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Abstract- Motif discovery is not only a fundamental method 
for finding repetitive subsequences in a longer time series, but 
is also used as a sub-routine in higher-level analytics includ-
ing classification, clustering, visualization, and rule discovery. 
However, existing motif discovery algorithms depend criti-
cally on the knowledge of the correct subsequence length. 
Therefore, deciding an appropriate window length for subse-
quences is required before using those algorithms. In this 
work, we investigate how to decide an appropriate window 
length. We propose a novel index called a ‘motif index’ that 
counts the number of similar subsequence occurrences within 
the neighborhood in the space of subsequence, while avoiding 
trivial matches. We also propose a heuristic method to select 
an appropriate error distance for the neighborhood required 
as a parameter to define motif density. Furthermore, we show 
that motif density can decide an optimal window in the sim-
ulation data in which motifs are intentionally embedded. 

Keywords: Time series data mining, Motif discovery, Win-
dow length selection, Motif density 

1 INTRODUCTION 

Time series motifs [1][2] are approximately repeating sub-
sequences embedded in a time series. Motifs are one of the 
most important primitives in time-series data mining, and mo-
tif discovery has been used as a sub-routine in higher-level 
analytics, including classification, clustering, visualization 
and rule-discovery. Moreover, motif discovery has been ap-
plied to domains as diverse as factory operation [3], medicine 
[4], and seismology [5]. The notion of a motif is useful for a 
wide range of applications, because a repeated and frequently 
occurring pattern implies a latent system that occasionally 
produces a repeatable output. For example, this system may 
be an over-caffeinated heart, sporadically introducing a motif 
pattern containing an extra beat [6], or the system may be a 
factory worker, producing repetitive movement in a series of 
assembly operations [3]. 

Since the Matrix Profile [7], a fast and scalable algorithm 
for subsequence all-pairs-similarity-search in time series, has 
been introduced, it has helped to develop new innovative 
ideas for time-series data mining [8]. However, because a mo-
tif is defined as a pair of subsequences the distance between 
which is the smallest, it does not necessarily imply the fre-
quent occurrence of a motif subsequence. That is, there are 
not necessarily many subsequences in the neighborhood of a 
motif. Furthermore, motif discovery algorithms expect that a 
subsequent length be chosen beforehand, which usually 

means in practice that users must try several possible lengths, 
and must confirm that the discovered motif indeed has fre-
quent similar subsequences in a time series. 

In this work, we propose a novel index called a ‘motif den-
sity’ that counts the number of similar subsequence occur-
rences within the neighborhood in the space of subsequences, 
ignoring trivial matches. We also propose a heuristic method 
to select an appropriate error distance for the neighborhood, 
where error is a parameter that decides the similarity level in 
motif density. Furthermore, we show that motif density can 
decide an optimal window in simulation data in which motifs 
have been embedded intentionally.  

The rest of our paper is organized as follows. Section 2 de-
scribes the definition of a motif, and the criteria to determine 
the appropriateness of a subsequence as a motif. Section 3 
defines motif density, based on a neighborhood of a subse-
quence in a set of subsequences without trivial matching sub-
sequences. Section 4 proposes an algorithm to calculate motif 
density. Section 5 evaluates our proposed algorithm empiri-
cally. First, we show that motif density can decide an optimal 
window-length for finding motifs. Second, we evaluate a heu-
ristic method to select an appropriate error distance for the 
neighborhood, required as a parameter to define motif density. 

2 MOTIF CRITERIA 

This section describes the commonly used definition of mo-
tif and summarizes the problem of deciding optimal window-
length of a motif as motif criteria. 

2.1 Our Approach 

A motif is defined by using the nearest-neighbor distance in 
the space consisting of subsequences in a time series.    

Definition: time series X 
A Time Series X=[x1,…,xm] is a continuous sequence of real 

values. We denote the value of the i-th time point by X[i] = xi. 

Definition: subsequence  X[p:q] 
  A subsequence s = [xp, xp+1,...,xq] = X[p:q] is a list which 
consists of continuously occurring values of X, starting at po-
sition p and ending at position q.  

The length 𝑤𝑤 of a subsequence s is w = 𝑞𝑞 − 𝑝𝑝 + 1, and we 
denote it by length(s). We also denote a subsequence X[p:q] 
by 𝑋𝑋𝑤𝑤(𝑝𝑝),  which means a subsequence staring at p with 
length w. 
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Definition: support of a subsequence 
The support of a subsequence 𝑆𝑆 is a set of time points [p:q] 

= [p, p +1,..., q-1, q], and we denote it by support (s). 

