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Aims and Scope 

The purpose of this journal is to provide an open forum to publish high quality research papers in the areas of 

informatics and related fields to promote the exchange of research ideas, experiences and results.
  Informatics is the systematic study of Information and the application of research methods to study Information 
systems and services. It deals primarily with human aspects of information, such as its qu ality and value as a 
resource. Informatics also referred to as Information science, studies t he structure, algorithms, behavior, and 
interactions of natural and a rtificial systems that store, process, access and communicate information. It also 
develops its own conceptual and theoretical foundations and utilizes foundations developed in other fields.  The 
advent of computers, its ubiquity and ease to use has led to th e study of info rmatics that has computational, 
cognitive and social aspects, including study of the social impact of information technologies.
  The characteristic of informatics' context is amalgamation of technologies. For creating an informatics product, 
it is necessary to integrate many technologies, such as mathematics, linguistics, engineering and other emerging 
new fields. 



Guest Editor’s Message 

Masao Isshiki 

Guest Editor of Thirty-third Issue of International Journal of Informatics Society 

We are delighted to have the Thirty-third issue 

of the International Journal of Informatics 

Society (IJIS) published. This issue includes 

selected papers from the Twelfth International 

Workshop on Informatics (IWIN2018), which 

was held at Salzburg, Germany, Sept. 9-12, 

2018. The workshop was the twelfth event for 

the Informatics Society, and was intended to 

bring together researchers and practitioners to 

share and exchange their experiences, discuss 

challenges and present original ideas in all 

aspects of informatics and computer networks. 

In the workshop 26 papers were presented in 

seven technical sessions. The workshop was 

successfully finished with precious experiences 

provided to the participants. It highlighted the 

latest research results in the area of informatics 

and its applications that include networking, 

mobile ubiquitous systems, data analytics, 

business systems, education systems, design 

methodology, intelligent systems, groupware 

and social systems. 

Each paper submitted IWIN2018 was 

reviewed in terms of technical content, scientific 

rigor, novelty, originality and quality of 

presentation by at least two reviewers. Through 

those reviews 20 papers were selected for 

publication candidates of IJIS Journal, and they 

were further reviewed as a Journal paper. 

We have three categories of IJIS papers, 

Regular papers, Industrial papers, and Invited 

papers, each of which were reviewed from the 

different points of view. This volume includes 

six papers among those accepted papers, which 

have been improved through the workshop 

discussion and the reviewers’ comments.  

We publish the journal in print as well as in an 

electronic form over the Internet. We hope that 

the issue would be of interest to many 

researchers as well as engineers and 

practitioners over the world. 
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Figure 1: System timer and timestamps of sensor 
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Abstract - The installation of multiple sensors in vehicles 

for acquisition and analysis of data is gaining popularity, 

owing to the increasing diversity, miniaturization and inex-

pensiveness of sensors. However, these sensors are not nec-

essarily integrated into the same overall system. For instance, 

an owner-installed dashboard camera may not be connected 

to the factory-installed network of the vehicle. Therefore, it 

is important to synchronize data from multiple sensor sys-

tems to analyze the relation between the time series datasets 

of multiple sensors. A time-synchronization method is popu-

lar for this purpose, but this approach is not suitable for syn-

chronizing offline sensor data. In this study, we propose a 

method for synchronizing video data with acceleration data 

from a moving vehicle’s onboard sensors that use image 

features to detect synchronization points, which are then 

matched to corresponding points in the acceleration data. 

We evaluated the performance of our method by comparing 

video data with acceleration data (both collected via 

smartphone) when the vehicle turns right or left. Using this 

approach, we found the error to be 39.103 milliseconds. We 

intend to expand and further optimize our methodology by 

extracting and comparing data from different driving scenar-

ios. 

Keywords: autonomous driving, multimodal, data synchro-

nization, motion estimation of a vehicle. 

1 INTRODUCTION 

The installation of multiple sensors in vehicles for 

acquisition and analysis of data is gaining popularity, owing 

to the increasing diversity, miniaturization, and 

inexpensiveness of sensors. Autonomous driving is one of 

the applications using this approach, as autonomous vehicles 

have multiple sensors, such as global positioning system 

(GPS) receivers, cameras, and acceleration, laser, and radar 

sensors [1][2]. In addition, many consumer-grade vehicles 

use dashboard cameras (dashcams), which include a GPS 

receiver and/or some acceleration sensors. However, these 

sensors are not necessarily connected to the same central 

system, for instance, a dashcam is usually separated from 

other sensors within a vehicle (Fig.1). In this situation, 

multiple systems are therefore used for analyzing data 

acquired from multiple sensors. Vehicles that do not possess 

any sensors are rare. For some events such as a traffic 

accident in which the car is involved, if someone who was 

not involved in the accident (e.g., policeman or insurance 

representative) is investigating the driver’s role in the 

accident, even if not at fault, the driver has to provide some 

form of proof of innocence. If the driver uses 

unsynchronized dashcam video and other sensing data, the 

proof depended on using the data separately. So, even if the 

driver could prove innocence by using synchronized data 

(for example, proving that the driver “was correctly braking 

when the accident occurred” by using integrated camera 

video and acceleration data), that driver may not be able to 

prove it by using the data separately. Many consumer-grade 

vehicles do not come with a camera installed, so it is 

common for drivers to equip a car with an after-market 

dashcam. For commercial-transportation vehicles [3], 

synchronization among multiple sensors (such as a dashcam 

and other sensors that are original equipment in a vehicle) is 

important. 

LiDAR

radar

video camera

(a) sensors on one system timer

Timestamp is not different
because all sensors use 

one timer on the system

accelerometer

(b) sensors on multiple system timers：
car system and after-market dashcam

radar

dashcam

video camera

Timestamp added for video data is probably 
different from that added for radar
because different timers are used. 
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Synchronization of acquisition times of different sensor 

data is very important for analyzing and enabling correlation 

between these data. If sensor data are acquired in a single 

integrated system, acquisition times are synchronized 

seamlessly; however, data obtained by multiple systems 

may not be synchronized because of different times 

recorded by the separate systems. Because this commonly 

occurs when a vehicle owner installs a dashcam or some 

other after-market device, as vehicles generally do not have 

a synchronization method for such situations, an extra 

system must be added.  

Precise time differences between systems are needed to 

correct the discrepancies and enable data synchronization. 

Typical correction methods involve synchronizing system 

times or inserting timestamps in the sensor data [4][5], but 

because separate system clocks are different, system times 

become incorrect after multiple synchronizations over a long 

period of time. Too, when data from multiple systems are 

analyzed after all the data are recorded, differences between 

data-acquisition times cannot be obtained because the 

unsynchronized system times are not known when the data 

are recorded. Thus, if time synchronization is not in effect 

during data acquisition, it is impossible to synchronize data 

at a specific time to enable full use of all data. 

Furthermore, if external time, such as GPS time, is used 

for synchronization, GPS receivers are needed for all 

systems, but if this external time is in error, such as when 

vehicles are passing through a tunnel or an urban area 

containing many buildings, this error is not detected during 

synchronization. Also, the cumulative cost of a GPS 

receiver for each sensor can be considerable, so it would be 

advantageous for synchronization to be possible without 

having to purchase multiple GPS receivers. 

