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Abstract—With the recent popularization of omnidirec-
tional cameras, multi-viewpoint live videos are now often 
broadcast via the Internet. Multi-viewpoint live broadcasting 
services allow viewers to change their viewpoints arbitrarily. 
To reduce the computational load of video processes such as 
effect additions, various distributed Internet live broadcast-
ing systems have been developed. These systems are de-
signed for single-viewpoint live videos, in which the screen 
images (images to be watched by viewers) are the same for 
all viewers. However, in multi-viewpoint Internet live 
broadcasting services, the screen images differ according to 
the viewpoint selected by the viewer. Thus, one of the main 
research challenges for multi-viewpoint Internet live broad-
casting is how to reduce the computational load of adding 
effects under different screen images. In this paper, we pro-
pose and develop a distributed multi-viewpoint Internet live 
broadcasting system. To distribute the computational load of 
video processes, our proposed system adopts ECA (event, 
condition, action) rules. For the systems using ECA rules, it 
is difficult to determine whether effects should be added on 
the server side or the player side. To determine this to re-
duce the computational load effectively, we classify ECA 
rules.  

Keywords: Streaming Delivery, Internet Live Broadcasting, 
Multi-viewpoint Camera 

1 INTRODUCTION 

With the recent popularization of omnidirectional cameras, 
multi-viewpoint live videos are often broadcast through the 
Internet. In multi-viewpoint Internet live broadcasting ser-
vices, viewers can arbitrarily change their viewpoints. For 
example, major live broadcasting services such as YouTube 
Live and Facebook provide 360° videos in which each user 
can select their desired viewpoint. In recent Internet live 
broadcasting services, viewers or broadcasters have been 
able to add video or audio effects to the broadcast videos. 
To reduce the computational load including them for adding 
such effects, a number of distributed Internet live broadcast-
ing systems have been developed [1], [2].  

These systems are designed for single-viewpoint live vid-
eos, and the screen images (images to be watched by view-
ers) are the same for all viewers. Therefore, screen images 
can be shared among processing servers, and the computa-
tional load can be reduced by exploiting distributed compu-

ting systems. However, in multi-viewpoint Internet live 
broadcasting services, the screen images differ according to 
the viewpoint selected by the user. Thus, screen images can-
not be shared among processing servers. Here, one of the 
main research challenges for multi-viewpoint Internet live 
broadcasting systems is how to reduce the computational 
load required to add effects under different screen images. 

In this paper, focusing on this challenge, we propose and 
develop a distributed multi-viewpoint Internet live broad-
casting system. In our proposed system, video effects that 
can be shared among viewers are added by some distributed 
processing servers (i.e., on the server side). Video effects 
that cannot be shared among viewers are added by video 
players (i.e., on the player side). In such systems, it is diffi-
cult to determine whether it is better to add effects on the 
server side or player side. To determine this so as to effec-
tively reduce the computational load, we use grouped rules. 
Moreover, we develop a distributed multi-viewpoint Internet 
live broadcasting system adopting our proposed rules system. 

The remainder of this paper is organized as follows. In 
Section 2, we introduce some related work. We describe the 
design and the architecture of our proposed system in Sec-
tion 3. Evaluation results are presented in Section 4 and dis-
cussed in Section 5. Finally, we conclude this paper in Sec-
tion 6. 

2 RELATED WORK 

Some systems for distributing video processing loads have 
been proposed. Most of them fix load distribution proce-
dures in advance. However, starting Internet live broadcast-
ing is easy in recent years, and it is difficult to grasp which 
machines start Internet live broadcastings. Therefore, con-
ventional systems establish load distributions at server side. 

MediaPaaS encodes, re-encodes, and delivers video using 
a server machine provided by cloud computing services [2]. 
Different from MediaPaas, our proposed system establishes 
load distributions using PIAX [3], a P2P agent platform. The 
system has multiple servers to broadcast videos, and once a 
client (video recording terminal) connects to a server to 
broadcast its recorded video, one of the servers is randomly 
selected by the load distribution server. The loads caused by 
broadcasting videos are distributed among the servers. In [1], 
we confirmed that the video processing time for encoding 
and distributing videos can be reduced by distributing the 
processing load to some servers. 
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An Internet live broadcasting system that allows the view-
ing of recently recorded videos (playback) was proposed in 
[4]. Several methods have been proposed for reducing the 
delay time for the distribution of videos in live Internet 
broadcasting. SmoothCache 2.0 [5], video data from other 
peers are cached and distributed among a P2P network. As a 
result, the communication load and delay times are reduced. 
Dai et al. also proposed a distributed video broadcasting 
system using P2P networks to reduce delay times [6]. In the 
HD method proposed in [7], communication traffic is re-
duced by simultaneously transmitting image data to a num-
ber of viewers using one-to-many broadcasting with one-to-
one communication. Even in our proposed system, these 
delay reduction methods can be applied when delivering 
videos, but our current research considers the addition of 
video or audio effects. 