Definition:  subsequence space 𝑆𝑆𝑤𝑤(𝑋𝑋) 
A subsequence space is the set of all the subsequences with 

length 𝑤𝑤 in a time series X.  We denote it by 𝑆𝑆𝑤𝑤(𝑋𝑋). A sub-
sequence space is the 𝑤𝑤-dimensional Euclidean space. There-
fore, for given subsequences 𝑠𝑠𝑖𝑖  and 𝑠𝑠𝑗𝑗, the distance between 
𝑠𝑠𝑖𝑖  and 𝑠𝑠𝑗𝑗 , which we denote by dist �𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗�, can be defined 
similarly to that in a vector space. In this paper, we use 𝐿𝐿1 
distance defined below. 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑋𝑋𝑤𝑤(𝑝𝑝),𝑋𝑋𝑤𝑤(𝑞𝑞)� 

≡   �   |X(𝑝𝑝 + 𝑖𝑖 − 1) − 𝑋𝑋(𝑞𝑞 + 𝑖𝑖 − 1)| 
𝑤𝑤

1

Definition: disjoint subsequences 
Let si and sj be subsequences. When support (si) and support 

(sj) are disjoint, that is, support (s1) ∩ support (s2) =  ∅,  we 
say that si and sj  are disjoint. 

Definition: Motif subsequence (1-NN) 
Let w be a window-length, and let X be a time series. A 

subsequence s with length w in X is said to be motif, if it sat-
isfies the below condition.   

There is a subsequence s′ with window-length 𝑤𝑤, such that 
 dist(s, s′) =  min

𝑖𝑖,𝑗𝑗
 { dist�𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗�  | 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 ∈  𝑆𝑆𝑤𝑤(𝑋𝑋) and 

 support (𝑠𝑠𝑖𝑖) ∩  support �𝑠𝑠𝑗𝑗� =  ∅} 
  The above definition is based on the one-nearest-neighbor 
(1-NN) distance. We can extend this definition to k- nearest-
neighbor distance by replacing the minimum with the k-th 
minimum in the above condition.   

2.2 Challenges in Defining Motif Criteria 

In this subsection, we investigate criteria to determine the 
appropriateness of a subsequence as a motif, which we call 
motif criteria. The intuitive meaning of a motif is a subse-
quence which has many similar subsequences in a time series, 
therefore we will try to define an index to measure the mean-
ing of ‘similar’ and ‘many’ according to the intuition above. 
A similar sequence is measured by the distance between sub-
sequences. For defining “many”, we should count the number 
of similar subsequences to a motif. We call this number “oc-
curring frequency”.  Challenges in defining occurring fre-
quency are summarized in the following three points.  

(1) Error dependency
When we say a sequence 𝑠𝑠𝑖𝑖 is similar to a subsequence 𝑠𝑠, it

means that dist(𝑠𝑠𝑖𝑖, 𝑠𝑠) is small. Therefore, the threshold of an 
error distance parameter 𝜖𝜖  is required for counting similar 
subsequences. A naïve definition of occurring frequency of 𝑠𝑠 
is |{𝑠𝑠𝑖𝑖  |  𝑠𝑠𝑖𝑖 ∈  𝑆𝑆𝑤𝑤(𝑋𝑋) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠)  ≤ 𝜖𝜖 }| , where |A| 
means the number of elements of a set A. This definition of 
occurrence frequency requires a window-length 𝑤𝑤 and an er-
ror 𝜖𝜖 as parameters.  That is, how to decide an appropriate 
pair of a window-length 𝑤𝑤 and an error value 𝜖𝜖 is the first 
challenge.  

(2) Window-length dependency
If an error value is equal in subsequences with different

lengths, the longer subsequence seems to be more appropriate 
than the shorter one as a motif. How to normalize by a win-
dow-length is the second challenge.  

(3) Trivial match
Subsequences close to a subsequence 𝑠𝑠 in a time series are

similar to 𝑠𝑠, if the time series is continuous and varies slowly. 
We call this property “trivial match”. A trivial match is de-
scribed formally by the property that dist(X[𝑝𝑝′: 𝑝𝑝′ + 𝑤𝑤 − 1] , 
X[𝑝𝑝: 𝑝𝑝 + 𝑤𝑤 − 1]) is small, if  |𝑝𝑝 − 𝑝𝑝′| ≪ 𝑤𝑤. When we count 
similar subsequences, we must remove trivially matching se-
quences. The third challenge is how to count similar subse-
quences, while avoiding trivially matching subsequences. 