We have developed a method for synchronizing sensor 

data by extracting the data ranges of different vehicle 

motions through analysis of the characteristics of sensor 

data, without needing additional devices to record time data, 

thereby providing a more cost-effective method for 

synchronizing data from multiple sensors in a vehicle. 

2 OUR PROPOSED METHOD AND RE-

LATED STUDIES 

2.1 Proposed Method 

In this study, we aimed to synchronize video and accel-

eration data recorded by sensors in a vehicle, where each 

sensor was connected to a different system (Fig. 2). We in-

tended to perform synchronization after rather than simulta-

neously with data acquisition. 

Although the data-acquisition times for the various devices 

were approximately the same, the exact differences in times 

between the systems were unknown because the system 

clocks differed. Thus, for instance, because the differences 

in time between the camera and acceleration data were not 

always constant, if the synchronization was performed at 

one data point, it did not necessarily mean that all data 

points could be synchronized in a similar way. This was 

resolved by synchronizing some points of the data and 

correcting the data between these synchronizing points using 

the differences in time at the said points. Video and 

acceleration data also have many different characteristics, 

therefore reference points related to characteristics common 

to both data types are required for synchronization to be 

possible. Therefore, we propose a synchronization method 

that is based on the detection of vehicle-motion behavior 

from sensor data and matches ranges of data. The fact that 

we did not use time data to detect vehicle motion meant that 

the inconsistency in the differences in time (resulting from 

different clocks in the systems for each sensor) was 

negligible. 

2.2 Proposed Vehicle-Motion Events 

Because our method requires the use of multiple 

synchronization points, vehicle-motion events must be 

easily detectable and occur frequently while driving. 

However, easily detectable events such as passing over a 

bump (video result: vertical displacement; acceleration 

result: vertical vibration) and heavy braking (video result: 

variation in moving vector of objects; acceleration result: 

variation of acceleration in the direction the vehicle is 

moving) do not necessarily occur frequently in a given 

journey. Accordingly, we focused on extracting the required 

data from very common events such as when a vehicle is 

turned right or left, with the beginning and end of these 

turning events treated as synchronization points. It rarely 

occurs that a car is driving without turning right/left (i.e., the 

car is moving only straight ahead or back). In car-related 

studies, such as those concerning automonous driving, those 

algorithms/methods are evaluated by driving a variety of car 

motions, such as changing lanes, turning right/left at an 

intersection, or passing [6]-[12]. That means a car is not just 

moving straight ahead. Therefore, we chose to use the time 

when the car is turning right/left as a synchronizing point. 
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acceleration sensor
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Figure 2: Proposed system 
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2.3 Proposed Method 

For synchronization between data that have different 

characteristics, it is necessary to convert the data and/or 

isolate the characteristics that make the data mutually 

comparable. For example, in order to match with 

acceleration data, car speed can be calculated by a bird’s-

eye view created by camera images [13]. If the speed is 

calculated correctly, synchronization of video data (each 

frame being the converted speed of the car) and acceleration 

data is possible, but according to Morimoto et al. [13], 

calculation accuracy is not good when the car is moving 

slowly. For example, when the speed is 20 km/h, the error is 

>10%, which means the synchronization error is >10%. 

Sometimes synchronization is impossible because the 

pattern of the speed differences and the values of the 

acceleration data are very different. Because such low-speed 

driving sometimes occurrs in urban areas, their study [13] is 

not suitable for our research. 

Another method is to convert optical flows to be 

comparable to events characterized by other sensor data. 

Fridman et al. [14] devised a method to synchronize sensor 

data using optical flow by detecting vibrating events or 

steering events; this method is good for relative 

synchronization but cannot enable absolute synchronization. 

Giachetti et al. [15] developed a method for estimation of 

egomotion using optical flow; however, it is obviously not 

useful for vehicles traveling on a flat road, where vertical 

displacement is negligible. 

There are a lot of synchronization methods that focus on 

acceleration and camera imagery. For example, Tanaka et al. 

[16] described a method using a correlation value between 

sensor data without consideration of time, but it is 

applicable to acceleration data only and thus is not suitable 

for our system. 

3 DETERMINING SYNCHRONIZAION 

POINTS USING IMAGE FEATURES AND 

CHARACTERISTICS OF ACCELERATION 

DATA 

3.1 Overview 

Our method consists of three functions, 1) detecting 

“turning right” and “turning left” events using image fea-

tures, 2) detecting “turning right” and “turning left” events 

using acceleration data, 3) detecting synchronization points 

using detected events. 

We describe the functions in the following sections. 

3.2 Detecting “Turning Right” and “Turning 

Left” Events Using Image Features 

We used the optical flows of image features for detecting 

behaviors of the vehicle as “turning right” or “turning left” 

from camera images. Because the optical flows of image 

features of stationary objects have vectors that are opposite 

in direction to those of a moving vehicle, we can acquire 

vectors from stationary objects that correspond to those of a 

moving vehicle. We can calculate the tendencies of the vec-

tors from the optical flows of image features using whole 

frames. These image features are not solely on stationary 

objects; however, there are not many objects that move 

around the vehicle, so the tendencies of the vectors that can 

be regarded as a vector are the same as those of a vector that 

shows the movement of the vehicle. Fig. 3 depicts the opti-

cal flow when a vehicle turns right, showing how at this 

point a vector that is opposite to that of the moving vehicle 

can be acquired (i.e., a vector in which the direction is from 

the left to the right of the image as drawn). 

When a vehicle is turning right or left, the optical flows 

from the image features on stationary objects are opposite to 

the direction in which the vehicle is moving. Thus, if a cam-

era is recording in front of a vehicle, when the vehicle is 

turning right, optical flows turn left. Conversely, when a 

vehicle is turning left, optical flows turn right. Moreover, if 

a vehicle is not moving right or left, optical flows do not 

change, meaning that the direction of optical flow is very 

useful for detection of a vehicle-motion event. 

Meanwhile, the vertical direction of the optical flow varies 

with the position of each image feature within the camera 

image. Fig. 4 is an example of “turning left,” which shows 

that the vertical direction of the optical flow for each image 

feature varies from one to another. 

5

vertical direction
of camera frame

horizontal direction
of camera frame

focal distance

direction that 
object moves

Optical Flow

camera frame

moving direction
when a car is turning right

 

Optical Flows
(black lines in blue ellipses)

 

Figure 3: Optical flow when car is turning right 

Figure 4: Optical flows of “turning left” event 
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3.3 Detecting “Turning Right” and “Turning 

Left” Events Using Acceleration Data 

In this study, we hypothesized that we could acquire ac-

celeration data in the horizontal direction. If a vehicle is 

moving and the velocity in the horizontal direction is always 

zero unless a vehicle does not turn right or left, we can de-

tect the event of right/left turning by detecting whether the 

velocity in the horizontal direction is zero. This can be 

achieved using sensor data by calculating integration of the 

acceleration value. However, a vehicle is moving in the hor-

izontal direction even if it is not turning right/left; therefore, 

we cannot detect vehicle-motion events by confirming that 

the velocity of the vehicle is zero.  