Gibbon et al. proposed a system that performs video pro-
cessing by transferring the data captured by a camera to a 
computer with high processing capabilities [8]. Ting et al. 
proposed a system that directly stores images captured by 
computers with low processing power in external storage 
devices, such as cloud storage [9]. However, these systems 
target stored video data and cannot be applied to live Inter-
net broadcasting. 

J. Bae et al. proposed a concept of blocks to classify pro-
cessing flows into several patterns. A block is a minimal 
unit that specifies the behaviors represented in a process 
model [10]. A. Frömmgen et al. proposed a learning algo-
rithm of complex nonlinear network nodes by genetic algo-
rithm and ECA rules in [11]. As described in these papers, it 
is important to learn effective sequences to execute ECA 
rules. These are not focused on multi-viewpoint image pro-
cessing. We propose a model focused on image processing 
with multi-viewpoint image processing. 

3 DISTRIBUTED INTERNET LIVE 

BROADCASTING SYSTEM 

In this section, we explain our previously developed 
cloud-based live broadcasting system using ECA (event, 
condition, action) rules. After that, we explain our proposed 
multi-viewpoint Internet live broadcasting system. 

3.1 Different World Broadcasting System 

3.1.1    Summary 

In our previous research [1], we constructed a different-
world broadcasting system using virtual machines (VMs) 

provided by a cloud service. These machines work as the 
different world broadcasting servers that add video effects. 
In general, a number of VMs can easily be used in a cloud 
service. The use of multiple VMs as different world broad-
casting servers enable a high-speed addition of effects by 
distributing the load among different world broadcasting 
servers. Therefore, we implemented a distributed live Inter-
net broadcasting system using the cloud service and evaluat-
ed its performance. In our developed system, video effect 
additions are executed on the VMs provided by the cloud 
service.  

Processing loads on different world broadcasting servers 
can be distributed by considering the load distribution when 
selecting a server. In conventional systems, load distribution 
is established by connecting processing servers via a load 
balancing mechanism such as a load balancer. In this meth-
od, when the load distribution mechanism needs to switch to 
another server while the video is being transmitted, the con-
nection is interrupted. For this reason, it is difficult to switch 
servers while keeping smooth video plays. Therefore, in the 
different world broadcasting system, the load balancing 
mechanism selects a different world broadcasting server 
based on the requests.  

3.1.2   System Architecture 

The system architecture of the different world broadcast-
ing system is shown in Fig. 1. There are three types of ma-
chine. The first is the client, which has cameras and records 
live videos. The second is the different world broadcasting 
servers, which execute processes for videos such as encod-
ing, decoding, or video effect additions. The third type is the 
viewer, which plays the live videos. Each client selects a 
different world broadcasting server that executes the desired 
video effect, and transmits the video effect library and the 
recorded video to the different world broadcasting server. 
The different world broadcasting server is a VM of the 
cloud service that executes video processing on the video 
transmitted from the clients according to their requests. The 
video processed by the different world broadcasting server 
is delivered to the viewers via the video distributions service. 
In the system, viewers receive the processed video after se-
lecting the server or channel of the video distributions ser-
vice.  

・・・・・・

・・・・・・

・・・・・・
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Figure 1: System architecture of the 
different world broadcasting system 
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Figure 4: An image of the coordinate conversion 

3.1.3 Load Distribution Mechanism 

Figure 2 shows the load distribution mechanism of our de-
veloped system. The client software and the client side PI-
AX system are installed in the client. The different world 
broadcasting server software and the server side PIAX sys-
tem is installed on the different world broadcasting servers. 
PIAX [3] is an open-source, Java-based platform middle-
ware that enables efficient server resource searches using 
the resource search function of the overlay network. The 
PIAX systems used by the client and the different world 
broadcasting servers connect with each other via the overlay 
network. The client side PIAX system searches the overlay 
network according to the client software requests. The sys-
tem selects a different world broadcasting server from the 
list, and then the client side PIAX system returns the IP ad-
dress of the selected server and listens to the stated port 
number of the server software. The client software then es-
tablishes a connection with the different world broadcasting 
server and starts transmitting the video. New connections 
from the client are controlled based on the load state of the 
different world broadcasting server. 

