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Abstract - Programs are usually revised to improve per-
formance. In such cases, programmers have to ensure that
the revised program preserves the behavior of the previous
version of the program. Regression testing is performed to
check whether both the revised version and the previous ver-
sion have the same behavior. It, however, requires much time
and large number of test-cases. Tools based on formal method
might reduce the costs. They ensure that two given programs
output the same results for the same inputs based on a logical
analysis of their source code and they perform effective path
search using SAT/SMT solvers. Software Analysis Work-
bench (SAW), a novel tool based on formal methods, can
check whether two given functions in C act in the same be-
havior (conformance verification). SAW, however, has a lim-
itation that it cannot check functions dealing with data struc-
tures. This paper proposes a new technique for conformance
verification on C functions with data structures using SAW.
The technique is based on a kind of bounded model check-
ing. We limit the size of data structures which are generated
by recursive definitions, in order to limit the space to search.
This paper also reports results on performance evaluation that
shows our proposed method works for standard data struc-
tures.

1 INTRODUCTION

C programs are widely used especially in embedded sys-
tems which have a limitation of resources and they are often
revised to improve performance. In such cases, programmers
have to ensure that the revised program preserves the behav-
ior of the previous version of the program. Usually, regression
testing is performed to check whether both of the revised ver-
sion and the previous version have the same behavior. Thus,
it is tedious work and requires large number of test-cases.

Formal technique approach might help to reduce such costs.
Based on formal approaches several tools have been devel-
oped. Such techniques exhaustively check whether two given
programs have always the same output for every same input.
Thus, these tools will find potential bugs or confirm the con-
formance with adequate efficiency. We call this kind of veri-
fication formal conformance verification (FCV).

Recent tools, however, do not fully support programs deal-
ing with dynamic data structures especially recursive data struc-
tures. Such a program sometimes suffers a halting problem in
computability theory.

In this paper, we firstly propose a method for FVC for a
program with recursive data structures. In order to avoid the

Figure 1: Regression Testing versus FCV

halting problem, the method is based on the bounded model
verification technique [1], [2]. We also perform experimental
evaluations using Software Analysis Workbench (SAW) [3].
SAW is a recent formal verification tool. We use SeaHorn
[4] to compare with SAW. SeaHorn is also a recent formal
verification tool for the C language.

The rest of this paper is organized as follows. Section 2
gives the preliminaries, and Section 3 describes the proposed
method. Section 4 describes the experimental evaluation, and
Section 5 discusses the results. Finally, Section 6 summarizes
this paper.

2 PRELIMINARY AND RELATED WORK

In general, testing is the historical and popular method for
checking the quality of source code. For conformance testing,
regression testing is widely used. Regression testing, how-
ever, has a high time cost and workload. It also has the dis-
advantage that the verification becomes incomplete in most
cases.

Figure 1 shows the difference between the conventional re-
gression testing and FCV approach. As a given Code Under
Test (CUT), or CUV Code Under Verification, let us assume
that two functions f and f ′ exist. We want to check that for
any input n, f(n) = f ′(n) holds.

In regression testing, we have to prepare a sufficient num-
ber of test cases (in Fig. 1, we have 40000 cases) and check
all cases by executing a test driver. As we can see, regression
testing requires a substantial amount of time and it does not
cover whole range of input cases.

2.1 Formal Conformance Verification
The following two theorems are well-known results in Com-

putation Theory [5].
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Theorem 1 (Termination Problem (Halting Problem))
The Termination Problem is undecidable.

In other words, ∀f and ∀n ∈ Z|n|, whether f(n) always
terminates or not, is undecidable.

Theorem 2
The general conformance checking problem is undecidable.

In other words, ∀f, f ′ and ∀n ∈ Z|n|, whether f(n) =
f ′(n) always holds or not, is undecidable.

If we restrict the condition, the general conformance check-
ing problem can be decidable. Thus, the restricted confor-
mance checking problem is decidable.

Theorem 3
The restricted conformance checking problem is decidable.