When a vehicle turns right or left, the driver operates the 

steering wheel to move in the horizontal direction. Thus, this 

operation is equal to accelerating the vehicle in the horizon-

tal direction, so the start of this operation causes a signifi-

cant change in acceleration (Figs. 5 and 6). This means that 

this operation can be detected from the change in accelera-

tion. The start and the end of this turning operation can be 

detected as a peak or inflection in the acceleration  

In general, raw acceleration data from acceleration sensors 

includes some noise and bias that must be removed before 

calculating the peak or the inflection. 

3.4 Detecting Synchronization Points 

Based on the above method for detecting right/left turning 

events from video or acceleration data, we propose a method 

to synchronize video and acceleration data.  

Our method comprises two functions. The first is a func-

tion that detects ranges of the frame that indicate the vehicle 

is turning right or left. The second is a function that calcu-

lates the difference between these ranges and the range of 

acceleration data by searching points that correspond with 

the desired data. To reduce the searching range, the times of 

the systems are approximately similar and the difference in 

time is not known. However, the start of the searching point 

(the point that would match the point of the other sensor if 

the difference were zero) can be determined. 

In videos, “turning right/left” events have characteristics 

such that the optical flows tend to turn left/right. We there-

fore use these characteristics for detecting the ranges of the 

frames (Fig. 7), as follows: 

1) Obtain the optical flows of the image features be-

tween successive frames; 

2) Calculate the tendency of the vectors of the optical 

flows by classifying the vectors into 16 bins based on 

the direction of the vector, and select the bin that in-

cludes the majority of the vectors; 

3) Calculate the range by counting the frames in which 

the bin of the start frame is the left bin (bins 7 and 8 in 

Fig. 7) or the right bin (bins 1 and 16 in Fig. 7) if the 

bin is near the former frame (within two consecutive 

bins). 

The ranges calculated by the method are regarded as “turn-

ing left (continuously classifying left bin)” or “turning right 

(continuously classifying right bin).” Fig. 7 shows an exam-

ple of classifying a “turning right” event and the event pre-

ceding it. 
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Figure 5: Acceleration change in “turning left” event 

 

Figure 6: Change of acceleration in “turning left” event 

Figure 7: Bin differences in “turning right” event 
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In our earlier research [17], we discussed how the possibil-

ity of incorrect detection of a turning right/left event was 

controlled for checking whether such an event was a combi-

nation of more than one event. This may arise when another 

action occurs simultaneously with the vehicle turning right 

or left, such as riding on a curb or heavy braking. Thus, if 

the number of frames between two of the “turning right/left” 

events is very small (a few frames) and if these situations 

are the same (i.e., these situations are “turning right/right” 

and vice versa), these situations should be regarded as one 

event (Fig. 8). 

After calculating the range of the frames, the matching 

points between the start/end frame of the desired range and 

the acceleration data are calculated. The data is examined 

for the presence of peak or an inflection point of the acceler-

ation. A peak or an inflection point of the acceleration data 

closest to the start point is regarded as the corresponding 

point of the start/end frame. 

After calculating the range of the frames, the matching 

points between the start/end frame of the desired range and 

the acceleration data are determined. The data is examined 

for the presence of acceleration peaks or inflection points. 

Either one closest to the start point is regarded as corre-

sponding to the start/end frame. 

After calculating the corresponding point of the start frame 

(point C1) in the acceleration data (point A1) and the corre-

sponding point of the end frame (point C2) in the same data 

(point A2), A1 and A2 are corrected to have the same range 

of time between the range from C1 to C2 and the range from 

A1 to A2. In detail, point A1 is moving to A1′ and point A2 

is moving to A2′ . Therefore, “(time of A2′)−(time of 

A1′) = (time of C2)–(time of C1)” and “(time of A1)−(time 

of A1′) = −[(time of A2)−(time of A2′)].” Accordingly, 

A1′ and A2′ are calculated as follows: 

 

one ‘turning right’ situation

riding on the curb
→situation is separated

detecting
one ‘turning right’ situation

 

 

 

 

 

 

Δtc = (time of C2)−(time of C1) 

Δta = (time of A2)−(time of A1) 

diff = (Δtc − Δta)/2 

time of A1′ = (time of A1)−diff 

time of A2′ = (time of A2)+diff 

 

Hence, D1 = (time of C1)−(time of A1′), which is the dif-

ference in time between the start frame of the video and the 

start of the acceleration data of that range, and D2 = (time of 

C2)−(time of A2′), which is the difference in time between 

the end frame of the video and the end of the acceleration 

data of that range. D1 and D2 are not always identical. 

Therefore, the difference value (ΔE) at time E (between 

A1′ and A2′) is calculated as follows: 

 

 
 

For synchronizing point X in the range other than at a 

right/left turning event, the difference (Δd1) between the 

point X and point X1 (the end frame of the range of the 

right/left turning that occurs immediately before the point 

X), and the difference (Δd2) between point X and point X2 

(the start frame of the range of the right/left turning event 

that occurs immediately after the correcting point X) is used. 

The time difference ΔX at point X is calculated as follows: 

 

 
 

4 FUNDAMENTAL EVALUATION OF 

OUR METHOD 

We evaluated the fundamental accuracy of our method. 

The data and our evaluation method are described as follows. 

4.1 Data Setting 

We used video data and acceleration data acquired by a 

smartphone in a vehicle. The camera recorded the front view 

of the vehicle. The acceleration sensor recorded accelera-

tions in three dimensions: the direction in which the vehicle 

moved, the horizontal direction of the vehicle, and the verti-

cal direction of the vehicle. Fig. 9 shows the course we trav-

ersed with the smartphone-equipped vehicle.  

The recorded time was also acquired for these data (cam-

era frames and acceleration data). 

For an evaluation, we decided on evaluation events (syn-

chronization timing) to check a video and extract frames that 

correspond to the start or end point of turning right/left. We 

also calculated the acceleration data at each frame by linear 

interpolation. If those data are to be used in applying our 

method, the difference must be zero at all evaluation points, 

but some points had nonzero difference values because of 

noise. Accordingly, in this evaluation, we investigated ro-

bustness of our method. 

In this evaluation, the number of right/left turning events 

was 26, and these were all used for evaluation of the method. 

 

Figure 8: Separating one “turning right” situation 

into two situations 
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To reduce noise in the acceleration data, we used a 

smoothing process, and we applied an interpolation process 

to adjust the sampling rate of the acceleration data to the 

interval between the frames of the video (30 fps). 

The ranges calculated by the method in some cases had 

overlapping subranges, which showed ranges that correlated 

with the same right/left turning event. Accordingly, we add-

ed a merge process within our method so as to match one 

range to one event. In that process, some ranges that have 

the same frames got merged into one range. 

In addition, a range of one right/left turning event was 

sometimes split, so one event was sometimes described by 

more than one range. Accordingly, we added a concatenate 

process within our method so as to ascribe one range to one 

event. In that process, two ranges having an interval of one 

or two frames got merged into one range. 

4.2 Parameter Setting 

We searched for peaks or inflection points from the start 

point in the acceleration data. During evaluation, the search 

range was defined as 30 samples (corresponding to 1 sec.). 