3.2 Extension of Different World Broadcast-

ing System 

Figure 3 shows an overview of our designed multi-
viewpoint Internet live broadcasting system. As shown in 
the figure, our system converts the coordinates of videos 
from polar to rectangular when different world broadcasting 
servers execute processing.  After that, the video images are 
delivered to viewers. 

  In this section, we first explain image conversion of 
multi-viewpoint videos and our design of ECA rules for 
multi-viewpoint videos. Then show some examples of ECA 
rules. 

3.2.1  Image Conversion of Multi-Viewpoint 

Videos 

With omnidirectional cameras, it is not realistic to take 
dozens of omnidirectional images from a certain viewpoint 
and synthesize them on a computer to create a panoramic 
image. Instead, we create multi-viewpoint videos from pan-
oramic images. The lower left part of Fig. 5 shows two pan-
oramic images (front and back) for a multi-viewpoint video. 
These panoramic images were obtained from cameras using 
fisheye lenses. It is necessary to convert these images into a 
planar image. There are many methods that obtain wide im-
ages from car-mounted fisheye lenses and correct the distor-
tion [12]. Figure 4 shows how to obtain a wide image from a 
panoramic image in our proposed system. As shown in this 
figure, the wide images are obtained by assuming an imagi-
nary hemispherical border for the panoramic images. The 
converted wide image is shown in the upper left part of Fig. 
5. The conversion transforms virtual hemispherical polar
coordinates into rectangular coordinates using the equation
(1). In our proposed system, the distributed processing of
polar/rectangular coordinates is performed using a different
world broadcasting server.

Figure 5: Server software and client software 

Figure 3: An overview of our designed distributed 
multi-viewpoint Internet live broadcasting system 
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Table 1: Events in Communication 
Event Name Description 
Receive_Data Occurs when receives data. 
Finish_Transmission Occurs when data transmission 

finishes. 
Computer_Request Occurs when recommend server 

request. 
Change_Server Occurs when DWS server is busy 

Table 2: Variables for Conditions in Communication 
Variable Name Description 
Data[] Received data 
Transmission_Result Result of transmission 
Turn-around-avg Turn around time average 
T-around-avg-diff Turn around time average previ-

ous differential 

Table 3: Actions in Communication 
Action Name Description 
Dispatch Launch Dispatcher 

3.2.2 Example of ECA Rules Set 

In multi-viewpoint Internet live broadcasting services, the 
screen images differ according to the viewpoint selected by 
the user. Thus, the processes for adding effects are usually 
executed on the users’ computers. On the other hand, gen-
eral processes for Internet live broadcasting such as video 
encoding, video distribution are executed on the broadcast-
er’s computer or the distribution servers. This means that 
processes for distributed multi-viewpoint  
Internet live broadcasting systems have some types. We 
design three types for ECA rules. One is the effect type that 
is related to video effects. The viewers’ computers are suita-
ble for the execution of this type because they do not need to 
transmit video data to others. Other one is the communica-
tion type and the rules in this type is executed on the com-
puters performing communications. The last one is the pro-
cessing type. The DWB servers are suitable for the execu-
tion of this type because they execute these processes. 

3.2.3 Design of ECA Rules for Multi-

Viewpoint Videos 

Video effects have various procedures. For example, the 
face detection process is generally performed before the 
mosaic effect is applied to the detected face. The “Timer” or 
“Message” functions of the ECA rules in the proposed sys-
tem can define such procedures. If the procedure is defined 
in order-dependent ECA rules, the system needs to execute 
the rules according to the sequence. Otherwise, if the ECA 
rules do not depend on the processing request, the system 
can execute the rules concurrently. This reduces the pro-
cessing time compared with order-dependent ECA rules. In 
the current system, it is impossible to process ECA rules in 
parallel. The parallel processing of cloud computing ser-
vices is left as a future task. Lists of events, conditions, and 
actions are described in our previous research [1]. We list 
some of them in Tables 1-3. Figure 6 shows an example of 
two ECA rules. In this example, the servers with IP address-
es 192.168.0.5 and 6 are assigned as initial machines for the 
video processing requests from video recording terminals 
for the condition named “Num_Find_Object” and “Spheri-
cal_coordinates_Convert.” 

In cases where the processes of ECA rules have a se-
quence, the system should execute the processes in the order 
of the sequence. For example, Fig. 7 shows an example of 
the sequences of ECA rules. Some example sequences fol-
low: 

• 1. Is it a fisheye lens image? → Perform full spherical 
coordinate transformation → Human detection.

• 2. Are humans in the image → Who? → Match with a
specific person → Blur is applied.