∀f, f ′ and ∀n ∈ Z|n|
t , whether f(n) = f ′(n) always

holds or not, is decidable, provided that both f and f ′ termi-
nate for any n ∈ Z|n|

t , where Zt is a whole set of t-bit integers
for some fixed parameter t.

Proof 3
The size of Zt is 2t. Therefore, the size of Z|n|

t is at most
2t|n|. The assumption guarantees that we think of only func-
tions f and f ′ that always terminate for any bmn ∈ Z|n|

t .
Thus, we can compute the result of f(n) and f ′(n) in fi-
nite steps α(n) and α′(n), respectively. In conclusion, we
can decide if f(n) = f ′(n) always holds, in finite steps
2t|n| ·max(α(n), α(n)). □

In FCV, we check the logical expression ∀n : f(n) =
f ′(n), where functions f and f ′ are expressed in some logical
clauses derived from CUV.

Note that n is usually a vector of bounded integers, such as
a 32-bit integer, thus, the number of check cases is finite.

Form Theorem 3, if we suppose that functions f , and f ′ al-
ways terminate then the expression can be efficiently checked
using SAT/SMT solvers[6]–[12].

SAW and SeaHorn [4] are tools appearing recently to effi-
ciently check all inputs cases.

2.2 SAW
Software Analysis Workbench (SAW) [3] is developed by

Galois inc. It is an open source software which verifies code
written in C or Java using a compiler that generates LLVM, or
JVM (Java Virtual Machine). Some recent formal verification
techniques [13]–[15] use JVM and LLVM as their targets. An
LLVM file is compiled from a C, C++, or Objective-C source
file. LLVM is a virtual machine instruction set (intermedi-
ate representation) and usually used for code optimization in
compilers. It, therefore, supports a three-address code scheme
and the Static Single Assignment form, which facilitate static
analysis for optimizing compiled code. LLVM has pointer
types as well, which is mandatory for compilers of C-family
languages.

SAW supports equivalence checking between two C func-
tions given in the LLVM format. Both symbolic execution
and equivalence checking functions are provided as commands

Figure 2: The architecture of SAW

of a script language used in SAW. SAW also supports prop-
erty checking and has been successfully applied to security
domains such as cryptographic protocol analysis.

Figure 2 shows the architecture of SAW.
We summarize the features of SAW.

• It uses its own verification script called SAWScript,
which is a kind of functional programming languages.

• It has several verification packages that support specific
fields:

– llvm extract

– llvm symexec

– llvm verify

– crucible llvm verify

• It has a build-in solver, ABC [17], and can also use
three SAT/SMT solvers, Z3 [6], Yices [7], and CVC4
[8].

• It can generate proof constraints with a form of AIG
(And-Inverter Graphs) [16], and smtlib2 [18]. Using
the format file, other external solvers can be available.

Package llvm symexec is the original package used by SAW.
Crucible llvm verify package is provided recently, and sup-
ports pointers and data structures in C.

2.2.1 Verification Examples using SAW

The following example shows the verification process for two
functions that output a value twice of the input values (See
Listing 1, 2, and 3).

Listing 1: Twice Program
/ / r e f e r e n c e f u n c t i o n
u n s i g n e d i n t r e f e r e n c e f u n c t i o n ( u n s i g n e d i n t x ){

r e t u r n x ∗ 2 ;
}

/ / i m p l e m e n t a t i o n
u n s i g n e d i n t i m p l e m e n t a t i o n f u n c t i o n ( u n s i g n e d i n t x ){

r e t u r n x << 1 ;
}
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Listing 1 has two functions reference function() and imple-
mentation function(). Function reference function() just out-
puts the value of the input multiplied by two, while imple-
mentation function() outputs arithmetic left shift of the input
value by 1 bit. Though the codes differ from each other, those
functions output the same value for any value of the same
input. Proof scripts Listing 2 and 3 prove by different ap-
proaches that the two functions are equivalent.