From the ranges calculated by the method, we extracted 

those spanning ≥120 frames (i.e., >4 sec.). This parameter is 

based on the result of an examination described by Fukuda 

et al. [18], using elapsed time of a turning right event as 

being 3–6 sec. 

4.3 Experimental Results 

We evaluated the 26 situations by calculating the differ-

ence between the start time of camera frames and the syn-

chronized time of the acceleration data during right/left turn-

ing events, after applying our method (Fig. 10). 

In Fig. 10, the calculated value (difference between camera 

frame and acceleration data) for each event is shown, to-

gether with the absolute value of each calculated data point. 

The average value is 39.103 milliseconds (= 1.173 frames), 

and the standard deviation is 46.026 milliseconds (= 0.824 

frames). Event 14 has a large error compared to that of other 

events. That is because acceleration data are not varying at 

that point, so the shift in synchronization points is larger. 

We consider the cause to be data-acquisition error or bad 

noise filtering, and we intend to further investigate this kind 

of error. 
In our experiment, we obtained a timing error of ~40 

milliseconds between the video data (from an added 

dashcam) and the acceleration data measured by the factory-

installed sensor in the vehicle. We propose a method for 

synchronization of the data from each of these sensors. If 

another sensor is added to the vehicle (e.g., a radar sensor at 

the front of the vehicle) is synchronized with acceleration 

data, this sensor will also be synchronized to video data. 

For evaluating the accuracy of our method, we examined 

the accuracy of object detection by multiple sensors. When 

multiple sensors detect the same object, the detection results 

should theoretically be the same if sensor data are correctly 

synchronized. However, if synchronization is not correct, 

there is an error that, in the case of a moving vehicle, 

equates to a measurable distance. For example, in detecting 

pedestrians moving at 80 m/min, an error of 40 milliseconds 

equates to a 5.3 cm difference in distance, whereas in 

detecting cars moving at 60 km/h, this error is 66.7 cm. 

Accordingly, these distances can be considered negligibly 

small. 

For calculating optical flows, we have to select two frames. 

If the interval between those two frames is short, the length 

of the optical flow tends to shorten. This means that the 

optical flow is significantly affected by the error resulting 

from the matching. By enlarging the interval between these 

two frames, the impact of the matching error can be smaller. 

However, enlargement of the interval means that the 

accuracy of the detecting ranges of the right/left turning 

event decreases, because the accuracy depends on the 

intervals. This may result in the process failing to detect 

some ranges. To avoid this problem, we evaluated the 

accuracy by alternating the intervals. Fig. 11 shows the 

average and the standard deviation of the errors at some 

intervals from no frame (optical flow is calculated using 

consecutive frames) to nine frames. 

In Fig. 11, the average of errors is greatest at the interval 

“0frame” (more than 120% of the average at other intervals), 

and the average of errors and sum of average and standard 

deviations is smallest at the interval “6frames”. Although 

some intervals have greater averages or standard deviations, 

Fig. 11 seems to show that the magnitude of the average is 

inversely proportional to the magnitude of the interval. Fig. 

12 shows the ratio of a number of corrected events to a 

number of detected events, which shows that the smaller the 

magnitude of an interval, the larger the ratio.  

Figs. 11 and 12 show that both increasing and decreasing 

intervals have disadvantages, which suggest that use of the 

same optical flow for both detecting ranges of data and 

synchronizing data is not optimal. However, in our study, 

the use of the interval “0frame” for detecting range and the 

interval “6frames” for synchronizing data does appear to be 

acceptable. 

 

 

 

 

 

Figure 9: Course used in driving experiment 
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Figure. 10: Evaluation results 
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Figure. 11: average/standard deviation of errors and frame intervals 

 

Figure. 12: Ratio of corrected events and frame intervals 
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In right/left turning events, moving radius and velocity of 

a car varies by situation. When the car is slowly turning, 

noise in the acceleration data may affect the result. Table 1 

shows the moving radius (calculated by using the positions 

and algorithm (Fig. 13), velocity calculated approximately 

by integrating acceleration data and subtracting the 

integrated data at the point that the car is stopped nearest to 

but before the point because of drifts of the acceleration, and 

the difference value (Fig. 10)). In this evaluation, we applied 

noise reduction to the acceleration data, so it is assumed that 

the effect of the noise is small. Too, the correlation between 

errors and velocities is −0.151. That value means velocities 

are affected but only slightly. However, the correlation 

between errors and moving radius is 0.554, meaning that 

large radii tend to produce larger errors. We will investigate 

this more precisely in the future. 

 

 

 

 

 

event No. radius [m] 
approx. velocity 

 [m/s] 

error 

 [# of frames] 

1 5.32 1.96 1 

2 5.25 2.22 1 

4 8.69 0 1.5 

5 2.04 0 1.5 

6 37.37 0.70 0 

7 18.52 0 2 

8 31.20 0.91 1.5 

9 31.54 1.74 1 

12 45.94 1.00 1.5 

14 355.41 0.80 4 

15 232.86 2.36 2 

16 143.80 0.50 1 

23 135.38 0.60 0.5 

24 210.75 1.73 1 

25 98.92 1.76 0.5 

 

 
 

 

 

Table. 1: radius, velocity and error 

 

Figure. 13: Calculating radius using points 
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4.4 Future Work And Discussion 

In the 26 events, the average of the error frames is short, 

so it can be concluded that our methodology adequately 

accounts for the data. In future work, we will consider as-

pects such as the following: 

1) Detecting the range of the frames more precisely 

Our method detects the range of frames based on the 

tendency of the optical flow direction. If the range is 

short, the event corresponding to the range is not 

right/left turning but is similar in action to a part of the 

right/left turning event, e.g., an S-shaped curve. 

2) Handling the difference between Δta and Δtc (see sec-

tion 3.4) 

In our method, the difference between Δta and Δ
tc is divided equally and used for A1 and A2. This is 

not always true, as the difference between A1′ and 

A1 is not always the same as that between A2′ and 

A2. We can potentially resolve this issue by matching 

correlation values. 

3) Special situations: a lot of objects move in the same 

direction but other than the car’s direction, etc. 

In our method, we assumed that a lot of character-

istic points have characteristics that are the same as 

for the motion of the car, and extracted frames as the 

right/left turning frames by checking that the frame 

had optical flows of mainly left/right direction. If the 

car is not turning left/right but other objects are mov-

ing mainly left/right, and the characteristic points are 

mainly on the objects, our method may detect that 

frame as right/left turning. However, that means other 

objects are moving across the car because a camera is 

recording in front of the car, thus the situation could 

occur that when the car is stopping, it crashes into 

those objects. We expect to be able to detect that sit-

uation and remove it from among the right/left turn-

ing situations. 

In our evaluation, the video data has a situation 

where the car is stopping and waiting at the railroad 

crossing, and the situation occupies 1.4% of the 

frames, and our method was not detect that situation 

as right/left turning. 