3 MOTIF DENSITY 

3.1 Our Approach 

This subsection describes our approach to solving each of 
the problems described in the precious section.  

(1) Error parameter dependency
We shall define the neighborhood of a subsequence in

𝑆𝑆𝑤𝑤(𝑋𝑋) for a given time series 𝑋𝑋, a window-length 𝑤𝑤 and a 
threshold on the distance 𝜖𝜖.  

(2) Window-length dependency
We shall define ‘motif density’ which expresses occurring

frequencies normalized by window-lengths for comparing the 
appropriateness among motifs with different window-lengths. 

(3) Trivial match
When we define the neighborhood of a subsequence 𝑠𝑠 in a

subsequence space 𝑆𝑆𝑤𝑤(𝑋𝑋), we remove trivially matching sub-
sequences of 𝑠𝑠 by using the concept of disjoint subsequences 
defined previously. That is, we shall define a special topology 
for a subsequence space generated by a time series.  

3.2 Neighborhood of a Subsequence 

We will define the neighborhood of a subsequence in a 
time series to avoid a trivial match problem.  

Definition: Disjoint neighborhood of a subsequence 
Let X, w , 𝜖𝜖 and s are a time series, a window-length, a pos-

itive real number, and a subsequence with length w respec-
tively. A subset of 𝑆𝑆𝑤𝑤(𝑋𝑋), Dw,ϵ(s), is called a disjoint neigh-
borhood of a subsequence, if it satisfies the following condi-
tions. 
(i) For every 𝑠𝑠𝑖𝑖  ∈  Dw,ϵ(s), 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠)  ≤ 𝜖𝜖
(ii)For every 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗  ∈  Dw,ϵ(s), support (𝑠𝑠𝑖𝑖) ∩
support �𝑠𝑠𝑗𝑗� =  ∅.

We select a maximal one for constructing the occurring fre-
quency of a subsequence. 
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Definition: Maximal neighborhood of a subsequence 
Let 𝒟𝒟w,ϵ(s) denote a set of all of the disjoint neighbor-

hoods of a subsequence s. A disjoint neighborhood of a sub-
sequence 𝑠𝑠 is said to be a maximal neighborhood Bw,ϵ(s), if 
it has the largest number of elements in 𝒟𝒟w,ϵ(s). Bw,ϵ(s) can 
be defined formally by the following formula. 

 Bw,ϵ(s) =  argmax
Dw,ϵ(s)∈𝒟𝒟w,ϵ(s)

�Dw,ϵ(s)� , where �Dw,ϵ(s)�  means 

the number of elements of Dw,ϵ(s) . 

We shall define the occurring frequency of a subsequence s 
by the number of element of Bw,ϵ(s). The following theorem 
gives us how to construct a Bw,ϵ(s) for given w, ϵ, and s. 

Theorem:  Construction of a maximal neighborhood. 
Let X, w, 𝜖𝜖 and s be a time series, a window-length, a posi-

tive real number, and a subsequence with length w, respec-
tively. 𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠), which is constructed by the below procedure, 
is a maximal neighborhood of 𝑠𝑠. 
(step1) Select the disjoint subsequences whose distances from 
s are smaller than 𝜖𝜖 from s towards right (later time) to the 
end of a time series in order. We call the set of those subse-
quences a right disjoint set. 
(step2) Select disjoint subsequences whose distances from s 
are smaller than 𝜖𝜖 from s towards left (earlier time) to the be-
ginning of a time series in order. We call the set of those a left 
disjoint set.  
(step 3) Let 𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠) be the union of the right and left disjoint 
sets. 
Proof: 

Let 𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠) be one of the maximal neighborhoods of s. It is 
enough to prove  �𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠)� = �𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠)� , where �𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠)� 
means the number of the elements of 𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠). 

We show only the case from s toward right to the end, be-
cause the case towards left is similar.  