Listing 2: Verification script for twice program
(llvm symexec)
/ / l lvm symexec
/ / . bc i s l lvm f o r m a t
l o a d <− l l v m l o a d m o d u l e ” add . bc ” ;

/ / r e f e r e n c e f u n c t i o n
/ / v a r i a b l e x i s d e f i n e d as 32 b i t i n t e g e r
x <− f r e s h s y m b o l i c ” x ” {| [ 3 2 ] | } ;
/ / a l l o c i s used when p o i n t e r i s used
l e t a l l o c r e f = [ ] ;
/ /
l e t i n p u t r e f = [ ( ” x ” , x , 1 ) ] ;
/ /
l e t o u t p u t r e f = [ ( ” r e t u r n ” , 1 ) ] ;

t 1 <−
l lvm symexec l o a d ” r e f e r e n c e f u n c t i o n ” a l l o c r e f
i n p u t r e f o u t p u t r e f t r u e ;

/ / i m p l e m e n t a t i o n f u n c t i o n
l e t a l l o c i m p = [ ] ;
l e t i n p u t i m p = [ ( ” x ” , x , 1 ) ] ;
l e t o u t p u t i m p = [ ( ” r e t u r n ” , 1 ) ] ;

t 2 <−
l lvm symexec l o a d ” i m p l e m e n t a t i o n f u n c t i o n ” a l l o c i m p
i n p u t i m p o u t p u t i m p t r u e ;

/ / v e r i f i c a t i o n
thm <− a b s t r a c t s y m b o l i c {{ t 1 == t 2 }} ;
r e s u l t <− prove z3 thm ;
/ /
p r i n t r e s u l t ;

Listing 3: Verification script for twice program (cru-
cible llvm verify)
/ / c r u c i b l e l l v m v e r i f y
/ / add . bc
l o a d <− l l v m l o a d m o d u l e ” add . bc ” ;

/ / r e f e r e n c e f u n c t i o n
l e t a d d s e t u p = do {
/ /

x <− c r u c i b l e f r e s h v a r ” x ” ( l l v m i n t 3 2 ) ;
/ /

c r u c i b l e e x e c u t e f u n c [ c r u c i b l e t e r m x ] ;
/ /

c r u c i b l e r e t u r n ( c r u c i b l e t e r m {{ x << 2 : [ 3 2 ] }} ) ;
} ;

c r u c i b l e l l v m v e r i f y l o a d ” r e f e r e n c e f u n c t i o n ” [ ] f a l s e
a d d s e t u p abc ;

Listings 4 and 5 show the results, respectively.

Listing 4: Result (SAW:llvm symexec)
$saw l lvm symexec . saw
Loading f i l e ” l lvm symexec . saw ”
Running r e f e r e n c e f u n c t i o n
F i n i s h e d r u n n i n g r e f e r e n c e f u n c t i o n
Running i m p l e m e n t a t i o n f u n c t i o n
F i n i s h e d r u n n i n g i m p l e m e n t a t i o n f u n c t i o n
V a l i d

Listing 5: Result (SAW:crucible llvm verify)
$saw c r u c i b l e l l v m v e r i f y . saw
Loading f i l e ” c r u c i b l e l l v m v e r i f y . saw ”
P r o o f s u c c e e d e d ! @ r e f e r e n c e f u n c t i o n
Running r e f e r e n c e f u n c t i o n

Messages “Valid” and “Proof succeeded! @
reference function” show that the two functions have the same
behaviors, for llvm symexec and crucible llvm verify, respec-
tively.

Listings 6, 7, and 8 show the case that FCV outputs counter-
examples.