4) Problems in obtaining image features from objects 

Our method assumes that the tendency of the opti-

cal flow direction is almost the same as the direction 

of the optical flows, based on the image features of 

the stationary object, so we assumed that multiple 

image features are acquired from an object that does 

not move in any frame. We currently use all the opti-

cal flows, but selecting the appropriate optical flows 

should enable improved detection and analysis. How-

ever, because our method applies all the frames, ex-

tensive calculation processes using optical flows will 

be required. We do not intend to use a heavily calcu-

lated method for, say, object detection, so this aspect 

will be carefully explored. 

 

 

5) Problems associated with insufficient number of im-

age features 

Some frames do not possess multiple image fea-

tures, for example when data is acquired at night. A 

frame may also be occupied by the sky or the ground 

with no lines, signs, and other objects. 

6) Utilization of camera images from other than the 

front 

As shown in Chapter 4, the installed camera is tak-

ing pictures of the front of the vehicle. Since the front 

is photographed, it is assumed that the optical flow 

swings from side to side when turning left to right.  

However, when using a camera image taken in a di-

rection other than the front, this premise changes. In 

this situation, it would not be possible to use the opti-

cal flow obtained from the captured image, so it 

would be necessary to convert these optical flows to 

match those in the front direction. 

The following is a matching example. It is as-

sumed that a feature point  in frame  is cor-

responding to a 3D relative position  

(where the X axis represents the right direction of the 

camera, the Y axis represents the optical axis of the 

camera, the Z axis represents the upward direction of 

the camera, and the origin is the camera sensor), and 

at the time in frame , the same point as   is repre-

sented the 3D relative position  , and 

 in frame , and the vehicle advances  

(described using vehicle coordinate system, X axis 

represents the right direction of the car, Y axis repre-

sents the front direction of the car, Z axis represents 

the upward direction of the car, and the origin is the 

position of the vehicle) from frame  to frame  

(Fig.14). In that case, the following equations hold, 

where  is the focal length of the camera,  is the 

pixel interval of the camera image, and  is the 

central position of the camera image. 

 

 
And, an equation  holds, where 

is  represents the transformation matrix, which 

transforms the vehicle coordinate system to the cam-

era coordinate system. So, if  and  is acquired,  

and  can be calculated from  and . 

When  and  are calculated, the feature points 

 and  in the front images are calculat-

ed, where  and 

. 

 

 
Figs.15-17 are examples of this calculation. In the 

illustrated range, the vehicle is going straight after a 

right turn. Fig. 15 shows the most frequent bins cal-

culated by the algorithm presented in this paper by 
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using the optical flows of the same range obtained 

from the front camera. Fig. 16 shows the most fre-

quent bins by using the optical flows obtained from 

camera images taken from the left side of the vehicle 

without matching. In Fig. 15, the optical flows after 

the right turn is mainly ‘right to left’, that means the 

vehicle moves the left side, but it is not shown at all 

in Fig. 16. Meanwhile, Fig. 17 shows the most fre-

quent bins by using the same optical flows but 

matched using  (, where R means 

rotation by an angle 90° around the Z axis, as well 

as , where  is the 

velocity of the vehicle and  is the interval of 

timestamp acquisition of the optical flows. Fig.17 has 

a similar tendency as Fig. 15. However, in this exam-

ple, the velocity of the vehicle must correspond with 

the frame. In the assumptions of this paper, there is a 

gap between the timestamps of the velocity of the ve-

hicle and those of the image frames, so the deviation 

will be included by the conversion method described 

above. In this paper, the gap is small, so we consider 

that the impact is minor. 

7) Expanding our method to other situations 

Our method uses all the optical flows in the frame 

to calculate the tendency of their direction. A 

right/left turning event is an appropriate situation to 

be detected using the method. However, our method 

is not suitable for some situations, such as moving 

straight ahead. In that situation, not all the optical 

flows turn in the same direction. The direction is de-

termined according to the point of the image feature 

within the frame. 

To expand our methodology, we can split a frame 

into subframes and calculate the tendencies within 

the subframes, followed by detection of the range 

based on the characteristics of those tendencies. This 

should enable data to be obtained when a vehicle is 

moving in a straight line, and thus enable sensors to 

be synchronized at any time during the journey of a 

vehicle. 

 

 

 

 

 

5 CONCLUSION 

In this study, we have proposed and evaluated a method 

to synchronize video and acceleration data from different 

sensors, connected to different systems, on a moving vehicle. 

In our method, we calculated the synchronization points by 

determining a right/left turning event from camera image 

data and acceleration data. From the camera image, we used 

the tendency of optical flows of the camera frame to detect 

the range of the event by continuously detecting the specific 

tendency of the corresponding vectors. 

From the acceleration data, we detected the situation by 

identifying the peak or inflection point of the acceleration. 

 

 

 

 

Figure. 14: The case of similar feature points 

 at different frames 

Figure. 15: Changes of bins of the case  

from images of the front of the car 

Figure. 16: Changes of bins from images  

taken from the left side of the car  
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We evaluated the fundamental performance of our meth-

od using the camera image and the acceleration data ac-

quired from a smartphone in a vehicle, and the error-frame 

average was 39.103 ms. However, some problems need to 

be addressed, such as improving the precision of detecting 

the range of an event from the camera image. 

 In addition, even though we determined that the differ-

ence between the acquisition time of video data and that of 

acceleration data is small, we will investigate a means of 

entirely removing this time difference, so as to further en-

hance the overall accuracy and utility of our method. 
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Abstract - New types of malware are appearing every day,
and malware attacks have become an urgent problem. Cur-
rent methods of detecting malware use malware signatures,
which need to be identified and registered in advance. How-
ever, the daily appearance of new types of malware makes
such identification and registration impractical. A more prac-
tical approach is to identify malware on the basis of traffic
behavior since each malware type displays a unique behavior.
We have developed a method for detecting malware infection
using traffic models based on the similarity between traffic
of malware samples. Malware-infected traffic is divided into
clusters on the basis of traffic behavior, and a model repre-
senting each cluster is created. These models are used to
identify target traffic samples as infected or normal. This
method should enable the detection of infection caused by
a new type of malware if the malware’s traffic behavior is
similar to that represented by one of the models. Simulation
evaluation demonstrated that the proposed method can effec-
tively identify malware-infect traffic with high accuracy. And
we discussed the created models and effectiveness using the
models created by proposed method. We also discussed the
detection of unknown malware using the models created by
proposed method.

Keywords: security, malware, malware detection, traffic,
clustering

1 INTRODUCTION

New types of malware are appearing every day, and mal-
ware attacks have become an urgent problem. Current meth-
ods of detecting malware use malware signatures, which need
to be identified and registered in advance. However, the daily
appearance of new types of malware makes such identifica-
tion and registration impractical. A more practical approach
is to identify malware on the basis of traffic behavior.

This paper focuses on infection detection, which we
broadly classify as malware detection, intrusion detection,
and infection detection. Intrusion detection typically involve
techniques for detecting unauthorized access from a network
before a malware infection occurs. Infection detection in-
volves techniques for detecting an existing malware infec-
tion from network traffic as usual. Malware infections have
become more difficult for users to detect, so infections have
spread more widely without users knowing that their comput-
ers are being used maliciously. Therefore, infection detection

for personal computers and middleboxes in the network such
as routers and firewalls is an important measure for preventing
the spread of infection.