Let the elements of 𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠) be sorted by time ordering, we 
obtain  
𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠) = {… , 𝑠𝑠 =  𝑋𝑋𝑤𝑤(𝑝𝑝),𝑋𝑋𝑤𝑤(𝑝𝑝1),𝑋𝑋𝑤𝑤(𝑝𝑝2),…,𝑋𝑋𝑤𝑤(𝑝𝑝𝑛𝑛)} 

where 𝑝𝑝 < 𝑝𝑝1 < 𝑝𝑝2 < ⋯ < 𝑝𝑝𝑛𝑛. 
Similarly, we obtain  
𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠) = {… , 𝑠𝑠 =  𝑋𝑋𝑤𝑤(𝑝𝑝),𝑋𝑋𝑤𝑤(𝑝𝑝1′),𝑋𝑋𝑤𝑤(𝑝𝑝2′),…,𝑋𝑋𝑤𝑤(𝑝𝑝𝑛𝑛′)} 

where 𝑝𝑝 < 𝑝𝑝1′ < 𝑝𝑝2′ < ⋯ < 𝑝𝑝𝑛𝑛′. 
By the above construction of  𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠), 𝑝𝑝1 is the smallest, so 
𝑝𝑝1 ≤ 𝑝𝑝1′ . In the same way, we get 𝑝𝑝2 ≤ 𝑝𝑝2′ , because 
"𝑋𝑋𝑤𝑤(𝑝𝑝2′) is disjoint with 𝑋𝑋𝑤𝑤(𝑝𝑝1)" and "𝑋𝑋𝑤𝑤(𝑝𝑝2) is the left-
most disjoint subsequence with 𝑋𝑋𝑤𝑤(𝑝𝑝1)". By  mathematical 
induction, we obtain 𝑝𝑝𝑖𝑖 ≤ 𝑝𝑝𝑖𝑖′  for  1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 , where 𝑛𝑛 
is�𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠)� . This shows that �𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠)� ≤ �𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠)�.  
If �𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠)� < �𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠)�, it is contrary to the maximality of  
�𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠)�.  Therefore, �𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠)� = �𝐵𝐵′𝑤𝑤,𝜖𝜖(𝑠𝑠)�, which is what 
we wanted to prove. 

3.3 Occurring Frequency and Motif Density 

First, we define the occurring frequency of a subsequence 
for each window-length.  

Definition: Occurring frequency 
Let w , ϵ and s are a window-length, a positive real number, 

and a subsequence with length w, respectively.  
The occurring frequency of a subsequence s is the number of 
the elements of a maximal neighborhood of a subsequence 
𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠), that is, �𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠)�. 

Next, we define motif density to normalize the difference 
among window-length. 

Definition: Motif density 
Let w , ϵ and s are a window-length, a positive real number, 

and a subsequence with window-length w, respectively.  
The motif density of a subsequence 𝑠𝑠 is 𝑤𝑤 × �𝐵𝐵𝑤𝑤,𝜖𝜖(𝑠𝑠)�. 

We regard a subsequence that has the highest motif density 
as the best motif among all the subsequence with various win-
dow-lengths. We show a procedure to select the best motif.  
1. Give a list of window-lengths W =[𝑤𝑤1, … ,𝑤𝑤𝑖𝑖 , … ,𝑤𝑤𝑛𝑛] .
2. Select the subsequence 𝑠𝑠𝑖𝑖  which has the largest occurring

frequency for each window-length 𝑤𝑤𝑖𝑖  in W. We call the sub-
sequence 𝑠𝑠𝑖𝑖  the optimal motif for a window-length 𝑤𝑤𝑖𝑖 .
3. Select the motif that has the highest motif density among
the optimal motifs [𝑠𝑠1, … , 𝑠𝑠𝑖𝑖 , … , 𝑠𝑠𝑛𝑛] for the window-lengths
W. We call this motif the best motif among optimal motifs for
window-lengths W. We also call the window-length of the
best motif the best motif length.

In the above procedure, the best motif length depends on 
an error parameter 𝜖𝜖  that determine the similarity level in 
counting occurring frequency. We call 𝜖𝜖 an error parameter 
hereafter. The error parameter in motif density is essential 
like a parameter k is essential in k-means clustering algorithm. 
We propose a method to help finding the appropriate error 
parameter 𝜖𝜖 like the Elbow method [11] for finding the ap-
propriate number k of clusters in clustering. When we plot 
motif density against error parameter values, we get the graph 
of a monotonically increasing function. We can select an ap-
propriate error parameter value where the rate of increase 
suddenly drops in the graph. This method based on the insti-
tution that a good motif has a clear boundary that divides sim-
ilar subsequences from dissimilar ones after trivially match-
ing sequences are removed.  