Listing 6: Wrong implemented code
/ / R e f e r e n c e F u n c t i o n
u n s i g n e d i n t r e f e r e n c e f u n c t i o n ( u n s i g n e d i n t x ){

r e t u r n x ∗ 2 ;
}

/ / I m p l e m e n t a t i o n
/ / ( l lvm symexec )
u n s i g n e d i n t i m p l e m e n t a t i o n f u n c t i o n ( u n s i g n e d i n t x ){

i f ( x == 10){
r e t u r n x ∗ 3 ;

}
r e t u r n x << 1 ;

}

Listing 7: Result (SAW:llvm symexec)
$saw l lvm symexec . saw
Loading f i l e ” l lvm symexec . saw ”
Running r e f e r e n c e f u n c t i o n
F i n i s h e d r u n n i n g r e f e r e n c e f u n c t i o n
Running i m p l e m e n t a t i o n f u n c t i o n
F i n i s h e d r u n n i n g i m p l e m e n t a t i o n f u n c t i o n
prove : 1 u n s o l v e d s u b g o a l ( s )
I n v a l i d : [ x = 10]

Listing 8: Result (SAW:crucible llvm verify)
$saw c r u c i b l e l l v m v e r i f y . saw
Loading f i l e ” c r u c i b l e l l v m v e r i f y . saw ”
Subgoa l f a i l e d : @ r e f e r e n c e f u n c t i o n s a f e t y a s s e r t i o n :

l i t e r a l e q u a l i t y p o s t c o n d i t i o n
S o l v e r S t a t s { s o l v e r S t a t s S o l v e r s = f r o m L i s t [ ”ABC” ] ,

s o l v e r S t a t s G o a l S i z e = 60}
−−−−−−−−−−Counterexample−−−−−−−−−−
( ” x ” , 1 0 )
u s e r e r r o r ( ” c r u c i b l e l l v m v e r i f y ”
( c r u c i b l e l l v m v e r i f y . saw : 8 : 1 −8 : 2 1 ) :
P r o o f f a i l e d . )

For these cases, when x equals to 10, the behavior differs.
SAW correctly shows the counter-examples. This is the most
useful advantage of SAW.

2.2.2 ABC

A user of SAW can analyze the LLVM using symbolic exe-
cution. The result of the execution is stored in an AIG (And-
Inverter Graphs) [16]. AIG data can be verified by a theorem
prover called ABC [17]. ABC is especially suited for equiv-
alence checking [19] between two functions represented in
AIG. ABC is the default solver for SAW.
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2.3 SeaHorn
SeaHorn [4] also verifies C program code using LLVM.
SeaHorn has the following features.

• It is easy to use because a programmer can directly
write assertions in the code. The notation is based on a
simple notion of Design by Contract [20].

• Learning times for the tool are shorter than for other
formal based tools.

2.3.1 Verification Example using SeaHorn

Listing 9 shows an example of verification using SeaHorn.

Listing 9: Verification script for twice program(seahorn)
# i n c l u d e ” s e a h o r n / s e a h o r n . h ”
ex te rn i n t nd ( void ) ;

/ / code under v e r i f i c a t i o n
unsigned i n t i m p l e m e n t a t i o n f u n c t i o n ( unsigned i n t x ){

re turn x << 1 ;
}

i n t main ( ){
i n t x , v a l ;

x = nd ( ) ;
v a l = nd ( ) ;
v a l = i m p l e m e n t a t i o n f u n c t i o n ( x ) ;

/ / a s s r t i o n
s a s s e r t ( v a l == x ∗ 2 ) ;

}

Here, function nd stands for non-deterministically, and re-
turns an arbitral value. sassert(P) states that P is true.

Listing 10 shows the result of the verification.

Listing 10: Result (SeaHorn)
$s ea p f d ou b l e . c −−show−i n v a r s

−−− omi t −−−
u n s a t
F u n c t i o n : main
main@entry : t r u e
main@entry . s p l i t : t r u e

Note that SeaHorn usually checks unsatisfiability. In other
words, unsat is printed if and only if the assertion holds in
SeaHorn.

2.4 SAT/SMT solvers
Recently a number of efficient SAT (SATisfiability prob-

lem) solvers are emerging and these solvers prove many con-
straint based problems. A number of satisfiability problem is
usually given as a set of clauses, where each clause is a log-
ical disjunction of Boolean variables. The set of clauses is
evaluated as a logical conjunction of clauses. Therefore, the
set can be evaluated as satisfiable or unsatisfiable. Satisfiabil-
ity problem is known as NP-complete. However, SAT solvers
efficiently proves most of instances.