The research reported here focused on the use of traffic data
to detect infection. This approach determines the features of
normal communication traffic and of infected traffic and uses
pattern recognition techniques to detect infections. Infection
detection based on traffic data uses only the incoming and out-
going communication traffic of the target machine. Basically,
traffic is generated if there is an infection, so this method
holds promise as a means of detection from outside the tar-
get machine. That is, malware infections are externally de-
tected by observing the target machine’s traffic patterns when
it connects to a network.

Each malware type displays a unique behavior and a unique
communication pattern when an infected terminal is con-
nected to a network. The unique communication pattern com-
prises association confirmation of the infected terminal to the
internet, surveying of the network environment, communica-
tion between the command and control (C&C) server and the
infected terminal, and so on. Whether the malware is known
or unknown, some malwares exhibit common communication
behavior when the terminal is infected with malware.

In this paper, we propose malware infection detection using
the traffic models based on the similarity between malware-
infected traffic samples. It works by creating feature values
on the basis of the time series of the traffic data, clustering
malware-infected traffic samples in accordance with the simi-
larities between them, and creating a representative model for
each malware cluster. Detection of unknown malware infec-
tion is important research theme. The target of this paper is
to classify the malware infection traffic as malware infection.
This paper focuses on the detection method of malware infec-
tion included in the unknown malware infection. Malware-
infected traffic is divided into clusters on the basis of traffic
behavior. A model of each cluster is created, and the models
are used to identify target traffic as infected or normal. This
method will enable infections caused by new types of mal-
ware to be detected if the resulting traffic behavior is similar
to that represented by one of the models.

This paper is organized as follows. Section 2 introduces
related work, Section 3 describes the proposed method, Sec-
tion 4 describes the evaluation method, Section 5 presents the
key results, Section 6 discusses the results, and Section 7 con-
cludes the paper with a brief summary of the key points and a
mention of future work.
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2 RELATED WORK

There have been various studies of malware detection using
traffic data. Some used the definitions provided by security
vendors for detecting malware infection, and some did not.

Studies in the first group (e.g.,[1]-[5]) classified malware
traffic samples into groups on the basis of the definitions and
created models of infected traffic for each group. However,
security vendor definitions are not always based on the char-
acteristics of infected traffic. It is thus better to create models
on the basis of the characteristics of infected traffic.

Some studies in the second group ([6]-[8]) created models
of infected traffic on the basis of the characteristics of infected
traffic but did not consider the time series of the traffic data
and the similarities between malware-infected traffic samples.
Other studies ([9]-[11]) created models of infected traffic on
the basis of the characteristics of infected traffic considering
similarities between malware-infected traffic samples but did
not consider the time series of the traffic data. Still other stud-
ies ([12], [13]) created models of infected traffic on the basis
of the characteristics of infected traffic considering the time
series of the traffic data but did not consider the similarities
between malware-infected traffic samples.

Traffic data is a stream of network information, and previ-
ous studies have demonstrated the effectiveness of consider-
ing the time series of traffic data. Consideration of the similar-
ities between malware-infected traffic samples is also neces-
sary for representing common characteristics of infected traf-
fic.

Therefore, in our study, we created feature values by con-
sidering the time series of each malware traffic sample. Next,
we divided the malware samples into clusters on the basis of
their similarities. Then, we created models representing the
common characteristics of the infected traffic for each clus-
ter.

3 PROPOSED METHOD

Our method is based on the detection of malware-infected
traffic by using models representing each common traffic
characteristic of malware. Proposed method conducts three
parts shown in Fig. 1. As outlined above, feature values are
created by considering the time series of the traffic data, mal-
ware samples are clustered by considering the similarities be-
tween them, and a representative model is created for each
malware cluster. Labels (Step 1) · · · (Step 6) used in the fol-
lowing subsection correspond to the step numbers in Section
4.2.1 , in which we describe the proposed method as an ex-
perimental procedure with experimental datasets.

3.1 Create Feature Values by Considering
Time Series of Traffic Data

(Step 1) Extract features of training data
To create a feature vector representing the time series of the

traffic data, the time series is divided into 1-s time slots, as
shown in Fig. 2. The traffic data is a set of packets captured
from network traffic. The time slots are then grouped into
intervals lasting a defined number of seconds for analysis.

Proposed methodopopopopopop Normalopop

Identify

Calculate
similarities

between
malware
 infected
   traffic
samples

Create 
representative 

model for 
each cluster

Create
feature

values by
considering
time series

of traffic
data

Infected 
traffic 
data

tifytify

Infected!

Figure 1: Outline of proposed method
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Figure 2: Division of time series of traffic data into 1-s time
slots

Dividing time-varying traffic into time slots with a fixed
duration and monitoring that traffic in units of time slots en-
ables normal and infected traffic to be distinguished by focus-
ing on the overall temporal variation in that traffic. In this
work, we set the time-slot width to 1 s and determined the
features for every time slot. The feature values are calculated
for each time slot, and a feature vector concatenating the fea-
ture values is created for each time slot. In this study, we used
minimum packet size per time slot, number of SYN packets
per time slot, ratio of SYN packets to TCP packets per time
slot, and number of ACK packets per time slot as the feature
values. In our previous study, we analyzed traffic data after a
malware infection and clarified which features would be the
most effective in the detection of infection. It focused on us-
ing traffic data to detect infections and on the use of features
that do not change much over time from those of the training
data. In the evaluation, minimum packet size per time slot,
number of SYN packets per time slot, ratio of SYN packets
to TCP packets per time slot, and number of ACK packets
per time slot as the feature values were effective features[9].
In this study, we represented the time-slot information as a
four-dimensional feature vector by concatenating the feature
values.

3.2 Cluster Malware Samples by Considering
Similarities Between Malware Infected
Traffic Samples

(Step 2) Create codebook for training data
To represent the traffic data as a code sequence, the set of

feature vectors created as described in Section 3.1 is clustered
(in this study, we used the LBG + splitting vector quantization
algorithm [14]), and code is created for each cluster. A cluster
is a mass of feature vectors and is divided on the basis of
the distribution of data in the feature space. The code is the
representative value of the cluster. The codebook is the code
set. For example, when four-cluster clustering is applied, four
codes (a, b, c, and d) are created. And we call the set of four
codes the codebook.
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(Step 3) Create time-series representation of training data
The distances between the feature vector of target time slot

and the code for each cluster is calculated, and a search is
made for the nearest code. The time slot is then shifted, and
a search is again made for the nearest code shown in Fig. 3.
This series of nearest codes is called a “transition pattern.” An
example transition pattern is shown in Fig. 4.

The number of occurrences of each transition pattern per
time interval (for example 40 s) is counted, and the ratio of
each target transition pattern to all types of transition patterns
is calculated, as shown in Fig. 6. The time interval is then
shifted, and the number of occurrences of each transition pat-
tern per time interval is again counted, and the ratio of each
target transition pattern to all types of transition patterns is
calculated.