An optimal motif for a smaller window-length than the best 
motif length has relatively high motif density value, because 
a part of a motif is also a motif.  Furthermore, a motif with a 
smaller length might have a quickly rising motif density at 
very small error values.  
  We summaries the above considerations as three hypotheses. 
Hypothesis 1:  Motif density can decide the best window-
length for motif discovery.  
Hypothesis 2:  An optimal motif for a smaller window-length 
than the best motif length has relatively high motif density 
values. 
Hypothesis 3: We can select an appropriate error parameter 
by means of an Elbow method for the graph of a motif density 
functions against error parameter values. 

 We shall evaluate the above hypotheses in Section 5. 
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4 ALGORITHM 

We can obtain algorithms for calculating occurring fre-
quency and motif density by operationally interpreting the 
definitions and the theorem in the previous section.  

Table 1 shows an algorithm that counts the occurring fre-
quency of a given subsequence. The inputs are a time series 
X, a window-length w of the given subsequence s, a starting 
time t of s, and an error per window-length 𝜖𝜖. The outputs are 
the occurring frequency and the motif density of the given 
subsequence s.  
  Line 01 calculates the distance between the given subse-
quence s and each subsequences in 𝑆𝑆𝑤𝑤(𝑋𝑋). Line 02 counts the 
number of elements that are in the right-hand side of s in the 
maximal neighborhood of s. Line 03 counts the number of 
those in the left-hand side of s. Line 04 counts the total occur-
rence frequency of s by adding the occurrence frequency in 
the right side obtained by line 02 to that in the left side ob-
tained by line 03. Line 05 calculates the motif density of s by 
multiplying the window-length w and the occurring fre-
quency obtained by line 04. 

Table 2 shows an algorithm that counts the number of ele-
ments of a maximal neighborhood subsequence set whose el-
ements are to the right of the given subsequence s.  The inputs 
are the distance list DL obtained by line 01 in Table 1 the 
window-length w of a given subsequence s, a starting time t 
of s, and the error per window-length 𝜖𝜖. The output is the 
number of maximal neighborhood subsequences in the right 
side of s.  

Line 01 initializes a time cursor ‘Cur’ and a normalized er-
ror ‘Thr’. Line 02-13 is a while-loop that chooses maximal 
subsequences that are in the right-hand side of the given sub-
sequence s toward the end of the time series X. Line 03-05 is 
a while-loop that searches the next disjoint subsequence 
whose distance from s is smaller than ‘Thr’. Line 06-09 in-
crements ‘Right’ when the line 03-05 found a new disjoint 
subsequence. Line 10-12 exits while-loop 02-13 after check-
ing all the subsequences in the right-hand side of s.   

Table 3 shows an algorithm that counts the number of max-
imal neighborhood subsequences which are in the left-hand 
side of the given subsequence s.  The left-hand case is reduced 
to the right-hand case by reversing the time series values from 
right to left.  

Line 01 reverses the distance list ‘DL’ from right to left.
Line 02 reverses the starting time t of s from right to left. Line 
03 gets the value of the left-hand case by calling the algorithm 
‘CountRightOccurence’ with reversed arguments. 

Table 1.  CountOccurringFrequency Algorithm. 
Algorithm: CountOccurringFrequency (X, w, t, 𝜖𝜖) 
[Input]   X: Given time series 

w:  Length of a given subsequence s 
t:    Stating time of a given subsequence s 
𝜖𝜖:  Error per window-length  

 [Output]    OF:  Occurring frequency of s for 𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎 𝜖𝜖 
 MD:  Motif density of s 

01 
02 
03 
04
05 
06 

DL = distanceListFromS(X, t, w); 
OFR = countRightOccurence (DL, t, w, 𝜖𝜖) 

 OFL = countLeftOccurence (DL, t, w, 𝜖𝜖) 
 OF = OFR + OFL;   
 MD = OF * w;  

  return (OF, MD); 

Table 2. CountRightOccurence. 
Algorithm: countRightOccurence (DL, t, w, 𝜖𝜖) 
[Input]   DL: Distance list 

w:  Window-length of a given subsequence s 
t:    Stating time of s 
𝜖𝜖:  Error per window-length  

 [Output]  Right:  the number of maximal neighborhood 
subsequences to the right of s. 

