctuate, even for
VMs with similar hardware performance, under the effects
of communication delays.

4.4 Influence of Computational Load

We measured the turnaround times, changing the loads of
DWB servers. To change the loads, we gradually increased
the load caused by human face detection every one frame
and measured the turnaround time. The results are shown in
Figures 10 and 11.

The turnaround times were measured to determine whether
the load is concentrated on one virtual server or not. The
turnaround times were approximately 1000 ms in this exper-
iment. We have measured the turnaround time for single-
viewpoint videos in previous research [14]. The turnaround

times were approximately 16 ms. Comparing with this result,
the turnaround times for multi-viewpoint videos are longer
because the data amount is larger.

5 DISCUSSION

5.1 Fluctuation of Turnaround Times

In our evaluation experiments, even when the calculation
load was distributed among the three servers, video pro-
cessing was sometimes concentrated on only one server. We
used two networks for evaluation. (NTT’s FLET’S Hikari
and K-Opticom’s eo light). When requests are concentrated
on one different world broadcasting server, the turnaround
time is relatively long. When requests from clients are con-
centrated on a single server, the processing load is distribut-
ed to the different world broadcasting server.

Moreover, the video processing involved detecting faces in
the video using the specified effect described in the ECA
rule. Results using the test rules are shown in Figures 10 and
11, which confirm the fluctuations in turnaround time
among cloud computing service VMs. This is caused by
actual server performance fluctuations due to differences in
the cloud environment of the network distance. Such issues
should be considered when the user configures the system.

5.2 Effectiveness of ECA Rules

In previous research, we implemented a distributed Inter-
net live broadcasting system using a cloud service and eval-
uated its performance. In the installed system, the pro-
cessing of additional effects is performed using the VM pro-
vided by the cloud service. By determining which pro-
cessing should be allocated to the VM using the ECA rule, it
is possible to flexibly change the computer that executes the
processing. As a result of our previous evaluations, we con-
firmed that the turnaround time of the effect adding process
could be reduced. As an ECA rule for load balancing to be
given to client software, the effect selection made by the
client software is set as an event, and a list of corresponding
enquiries is set in advance as an IP address. As a result, the
server selection is performed automatically and smoothly in
the process of adding special video effects.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350 400

Tu
rn

 a
ro

u
n

d
 T

im
[m

se
c.

]

Frame number

1 Server

PC1 PC2 PC3

Figure 10: Turnaround time under one server

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350 400

Tu
rn

 a
ro

un
d

ti
m

e
[m

se
c.

]

Frame number

3 Servers

PC1 PC2 PC3

Figure 11: Turnaround time under three servers

122 S. Matsumoto et al. / A Distributed Internet Live Broadcasting System for Multi-Viewpoint Videos

In cases where the processes of an ECA rule have se-
quences, the system should execute the processes in the or-
der of the sequence. Otherwise, the system can execute them
in parallel.

In this paper, we have proposed grouped three-stage rules.
After the rules have been prepared, the location for their
processing is selected to be either: (1) a local client, (2) edge
computing, or (3) cloud computing. An image of the
grouped rules is shown in Fig. 12, and the example rules are
shown in Fig. 13. In this rule system, the different world
broadcasting server that adds the video effects changes as
the performance of the current server varies.

6 CONCLUSION

In this research, we have proposed and developed a multi-
viewpoint distributed live Internet (different world)
broadcasting system. One of the main research challenges
for multi-viewpoint Internet live broadcasting systems is
how to reduce the computational load required to add effects
under different screen images. Our proposed system adopts
ECA rules for executing video processes. In this research,
we focused on which computer executes the rules, we
classified the rules into three types. Each type has a suitable
computer for its execution. By classifying ECA rules to
these types, our proposed system establishes appropriate
execution of rules for video processes.

In future work, we plan to exploit edge computing envi-
ronments in which computers on the edge of the Internet can
execute video processes. This could reduce the processing
time because edge computers have short turnaround times.

ACKNOWLEDGMENT

This research was supported by a Grants-in-Aid
for Scientific Research (C) numbered JP17K00146
 and JP18K11316, and by I-O DATA Foundation.

REFERENCES

[1] S. Matsumoto, Y. Ishi, T. Yoshihisa, T. Kawakami,
and Y. Teranishi, “Different Worlds Broadcasting: A
Distributed Internet Live Broadcasting System with
Video and Audio Effects,” in Proc. of IEEE Interna-
tional Conference on Advanced Information Network-
ing and Applications (AINA), pp. 71-78 (2017).

[2] S. Matsumoto, Y. Ishi, T. Yoshihisa, T. Kawakami,
and Y. Teranishi, “A Design and Implementation of
Distributed Internet Live Broadcasting Systems En-
hanced by Cloud Computing Services,” in Proc. of In-
ternational Workshop on Informatics (IWIN), pp. 111-
118 (2017).

[3] M. Yoshida，T. Okuda，Y. Teranishi，K. Harumoto,
and S. Shimojyo, “PIAX: A P2P Platform for Integra-
tion of Multi-overlay and Distributed Agent Mecha-
nisms,” Transactions of Information Processing Socie-
ty of Japan， Vol. 49, No. 1, pp. 402-413 (2008).

[4] Y. Gotoh, T. Yoshihisa, H. Taniguchi, and M. Kana-
zawa, “Brossom: a P2P Streaming System for
Webcast,” Journal of Networking Technology, Vol. 2,
No. 4, pp. 169-181 (2011).