(Step 4) Calculate similarity(correlation coefficient) be-
tween each pair of samples in training data

To evaluate the similarities between two malware traffic
samples, their correlation coefficient is calculated using the
occurrence frequency ratios, like those shown in Fig. 5. The
correlation coefficient represents the correlation between each
sample’s digital sequence of the number of transition patterns
× the number of time intervals. The coefficient is calculated
using

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2,
(1)

where x and y are the probability variables, x̄ is the mean
value of x, ȳ is the mean value of y, and n is number of tran-
sition patterns × the number of time intervals.

Calculation of the correlation coefficient requires that the
n of x equals the n of y, as shown in Fig. 6. However, each
malware traffic sample has a variable number of time inter-
vals because each malware sample has a variable number of
infected time intervals. The number of time intervals is thus
adjusted by applying dynamic programming matching (DP
matching) to the digital sequences of the two samples. The
correlation coefficient is calculated using the adjusted digi-
tal sequences. DP matching adjusts the time lengths of the
two samples by considering the time-series information and
stretching the parts that are similar between the samples.

a→a a→b a→c a→d b→a d→c d→d
0s~40s 0% 0% 0% 0% 0% … 5% 82%
40s~80s 0% 0% 0% 5% 0% … 0% 60%

… …

Figure 5: Example occurrence frequency ratios

a→a a→b a→c a→d b→a d→c d→d
0s~40s 0% 0% 0% 0% 0% … 5% 82%
40s~80s 0% 0% 0% 5% 0% … 0% 60%

… …
a→a a→b a→c a→d b→a d→c d→d

0s~40s 82% 0% 0% 7% 0% … 5% 0%
40s~80s 67% 0% 0% 5% 0% … 0% 3%

… …

… …
Calculate
correlation
coefficient

Malware A

Malware B

Figure 6: Calculate correlation coefficient

3.3 Create Representative Model for Each
Malware Cluster

(Step 5) Create representative model for each malware
cluster for training data

A representative model is created for each malware cluster
by extracting a representative malware sample.

The malware samples are classified using hierarchical clus-
tering based on correlation coefficients (we used the nearest
neighbor method as hierarchical clustering). A high corre-
lation coefficient means the similarity is high. The malware
sample that has the most traffic samples with a correlation co-
efficient greater than an upper threshold is selected as the ini-
tial representative malware sample for the cluster. Since the
optimal number of clusters is unknown in advance, hierarchi-
cal clustering is used as it does not require advance setting
of the number of clusters. We extracted the malware sam-
ple that had the most malware’s traffic samples with a corre-
lation coefficient greater than the threshold(upper threshold)
as the initial representative malware sample for the cluster.
By the same token, the malware samples for which the cor-
relation coefficient between the two malware traffic samples
is less than the threshold (lower threshold) are deselected in
each cluster to remove the samples for which the correlation
is weak. This clustering is repeated until all training samples
are divided into clusters.

The extracted malware traffic sample for a cluster is used
as a representative model for that cluster in order to model
sequential traffic data that actually occurred.

3.4 Detection of Infection

(Step 6) Calculate similarity between two samples in test-
ing data

The time-series features of the testing data are created us-
ing Steps 1 and 3. The similarity between each representative
cluster model and the target malware traffic sample is calcu-
lated, and the similarity between the model of normal traffic
and the target malware traffic sample is calculated. The two
similarities for each sample are compared, and the sample is
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identified as infected or normal.

4 EVALUATION

4.1 ExperImental Datasets
We used the anti-Malware engineering WorkShop (MWS)

Datasets [15] for our evaluation. In particular, we used the
CCC (Cyber Clean Center) DATAset and the D3M (Drive-
by Download Data by Marionette) Dataset for training. As
malware-infected traffic data, we used 317 malware samples
(151 from CCC DATAset 2010, 156 from CCC DATAset
2011, and 10 from D3M 2012) for the training data such that
the data used for training were older than the data used for
testing. The normal traffic data used for training were cap-
tured between 2011 and 2015.

We also used the CCC DATAset and D3M Dataset for test-
ing. As malware-infected traffic data, we used 200 malware
samples (177 from CCC DATAset 2011, 15 from D3M 2013,
5 from 2014, and 3 from D3M 2015) for the testing data such
that the data used for testing were newer the data used for
training.

The CCC 2010 and CCC 2011 attack data include commu-
nications prior to malware infection. Thus, given the purpose
of our evaluation, we extracted from this attack traffic only
the traffic following malware infection using the method de-
scribed by our group et al. [9].

4.2 Experimental Methods
To evaluate the effectiveness of the proposed method, we

compared its detection performance with that of three refer-
ence methods.

4.2.1 Detection Using Proposed Method

As shown in Fig. 7, using our proposed method, we per-
formed six basic steps .

(Step 1) Extract features of training data

Step 1-1 We divided the traffic data into 1-s time slots. We
used the packet header information because the payload
information was often encrypted.

Step 1-2 From each time slot, we extracted four features that
we had determined to be effective for infection detec-
tion: minimum packet size per time slot, number of
SYN packets per time slot, ratio of SYN packets to TCP
packets per time slot, and number of ACK packets per
time slot. The four features are evaluated as effective
features for infection detection in [9].

Step 1-3 We normalized the extracted feature values by using
the min-max method.

Step 1-4 We represented the time-slot information as a four-
dimension feature vector by concatenating the normal-
ized values.

(Step 2) Create codebook for training data

Step 2-1 We applied the LBG+splitting vector quantization
algorithm to the vectors with the cluster number set to
four.

Step 2-2 We calculated a representative vector (cluster cen-
ter) for each malware cluster and collected the vectors
into a codebook representing the characteristics of each
cluster.

(Step 3) Create time-series representation of training data

Step 3-1 We calculated the distances between the feature
vector of time slot and each code. And we assigned
code of minimum distance to the time slot. The time
slot is then shifted, and a search is again made for the
nearest code.

Step 3-2 We assigned a code to all time slots.

Step 3-3 We counted the frequency of each transition pat-
tern in each time interval and represented the ratio of
the frequencies as time-series information. There were
16 transition patterns (a→a, a→b, · · ·, d→c, d→d) be-
cause we used four codes. We set the time interval to
10, 20, 30, 40, or 60 s. For example, when we set the
time interval to 10 s, we calculated the frequency of
each transition pattern in each 10-s interval (comprising
ten time slots) and calculated the ratio of the frequen-
cies of each transition pattern. We then shifted the time
interval and calculated the frequency of each transition
pattern per interval and calculated the ratio of each tar-
get transition pattern to all types of transition patterns.

(Step 4) Calculate similarity (correlation coefficient) be-
tween each pair of samples in training data

We calculated the correlation coefficient between each
pair of malware samples. A total of 50,086 (=317 C2)
correlation coefficients were calculated for each inter-
val. We adjusted the time length (number of transition
pattern × number of time interval) of each pair of mal-
ware samples by using DP matching.

(Step 5) Create representative model for each malware clus-
ter for training data

We performed hierarchical clustering using the correla-
tion coefficients calculated in Step 4. In multi-variant
analysis, the correlation between each pair of samples
was evaluated using the following criterion based on
correlation coefficients C [16].