01 
02 
03 
04
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 

Cur = t+1;  Thr = 𝜖𝜖 ∗ 𝑊𝑊; 
 while Cur <= length(DL) 

 while DL(Cur) >  Thr or Cur <= length(DL) 
 Cur = Cur + 1; 

 end 
 if DL(Cur)  <=  Thr 

 Right := Right + 1; 
 Cur := Cur + w – 1; 

 end 
 if Cur > length(X) 

 break; 
    end 
 end 
 return Right; 

Table 3. CountLeftOccurence Algorithm. 
Algorithm: countLeftOccurence  (DL, w, t, 𝜖𝜖) 
 [Input]  DL: Distance list 

w:  Window-length of a given subsequence s 
t:    Stating time of a given subsequence s 
𝜖𝜖:  Error per window-length 

 [Output]  Left:  the number of maximal neighborhood 
subsequences in the left of s. 

01 
02 
03 

DL_rev = fliplr(DL); 
 t_rev  = length(X) – t + 1; 
 Left = countRightOccurence (DL_rev, t_rev, w, 𝜖𝜖) 
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5 EXPERIMENTAL EVALUATION 

We evaluate the three hypotheses described in section 4. 

5.1 Window Length Selection 

This subsection evaluates the two hypotheses below in two 
simulated time series in which motif subsequences are inten-
tionally embedded.  
Hypothesis 1:  The best window-length can be decided by se-
lecting the one that has the highest motif density values.  
Hypothesis 2:  A maximal motif for a smaller window-length 
than the best motif length has relatively high motif density 
values. 

(1) Experiment on data set 1
First, we will show that motif density can be used to decide

the best motif length (15) by selecting the window-length that 
has the highest motif density among optimal motifs with win-
dow-lengths 5,9,15, and 31. 

Figure 1 is a simulated time series that combines sine curves 
with length (period) 15 samples per one cycle, and random 
subsequences with various lengths. In Fig. 1, the horizontal 
axis means time points in the time series, and the vertical axis 
means the values of the time series. Sine curves with length 
15 are intentionally embedded as motifs. We call this time 
series data set 1. 

Data set 1 is obtained by alternatively arranging ‘a noisy 
sine curve whose length of one cycle is 15’ and ‘a random 
subsequence that has a random length between 1 and 15’ for 
twenty times. Each value in a random subsequence follows a 
random uniform distribution whose values are between -1 and 
1. The noise included in a sine curve follows a random uni-
form distribution whose values are between -0.02 and 0.02. 
  Figure 2 shows the motif density trend graph for each win-
dow-length in the case that an error per window-length pa-
rameter (we call it as EPA hereafter) is 0.01. In each graph of 
Fig. 2, the horizontal axis means time points in the time series, 
and the vertical axis means the motif density of each subse-
quence starting at each time point. A procedure how to decide 
an EPL will be described in the next subsection. The top 
graph is a motif density trend for window-length 5. The sec-
ond, third, and fourth trend graphs from the top to the bottom 
are those for window-lengths 5, 9, 15, and 31 respectively. 
The third trend graph for window-length 15 has highest motif 
density values at the times when motif patterns start. The 
trend graphs for lengths 5 and 9 have times at which sub-pat-
terns of the optimal motifs with length 15 have relatively high 
motif density values and longer peak durations than those of 
length 15. The reason for this observation is in the fact that 
the best motif pattern includes motifs with smaller window-
lengths. They also support hypothesis 2.  

Figure 1: A time series with a motif of length 15 samples. 
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Figure 2: Motif density trend for each window-length (in 
case of EPL 0.01). 

Figure 3: Optimal motif for each window-length. 
Error per window length (EPA) = 0.01
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Figure 4: Highest Motif density of the optimal motif 
for each window-lengths (in case of EPL 0.01). 
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Figure 5: A time series with length 15 and 31 motifs. 
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Figure 6: Motif density of each times for each window-
lengths (in case of EPL 0.01). 

Figure 3 shows each optimal motif in each window-length. 
The optimal motif in length 15 is also the best motif in the 
sense that it has the highest motif density as will be shown in 
Fig. 4. In each graph of Fig. 3, the horizontal axis means time 
points of each optimal motif subsequence in time series. The 
vertical axis means the values of each optimal motif. The best 
motifs for window-lengths 5 and 9 are the sub-patterns of the 
best motif with length 15. The optimal motif with length 31 
is a subsequence including the optimal motif with length 15.  

Figure 4 shows the motif density value for each optimal 
motif with each window-length in case of EPL 0.01. In Fig. 
4, the horizontal axis means the length of each optimal motif, 
and the vertical axis means the motif density of each optimal 
motif. The window-length that has the highest motif density 
is 15. It supports hypothesis 1 that "motif density can be used 
to decide the best window-length". It also supports hypothesis 
2, "a maximal motif for a smaller window-length 5, 9 than the 
best motif length 15 has relatively high motif density value". 