• 3. Are humans in the image → Is it a known person
registered in the DB? → If it is an unregistered person,
blur.

The ECA rules are classified into hierarchies of detection, 
conversion, inquiry, and pixel processing. 

3.2.4 Implementation of Proposed System 

We developed a distributed live Internet broadcasting sys-
tem using Microsoft Azure as a cloud service. The different 

world broadcasting servers run on the VMs provided by 
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Figure 7: Examples of hierarchical ECA rules 

Figure 6: Examples of ECA rules 
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Table 4: Specifications of Microsoft Azure VMs 
OS Microsoft Windows Server 2016 
Microsoft Azure 
Plan 

Standalone Server Microsoft Corporation 
Virtual Machine x64-based PC 

CPU Intel E5-2697 v3 Equivalent 2.4GHz 
Main memory 3.584GB 

Table 5: Specifications of Client PCs 
Client PC1 Client PC2 Client PC3 

OS Microsoft Win-
dows 10 Pro 
Version 
1709,1511 

Microsoft Win-
dows 10 Pro 
Version 
1709,1511 

Microsoft 
Windows 10 
Pro Version 
1709,1511 

CPU Intel i7-7660U 
Equivalent 
2.5GHz 

Intel i5-6300U 
Equivalent 
2.4GHz 

Intel i3-
4020Y 
Equivalent 
1.5GHz 

Main 
memory 

8.00 GB 8.00 GB 4.00 GB 

Azure. Each VM is logically connected through a virtual 
network, which is one of the services provided by Microsoft 
Azure. Figure 5 shows a screenshot of the server software 
and client software. When starting the process of adding 
video effects, it provides an interface of the different world 
broadcasting server software. Using the client software, we 
can visually check the result of applying the selected effects. 
The client software holds the IP address of different world 
broadcasting servers from which video processing can be 
requested. If the “Apply distributed processing” checkbox in 
the client software dialog box is selected, the client software 
requests the different world broadcasting server to execute 
the video processing specified by the pull-down menu of the 
initial IP address. 

4 EXPERIMENTAL EVALUATION 

We evaluated the performances of our implemented sys-
tem.  

4.1 Experimental System 

In this evaluation, a different world broadcasting server 
was running on a VM provided by the Microsoft Azure ser-
vice. Table 4 lists the specifications of the VM and OS. We 
used five different VMs for different world broadcasting 
servers. Open CV, parallelized by Intel’s Parallel Compu-

ting Library TBB [13], was used as a library for executing 
video processing on different world broadcasting servers. 
The clients were PCs installed at Osaka University. Table 5 
lists the specifications of the client PCs. We attached a full 
omnidirectional camera to only one PC. These PCs commu-
nicated with different world broadcasting servers via differ-
ent home optical networks to avoid network congestion. 

4.2 Evaluation Environment 

We used a Theta S (RICHO Co., Ltd.) omnidirectional 
camera for evaluating our proposed system. Each video 
frame was encoded in JPEG format, transmitted, and re-
ceived as a USB virtual camera. Image conversion and rule 
processing were realized by different world broadcasting. In 
the evaluation, we measured the time from the start of gen-
erating the original image data to the time that the processed 
image data were obtained. To confirm the efficiency of the 
proposed system, the video processing time, including the 
processing time of the ECA rule and the turnaround time, 
was measured as evaluation items.  

This includes the following four items: 
a) Preprocessing time during which the client receives data

(same as the time from the end of reception of previous 
frame data to the start of the next frame data transmission). 

b) Communication time, while different world broadcast-
ing servers receive frame data. 

c) Processing time on different world broadcasting servers.
d) Communication time during which the client receives

frame data from a different world broadcasting server. 
The video processing time is defined as the time from the 

start of the video processing, excluding the video data recep-
tion time, to the end of the processing. 

To select an available different world broadcasting server, 
we used the PIAX overlay network described in subsection 
3.1. When a different world broadcasting server overloads, 
the server sends a notification to the PIAX process on the 
server side and waits until the load has decreased. The turna-
round time of the evaluation was measured in two cases. 
The first case is a concentrated case in which three clients 
request video processing from one of three different world 
broadcasting servers. The second case is a completely dis-
tributed scenario in which each of the client requests is sent 
to a different server. 

As the video image processing for the evaluation 
experiments, face detections are executed on the processing 
servers after the coordinate conversions.  
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4.3 Influence of the Number of Servers 

Processes were assigned among the different world broad-
casting servers based on ECA rules. 