[5] R. Roverso, R. Reale, S. El-Ansary, and S. Haridi,
“Smooth-Cache 2.0: CDN-quality adaptive HTTP live
streaming on peer-to-peer overlays,” in Proc. of ACM
Multi-media Systems Conference (MMSys), pp. 61-72
(2015).

[6] J. Dai, Z. Chang, and G.S.H. Chan, “Delay optimiza-
tion for multi-source multi-channel overlay live
streaming,” in Proc. of the IEEE International Confer-
ence on Commu-nications (ICC), pp. 6959-6964
(2015).

[7] T. Yoshihisa and S. Nishio, “A division-based broad-
casting method considering channel bandwidths for
NVoD services,” IEEE Transactions on Broadcasting,
Vol. 59, No. 1, pp. 62-71 (2013).

[8] D. Gibbon and L. Begaja, “Distributed processing for
big data video analytics,” IEEE ComSoc MMTC E-
Letter, Vol. 9, No. 3, pp. 29-31 (2014).

[9] W.-C. Ting, K.-H. Lu, C.-W. Lo, S.-H. Chang, and P.C.
Liu, “Smart Video Hosting and Processing Platform
for Internet-of-Things,” in Proc. of IEEE International
Conference on Internet of Things (iThings), pp. 169-
176 (2014).

Figure 12: Image of the hierarchical rules

Figure 13: Example of ECA rules

International Journal of Informatics Society, VOL.11, NO.2 (2019) 117-124 123

[10] J. Bae, H. Bae, S. Kang, and Y. Kim, “Automatic
Control of Workflow Processes Using ECA Rules,”
IEEE Transaction On Knowledge and Data Engineering,
Vol. 16, No. 8, pp. 1010-1023 (2004).

[11] A. Frömmgen, R. Rehner, M.Lehn, and A. Buchmann,
“Fossa: Using Genetic Programming to Learn ECA
Rules for Adaptive Networking Applications,” IEEE
Conference on Local Computer Networks (LCN),
pp.197-200 (2015).

[12] J. Jeong, H. Kim, B. Kim, and S. Cho, “Wide Rear
Vehicle Recognition Using a Fisheye Lens Camera Im-
age” IEEE Asia Pacific Conference on Circuits and Sys-
tems (APCCAS), pp. 691-693 (2016).

[13] Thread Building Blocks,
https://www.threadingbuildingblocks.org/,

(referred October 1, 2017).
[14] S. Matsumoto, Y. Ishi, T. Yoshihisa, T. Kawakami,

and Y. Teranishi, “A Distributed Internet Live Broad-
casting System Enhanced by Cloud Computing Ser-
vices,” International Journal of Informatics Society
(IJIS), Vol. 10, No. 1, pp. 21-29 (2018).

Satoru Matsumoto received his
Diploma’s degrees from Kyoto
School of Computer Science, Japan,
in 1990. He received his Master’s
degrees from Shinshu University,
Japan, in 2004. From 1990 to 2004,
he was a teacher in Kyoto School of
Computer Science. From 2004 to

2007, he was Assistant Professor of The Kyoto College
of Graduate Studies for informatics. From 2007 to 2010,
he was Assistant Professor of Office of Society Academ-
ia Collabo-ration, Kyoto University. From 2010 to 2013,
he was Assistant Professor of Research Institute for Eco-
nomics & Business Administration, Kobe University.
From 2015 to 2016, he was a specially appointed assis-
tant professor of Cybermedia Center, Osaka University.
From April 2016 to September 2016, he became a spe-
cially appointed researcher. Since November 2016, he
became an assistant professor. His research interests in-
clude distributed processing systems, rule-based systems,
and stream data processing. He is a member of IPSJ, IE-
ICE, and IEEE

Tomoki Yoshihisa received the
Bachelor’s, Master’s, and Doctor’s
degrees from Osaka University,
Osaka, Japan, in 2002, 2003, 2005,
respectively. Since 2005 to 2007, he
was a research associate at Kyoto
University. In January 2008, he
joined the Cybermedia Center, Osa-

ka University as an assistant professor and in March
2009, he became an associate professor. From April 2008
to August 2008, he was a visiting researcher at Universi-
ty of California, Irvine. His research interests include

video-ondemand, broadcasting systems, and webcasts.
He is a member of the IPSJ, IEICE, and IEEE.

Tomoya Kawakami received his
B.E. degree from Kinki University
in 2005 and his M.I. and Ph.D. de-
grees from Osaka University in 2007
and 2013, respectively. From 2007
to March 2013 and from July 2014
to March 2015, he was a specially
appointed researcher at Osaka Uni-

versity. From April 2013 to June 2014, he was a Ph.D.
researcher at Kobe University. Since April 2015, he has
been a assistant professor at Nara Institute of Science and
Technology. His research interests include distributed
processing systems, rule-based systems, and stream data
processing. He is a member of the IPSJ and IEEE.

Yuuichi Teranishi received his
M.E. and Ph.D. degrees from Osaka
University, Japan, in 1995 and 2004,
respectively. From 1995 to 2004, he
was engaged Nippon Telegraph and
Tele-phone Corporation (NTT).
From 2005 to 2007, he was a Lec-
turer of Cybermedia Center, Osaka

University. From 2007 to 2011, He was an associate pro-
fessor of Graduate School of Information Science and
Technology, Osaka University. Since August 2011, He
has been a research man-ager and project manager of
National Institute of Information and Communications
Technology (NICT). He received IPSJ Best Paper Award
in 2011. His research interests include technologies for
distributed network systems and applications. He is a
member of IPSJ, IEICE, and IEEE．

124 S. Matsumoto et al. / A Distributed Internet Live Broadcasting System for Multi-Viewpoint Videos

(Received April 14, 2019)