Figure 7: Best motifs for each window-lengths. 
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Figure 8: Highest Motif density of the optimal motif with 
each window-length (in case of EPL 0.01). 

(2) Experiment on data set 2
Next, we show that motif density can be used to decide the

best motif length (15 and 31) in time series in which two mo-
tifs with length 15 and 31 are intentionally embedded. 

Figure 5 is a simulated time series that combines sine 
curves with length 15 and 31 with random subsequences of 
various lengths. The horizontal axis and the vertical axis in 
Fig. 5 have the same meanings as those in Fig. 1. Sine curves 
with length 15 are intentionally embedded motifs. We call 
this time series data set 2. 

Data set 2 is obtained by alternatively arranging ‘a random 
subsequence which has random length between 1 and 31’, ‘a 
noisy sine curve whose length of one cycle is 15’ and ‘a noisy 
sine curve whose length of one cycle is 31’. In data set 2, a 5-
subsequence pattern in which a random subsequence, a sine 
curve with length 15, a random one, a sine curve with length 
31 and a random one are arranged in this order repeat for 10 
times. Those random subsequences and the noise of sine 
curves follow the same random uniform distributions in data 
set 1. 

  Figure 6 shows the motif density trend for each window-
length for the case of a EPL of 0.01. The horizontal axis and 
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the vertical axis in Fig. 6 have the same meanings as those in 
Fig. 2. The trend graphs are for window-lengths 5, 9, 15, 31, 
and 47, from the top to the bottom, respectively. As in the first 
experiment, the trend graphs for lengths 15 and 31 have the 
high peaks of motif density at the times when motif patters 
occur. The trend graphs for 5, 9, and 15 have relatively high 
motif density values at times when sub-patterns of the motif 
patterns with length 15 or 31 occur. 

Figure 7 shows each optimal motif in each window-length. 
The optimal motifs in window-lengths 15 and 31 are the best 
motifs in the sense that they have larger motif densities as will 
be shown in Fig. 8.  (and have been intentionally embedded). 
The horizontal axis and the vertical axis in Fig. 7 have the 
same meanings as those in Fig. 3. The optimal motifs of win-
dow-lengths 5 and 9 are sub-patterns of the best motifs with 
window-length 15 or 31. The optimal motif with window-
length 47 is a subsequence including the best motif with win-
dow-length 31.  

Figure 8 shows each motif density trend for each window-
lengths. The horizontal axis and the vertical axis in Fig. 8 
have the same meanings as those in Fig. 4. It shows that 15 
and 31 are the top 2 window-lengths. This supports hypothe-
sis 1. It also shows that window-lengths smaller than 15 have 
relatively high motif density values. This supports hypothesis 
2. 

5.2 Error Parameter Selection 
This subsection evaluates the hypothesis 3 below. 

Hypothesis 3:  we can select an appropriate error parameter 
by means of an Elbow method for the graph of a motif density 
functions for window-lengths 
(1) Experiment on data set 1

Figure 9 shows each error dependency graph of the motif
density for each optimal motif with window-length 5, 9, 15, 
and 31. In Fig. 9, the horizontal axis means EPL values, and 
the vertical axis means the motif density of at each EPL value. 

In data set 1, the window-length of intentionally embedded 
motifs is 15. The range of EPL for the top graph (a) is from 0 
and 2, and that for the bottom one (b) is from 0 to 0.015. The 
graph (a) shows that when EPL is over 0.8, there are no dif-
ferences among motif densities for all the window-lengths 
even though the best motif length is 15. The graph (b) shows 
that motif densities for window-lengths 5,9 and15 rise 
quickly at EPL of 0.005, and increase while EPL is from 
0.005 to 0.01 and then become constant from EPL values of 
0.01.  Therefore, 0.01 is an elbow point for window-lengths 
5, 9 and 15. On the other hand, the motif density for window-
length 31 has constant value 0 for EPL ranging from 0 to 
0.015. This observation shows that an appropriate EPL is 0.01 
for finding the best motif length shown in the previous sub-
section. That is, this observation supports hypothesis 3 in case 
of data set 1.  

We compare motif density trend with different EPLs in or-
der to understand the intuitive meaning of EPL. Figure 10 
shows the motif density trend for optimal motifs with win-
dow-length 5, 9, 15, and 31. The horizontal axis and the ver-
tical axis in Fig. 10 have the same meaning as those in Fig. 2. 