SMT (Satisfiability Modulo Theories) is an extension of
SAT. Each Boolean variable is substituted with inequality ex-
pressions over integers or reals. Several classes are known for
SMT. Some of these classes are decidable and there are tools
which can efficiently proves the satisfiability of these expres-
sions.

2.4.1 Z3

Z3 [6] is one of the famous SMT solvers developed by Mi-
crosoft Research. In SMT-COMP, an SMT solver competi-
tion, it has excellent results every year. It is one of the built-in
SMT solvers by SAW.

2.4.2 CVC4

CVC4 [8] is one of the CVC (Cooperating Validity Checker)
series used by the theorem proving system, SVC developed
by Stanford University. At SMT-COMP 2017, it won in many
divisions.

2.4.3 Yices

Yices [7] is an SMT solver developed at SRI and was up-
graded as Yices 2 in 2009. It also had excellent results at
SMT-COMP 2017. It is one of the built-in SMT solvers in
SAW.

2.4.4 MathSAT

MathSAT [9] is an SMT solver which supports a wide range
of theories, such as equality and uninterpreted functions, lin-
ear arithmetic, bit-vectors, and arrays. It also supports the
computation of Craig interpolants, extractions of unsatisfiable
cores, and the generation of models and proofs.

2.4.5 SMT-RAT

SMT-RAT [10] is an SMT solver that can perform parallel
processing written in C ++. Since It is not built in as standard
in SAW, it is necessary to output a file such as smtlib2 to use
it.

2.4.6 minisat

Minisat[11] is one of the representative SAT solvers. It has
the minimum set of functions as a SAT solver, and its source
code is about 2000 lines. Because SAW does not built in as
standard, it is necessary to apply minisat after outputting in
Conjunctive Normal Form (CNF) or AIG [16] format file for-
mat.

3 OUR PROPOSED METHOD

Program codes with recursive data structures have a loop
structure which has a termination condition. The termination
condition depends on the recursive data structures, thus we
cannot put a bound of the number of iterations to a fixed finite
value. For this reason, verification on such a program code
faces the so-called termination problem.

In other words, verification on program code with recursive
data structures is essentially undecidable.

In order to overcome this problem, in practice, we usually
approximate the problem by introducing the idea of bounded
verification.

Our proposed method also uses bounded verification by
bounding the size of recursive data structures.
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Figure 3: Bounded Model Checking
The upper half of Fig. 3 shows that verification does not end
due to infinite size of the list, while the lower half of Fig. 3
shows that verification terminates due to the specifying of a
limit of size.

3.1 The Concept

Bounded verification usually terminates iterations of a loop
body by a fixed value. We limit the size of recursive data
structures. This is essentially the same idea of the usual bounded
model checking approaches.

For example, let us consider a linear list. We fixed the size
of the list namely n. We produce a verification script for every
pattern of the data structure with in size n (See Fig. 3).

Then we perform each formal verification for the produced
scripts.

For example, if we choose 100 as n, then we perform for-
mal verification with size 1 to 100 of the linear list. If all of
the verification passed, we strongly assume that the program
is valid for any size of a list.

The scheme has the advantage that we can choose any fea-
sible value of n, but as we observe, the verification time be-
comes large as n becomes large.

For every pattern, we perform each formal verification for
the produced script.

We use the above idea with the crucible llvm verify pack-
age for SAW, and evaluated the effectiveness of our proposed
method.

In a similar way, for fixed value n, we produce every pat-
tern of binary trees with size 1 to n, where n is the number of
nodes in the binary tree. Figure 4 shows every pattern of the
binary trees with a size of 3.

3.2 Verification Targets

We perform experiments for the following three data struc-
tures.

• Two-level nests

• Linear lists with recursive definition

• Binary trees with recursive definition

In this section, we show every program under verification.