Figures 8 and 9 show the evaluation results of the turna-
round time under the evaluation environment described in 
Section 4.1. The horizontal axis is the recorded frame num-
ber, and the vertical axis is the turnaround time. In Fig. 8, 
which shows the case where the load is concentrated on a 
single different world broadcasting server, the turnaround 
times gradually increase. Figure 9 shows the case where the 
image processing requests are distributed to three different 
world broadcasting servers. In this case, the turnaround time 
is less than 1500 ms, and the processing delay is around 
7500 ms. 

In the real environment of Microsoft Azure, the different 
world broadcasting server from which PC 2 requests image 
effect processing is a VM in the East Japan region. There-
fore, there were variations in the communication route, and 
the turnaround time changes largely. 

We also measured the turnaround time required to change 
the processing server to the recommended different world 
broadcasting server by PIAX. The average time required to 
process a query for determining the recommended different 
world broadcasting server was 16 ms. 

As a result, we confirmed that the processing requests are 
allocated to the different world broadcasting servers based 
on the ECA rule, and the load is distributed. Moreover, we 
confirmed that the turnaround time might fluctuate, even for 
VMs with similar hardware performance, under the effects 
of communication delays. 

4.4 Influence of Computational Load 

We measured the turnaround times, changing the loads of 
DWB servers. To change the loads, we gradually increased 
the load caused by human face detection every one frame 
and measured the turnaround time. The results are shown in 
Figures 10 and 11.  

The turnaround times were measured to determine whether 
the load is concentrated on one virtual server or not. The 
turnaround times were approximately 1000 ms in this exper-
iment. We have measured the turnaround time for single-
viewpoint videos in previous research [14]. The turnaround 

times were approximately 16 ms. Comparing with this result, 
the turnaround times for multi-viewpoint videos are longer 
because the data amount is larger. 

5 DISCUSSION 

5.1 Fluctuation of Turnaround Times 

In our evaluation experiments, even when the calculation 
load was distributed among the three servers, video pro-
cessing was sometimes concentrated on only one server. We 
used two networks for evaluation. (NTT’s FLET’S Hikari 
and K-Opticom’s eo light). When requests are concentrated 
on one different world broadcasting server, the turnaround 
time is relatively long. When requests from clients are con-
centrated on a single server, the processing load is distribut-
ed to the different world broadcasting server.  

Moreover, the video processing involved detecting faces in 
the video using the specified effect described in the ECA 
rule. Results using the test rules are shown in Figures 10 and 
11, which confirm the fluctuations in turnaround time 
among cloud computing service VMs. This is caused by 
actual server performance fluctuations due to differences in 
the cloud environment of the network distance. Such issues 
should be considered when the user configures the system.  

5.2 Effectiveness of ECA Rules 

In previous research, we implemented a distributed Inter-
net live broadcasting system using a cloud service and eval-
uated its performance. In the installed system, the pro-
cessing of additional effects is performed using the VM pro-
vided by the cloud service. By determining which pro-
cessing should be allocated to the VM using the ECA rule, it 
is possible to flexibly change the computer that executes the 
processing. As a result of our previous evaluations, we con-
firmed that the turnaround time of the effect adding process 
could be reduced. As an ECA rule for load balancing to be 
given to client software, the effect selection made by the 
client software is set as an event, and a list of corresponding 
enquiries is set in advance as an IP address. As a result, the 
server selection is performed automatically and smoothly in 
the process of adding special video effects. 
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In cases where the processes of an ECA rule have se-
quences, the system should execute the processes in the or-
der of the sequence. Otherwise, the system can execute them 
in parallel. 

In this paper, we have proposed grouped three-stage rules. 
After the rules have been prepared, the location for their 
processing is selected to be either: (1) a local client, (2) edge 
computing, or (3) cloud computing. An image of the 
grouped rules is shown in Fig. 12, and the example rules are 
shown in Fig. 13. In this rule system, the different world 
broadcasting server that adds the video effects changes as 
the performance of the current server varies.  

6 CONCLUSION 

In this research, we have proposed and developed a multi-
viewpoint distributed live Internet (different world) 
broadcasting system. One of the main research challenges 
for multi-viewpoint Internet live broadcasting systems is 
how to reduce the computational load required to add effects 
under different screen images. Our proposed system adopts 
ECA rules for executing video processes. In this research, 
we focused on which computer executes the rules, we 
classified the rules into three types. Each type has a suitable 
computer for its execution. By classifying ECA rules to 
these types, our proposed system establishes appropriate 
execution of rules for video processes. 

In future work, we plan to exploit edge computing envi-
ronments in which computers on the edge of the Internet can 
execute video processes. This could reduce the processing 
time because edge computers have short turnaround times. 
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