The EPL of the top graph (a), that of the middle one (b) and 
that of the bottom one (c) are 0.01, 0.1 and 1, respectively. In 

the case of EPL equal to 0.01, the graph for the best motif 
length (15) has sharp peaks when similar subsequences occur. 
On the other hand, in the case of EPL=0.1, the graph for it has 
only blunt peaks. Furthermore, in the case of EPL=1, there 
seems to be no peaks. The graphs for smaller window-lengths 
(5, 9) than the best motif length (15) have similar trends to 
that for 15. Motif densities for 5 and 9 have relatively high 
values, because subsequences of a motif are motifs. That is, 
if X(i:i+14) is a motif , X(i:i+4), X(i+1:i+5), …, and 
X(i+10:i+14) are also motifs. This is why motif density for 
window-length 5 and 9 have less sharp peaks than those for 
window-length 15. This observation also supports hypothesis 
2. 

(2) Experiment on data set 2
Figure 11 shows each error dependency graph of the motif

density for each optimal motif with window-length 5, 9, 15, 
31, and 47. The horizontal axis and the vertical axis in Fig. 11 
have the same meaning as those in Fig. 9. In data set 2, the 
window-lengths of intentionally embedded motifs are 15 and 
31. The range of EPL for the top graph (a) is from 0 and 2,
and that for the bottom one (b) is from 0 to 0.015. Graph (a)
shows that when EPL is over 1, there are no differences
among motif densities for all the window-lengths, even
though the best motif lengths are 15 and 31. Graph (b) shows
that motif densities for window-lengths 5,9, and15 rise
quickly at EPL=0.005 and increase while EPL ranges from
0.005 to 0.01, and then become constant from about
EPL=0.01.  Therefore, 0.01 is an elbow point for window-
lengths 5, 9, 15, and 31. On the other hand, the motif density
for window-length 47 has a constant value 0 for EPL ranging
from 0 to 0.015. This observation shows that an appropriate
EPL is 0.01 for finding the best motif length shown in the
previous subsection. That is, this observation supports hy-
pothesis 3 in the case of data set 2.

As with experiment 1, we investigate density trend graphs 
with different EPLs. Figure 12 shows the motif density trend 
for optimal motifs with window-length 5, 9, 15, 31, and 47. 
The horizontal axis and the vertical axis in Fig. 12 have the 
same meaning as those in Fig. 2. 

The EPL of the top graph (a), that of the middle one (b), 
and that of the bottom one are 0.01, 0.1 and 1, respectively. 
In the case of EPL=0.01, the graph for the best motif lengths 
15 and 31 have sharp peaks when similar subsequences occur. 
The blunt peaks in the graph for window-length 15 corre-
spond to the occurrences of the subsequences of the best mo-
tifs with window-length 31. On the other hand, in the case of 
EPL=0.1, the graphs for window-length 15 and 31 have only 
blunt peaks. Furthermore, in the case of EPL=1, they have no 
peaks. As with the experiment on data 1, this observation sup-
ports hypothesis 2. 
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(a) The range of error per length (EPL) is from 0 to 2

(b) The range of EPL is from 0 to 0.015

Figure 9: Error dependency of motif density (data 1). 

(a) EPL is 0.01

(b) EPL is 0.1

(c) EPL is 1

Figure 10: Motif density trends (data1). 
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(a) The range of EPL is from 0 to 1.5

(b) The range of EPL is from 0 to 0.15

Figure 11: Error dependency of motif density (data 2). 

(a) EPL is 0.01

(b) EPL is 0.1
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(c) EPL is 1

Figure 12: Motif density trends (data2). 

6 CONCLUSIONS 

We proposed a novel index called ‘motif density’ together 
with a selection method to find an appropriate EPL required 
for defining motif density. The core idea of motif density is 
in considering a special topology in a subsequence space gen-
erated by a time series for avoiding trivial matching and han-
dling different window-lengths. Furthermore, we showed that 
motif density can decide an optimal window-length in simu-
lated data.  

In this paper, we treated the problem of finding one isolated 
motif in a time series. From a theoretical point of view, it re-
mains as future work how to define and find a sequence of 
motifs. From an experimental point of view, we plan to apply 
our algorithms to more complex simulated data, as well as 
real data. 

This work is supported by JSPS KAKENHI Grant Number 
17K00161. 
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