3.2.1 Two-level nests

The program for calculating the summation of 32-bit integers
in the parent and children nodes of a two-level nest is shown
in Fig. 5.

Listing 11 shows the data structure.

Listing 11: Two-level nest
t y p e d e f s t r u c t s {

i n t a ;
} s t ;
/ / p a r e n t
t y p e d e f s t r u c t t {

i n t x ;
s t n ;

} t t ;
/ / r e f e r e n c e f u n c t i o n
i n t f r e f ( t t ∗p ) {

re turn ( p−>n ) . a + p−>x ;
}
/ / i m p l e m e n t a t i o n
i n t f imp ( t t ∗p ) {

re turn p−>x + ( p−>n ) . a ;
}

The difference between the reference function and the im-
plementation is trivial. We simply change the left and the
right terms.

3.2.2 Linear List

The program in Fig. 6 calculates the summation of 32-bit
integers in every cell of a linear list.

Listing 12 shows the data structure of the program.

Listing 12: Linear List
s t r u c t NODE{

u i n t 3 2 t v a l ;
s t r u c t NODE∗ n e x t ;

} ;
t y p e d e f s t r u c t NODE∗ n o d e t ;
/ / r e f e r e n c e f u n c t i o n
i n t l i n e a r 1 ( n o d e t node ){

i f ( node−>n e x t == NULL){
r e t u r n node−>v a l ;

} e l s e {
r e t u r n node−>v a l + l i n e a r 1 ( node−>n e x t ) ;

}
}
/ / i m p l e m e n t a t i o n
i n t l i n e a r 2 ( n o d e t node ){

i f ( node−>n e x t != NULL){
r e t u r n node−>v a l + l i n e a r 2 ( node−>n e x t ) ;

} e l s e {
r e t u r n node−>v a l ;

}
}

The difference between the reference function and the im-
plementation is in the form of the if statement.

3.2.3 Binary Trees

The program in Fig. 7 calculates summation of 32-bit integers
in every node of a binary tree.

Listing 13 shows the data structure of the program.
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Figure 4: Patterns of Binary Trees

Figure 5: Two level nest

Figure 6: Linear List

Listing 13: Binary Tree
/ / node
s t r u c t BTREE {

u i n t 3 2 t v a l ;
s t r u c t BTREE∗ l e f t ;
s t r u c t BTREE∗ r i g h t ;

} ;
/ / r e f e r e n c e f u n c t i o n
u i n t 3 2 t p r e o r d e r ( s t r u c t BTREE∗ t r e e ){

i f ( t r e e == NULL){
r e t u r n 0 ;

}
r e t u r n p r e o r d e r ( t r e e−>l e f t ) +
p r e o r d e r ( t r e e−>r i g h t ) + t r e e−>v a l ;

}
/ / i m p l e m e n t a t i o n
u i n t 3 2 t i n o r d e r ( s t r u c t BTREE∗ t r e e ){

i f ( t r e e == NULL){
r e t u r n 0 ;

}
r e t u r n i n o r d e r ( t r e e−>l e f t ) +
t r e e−>v a l + i n o r d e r ( t r e e−>r i g h t ) ;

}

The difference between the reference function and the im-
plementation is the order of traversal. Thus, the difference is
not trivial.

4 EXPERIMENTAL EVALUATION

The experiment environment is summarized as follows.

• OS: Windows 10 64-bit

• CPU: Intel Core i7-4500U CPU @ 1.80GHz 2.39GHz

Figure 7: Binary Tree

• Memory: 8.00 GB

• Docker

– version: 18.01.0-ce

– Memory: 4096 MB

– The number of CPUs: 2

• SAW: 0.2 (2018-01-31)

– LLVM: 3.8.0

– Z3: 4.5.0

– Yices: 2.5.2

– minisat: 2.2.0

– SMT-RAT: 2.1.0

• SeaHorn: 0.1.0-rc3

– LLVM: 3.6.0

4.1 Comparison of SMT Solvers: EXP 1
We evaluate the verification results and CPU execution times

using the built-in function “Output a file for SAT/SMT solver”
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of SAW. For ABC, we use a proof package named crucible
llvm verify. For other SAT/SMT solvers, we use a proof
package named llvm symexec.

4.2 Comparison of SAW and SeaHorn: Exp 2

We evaluate the verification results and CPU execution times
using SAW and SeaHorn. We use a proof package named cru-
cible llvm verify.

4.3 THE RESULTS

For all results, T/O specifies that verification time is over
3,600 sec. The ‘–’ symbol shows a failure of verification.
The unit of time is second.

4.3.1 Comparison of SAT/SMT solvers

Table 1 summarizes the verification of Two-level nest with
varying SAT/SMT solvers.

Table 2 summarizes the verification of Linear Lists of size
100 with varying SMT/SAT solvers.

Table 3 summarizes the verification of Binary Trees of depth
5 with varying SAT/SMT solvers.

4.3.2 Comparison with SAW and SeaHorn

Table 4 summarizes verification of Two-level nests using SAW
and SeaHorn.

Table 5 summarizes the verification of Linear Lists of size
100 using SAW and SeaHorn.

Table 6 summarizes the verification of Binary Trees of depth
5 using SAW and SeaHorn.

Table 1: Results for Two-level nests

SMT/SAT ABC Z3 Yices minisat SMTRAT
CPU time 1.06 1.23 1.47 1.24 T/O

Table 2: Results for Linear List

SMT/SAT ABC CVC4 Z3 Yices Mathsat
CPU time 6.981 1.132 59.110 307.307 –

Table 3: Results for Binary Tree

SMT/SAT ABC CVC4 Z3 Yices Mathsat
pattern 1 0.685 0.502 0.484 0.471 0.571
pattern 2 0.682 0.530 0.483 0.467 0.575
pattern 3 0.673 0.491 0.478 0.469 0.604
pattern 4 0.649 0.490 0.465 0.469 0.580
pattern 5 0.646 0.489 0.461 0.501 0.570

Table 4: Results for Two-level nests (SAW and SeaHorn)

Verification Tool SAW SeaHorn
CPU Time 1.06 0.104

t!

Table 5: Results for Linear List (SAW and SeaHorn)

Verification Tool SAW SeaHorn
CPU time 1.47 –

Table 6: Results for Binary Tree (SAW and SeaHorn)

Verification Tool SAW SeaHorn
CPU time 0.51 –

5 DISCUSSION

We verified a variety of code structures by applying bounded
verification to functions that deal with structures including re-
cursion. We can verify two-level nest and linear list structures
correctly using crucible lvm verify. SeaHorn can only verify
two-level nests. It was not possible to verify the binary tree
structure by all verification methods.

In Exp1, the verification succeeded when we used the “cru-
cible lvm verify” package.

In Exp2, it was possible to verify Linear List structures with
100 elements. When we investigated the maximum number
of elements that package could be handled, the number of el-
ements was about 5000. In a realistic verification, since suffi-
cient verification can be performed even with the list structure
up to 1000 elements, the bounded verification method can be
applied. For binary tree structures, we can also obtain good
results.

On the other hand, verification using SeaHorn needs less
verification time for Two-level nest about one tenth of SAW.
Therefore, it is superior to the SAW in view of the verification
time. However, when trying to verify a program dealing with
recursive structure, recursive functions. it automatically skips
the analysis of the structures. Thus, it is impossible to handle
programs containing recursive structures. As a result, it can
be said that SAW that can handle of recursive structures is
superior to that of SeaHorn at the present.

6 CONCLUSION

This paper proposed a new method for Formal Conformance
Verification based on bounded model checking for programs
with recursive data structures. We also conducted an experi-
mental evaluation using SAW. We showed that the proposed
method works well for a simple program which deals with
calculations over a linear list.

In future work, we want to improve the performance for
binary trees and other complex data structures.
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