0.0 ≤ C ≤ 0.2 : barely correlated

0.2 ≤ C ≤ 0.4 : weakly correlated

0.4 ≤ C ≤ 0.7 : a little strongly correlated

0.7≤ C ≤ 1.0 : strongly correlated

The calculated correlation coefficients were used as
measures of the similarity between malware-infected
traffic samples. The higher the coefficient, the stronger
the correlation. The malware samples for which the
correlation was very high were grouped together. On
the basis of the above criteria, a coefficient greater

152 Masatsugu Ichino et al. / Detection of Malware Infection based on the Similarity between Malware Infected Traffic



than 0.7 generally means that the correlation is very
strong. Therefore, we set the upper threshold to 0.7.
The lower the coefficient, the weaker the correlation.
The malware samples for which the correlation was
very low were removed from the cluster. On the basis
of the above criteria, a coefficient less than 0.2 gener-
ally means that the correlation is very weak. Therefore,
we set the lower threshold to 0.2. Given these criteria,
we selected the malware sample that had the most traf-
fic samples with a correlation coefficient greater than
0.7 as the initial representative malware sample for the
cluster. To keep a somewhat high correlation between
each pair of malware traffic samples in the cluster, we
deselected the malware samples that did not correspond
to more than 70% of samples in the cluster; that is, the
correlation coefficient was more than 0.2.

(Step 6) Calculate similarity between two samples in testing
data

Step 6-1 We created the time series features of the testing
data using Steps 1 and 3.

Step 6-2 We created a model of normal traffic using Steps 1
to 5.

Step 6-3 We calculated the cumulative minimum distance
between each representative cluster model and the tar-
get malware traffic sample and calculated the cumula-
tive minimum distance between the model of normal
traffic and the target malware traffic sample.

Step 6-4 We compared the two distances for each sample. If
the distance between the representative cluster model
and the sample was greater than that between the model
of normal traffic and the sample, the sample was identi-
fied as normal. Otherwise it was identified as infected.

4.2.2 Detection Using Time-Slot Method

For detection using time slots, we did not use both the
time-series information and the similarity between malware-
infected traffic samples. Instead, we created four codes from
the malware infection training data using Steps 1 to 2 and cre-
ated four codes from the normal training data using Steps 1 to
2.

We calculated the distances between the vector for the tar-
get time slot and the four codes for infection. Of the four
distances calculated, the minimum one was selected as the
similarity for infection. Moreover, the distances between the
vector for the target time slot and the four codes for normal
were calculated. Of the four distances calculated, the mini-
mum distance was selected as the similarity for normal. Next,
we compared the two similarities. If the one for infection was
smaller than the one for normal, the time slot was identified
as infected. If the one for normal was smaller than the one for
infection, the time slot was identified as normal.

We applied the same process to all time slots of each mal-
ware traffic sample. If the ratio of the number of infected time
slots to number of all time slots was more than the threshold

(20%, 50%, or 70%), we identified the target traffic sample as
malware-infected.

4.2.3 Detection Using One Representative Model

For detection using one representative model, we used the
time-series information. We did not use the similarity be-
tween pairs of malware samples. The average malware traffic
sample of the training data was treated as the representative
model of malware-infected traffic.

We created the time-series information for the target mal-
ware traffic samples using steps 1 to 3 above. We calculated
the mean ratio of the frequencies of each transition pattern for
all malware traffic samples and selected the sample that was
closest to the mean as the representative model of malware-
infected traffic.

For testing, we created time-series information for the mal-
ware traffic samples using steps 1 to 3 above. We calculated
the cumulative minimum distance between the target sam-
ple and the model of infected traffic. We also calculated the
cumulative minimum distance between the sample and the
model of normal traffic and identified the sample as normal
or malware-infected on the basis of the two distances.

4.2.4 Detection Using Models Based on Security Ven-
dor’s Definitions

For detection using models based on a security vendor’s def-
initions, we used the time-series information and clusters for
classification. We did not use the similarity between malware-
infected traffic samples.

We created time-series information for the target malware
traffic sample using steps 1 to 3 above. Next, we divided
the training malware traffic samples into clusters defined by
the security vendor: BKDR, PE, Mal, TROJ, andWORM. We
calculated the mean ratio of the frequencies of the transition
patterns of the malware samples in each cluster. We selected
the sample in each cluster with the frequency closest to the
mean as the representative model of malware-infected traffic.

We calculated the cumulative minimum distance between
the model of malware-infected traffic and target traffic sample
and calculated the cumulative minimum distance between the
model of normal traffic and target sample. We identified the
sample as normal or infected on the basis of the distances.

5 RESULTS

5.1 Identification Rate of Proposed Method
The identification rate of the proposed method by chang-

ing the time interval is summarized in Table 1. The time in-
terval is the duration during which the code transitions were
counted, as described in section 3.2. The number of patterns
of infected traffic is the number of hierarchical clusters, as de-
scribed in section 3.3. The identification rate is the number of
correctly identified malware-infected traffic samples divided
by the total number of such samples in the testing data.

The identification rate was 100% for time intervals of 10,
20, 30, and 40 s, meaning that it is robust against the time
interval.
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Figure 7: Overview of experiment

Table 1: Identification rate of proposed method
Time No. of patterns Identification

interval (s) of infected traffic rate (%)
10 17 100
20 15 100
30 12 100
40 12 100
60 11 99.0

Table 2: Identification rate of time-slot method
Rate of infected time slots (threshold) Identification rate

20% 87.0%
50% 22.5%
70% 16.5%

5.2 Identification Rate of Other Methods

To evaluate the effectiveness of proposed method, we com-
pared its identification rate with those of the three reference
methods. The identification rate of the time-slot method (sec-
tion 4.2.2) is shown in Table 2. The rate of infected time slots
is the number of time slots identified as infected divided by
the total number of infected time slots in each traffic data.
It is used for identifying whether a traffic sample is infected
or normal. The identification rate of the one-representative-
model method (section 4.2.3) is shown in Table 3. The iden-
tification rate of the security-vendor-definition-based method
(section 4.2.4) is shown in Table 4. The number of patterns
of infected traffic is five because the data used included five
malware families.

Table 3: Identification rate of one-representative-model
method

Time No. of patterns Identification
interval (s) of infected traffic rate (%)

10 1 12.5
20 1 14.5
30 1 25.5
40 1 32.5
60 1 52.5

Table 4: Identification rate of security-vendor-definition-
based method

Time No. of patterns Identification
interval (s) of infected traffic rate (%)

10 5 47.5
20 5 78.0
30 5 92.0
40 5 87.5
60 5 98.5

6 DISCUSSION

6.1 Representative models

We first discuss the effectiveness of increasing the number
of models, i.e., the number of patterns of infected traffic. As
shown in Tables 1, 2, 3, 4, the proposed method had the high-
est identification rate.

To evaluate [the effectiveness to represent some models of
infected traffic, we analyzed the main transition pattern of
each model. As described in section 3.3, a transition pattern is
the transition of the codes in a time slot. To analyze the main
transition pattern of each model, we show the traffic features
of each code by analyzing the traffic data near the code. The
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Table 5: Traffic Features of Each Code
Code Feature(s)
a SYN send
b ACK send
c UPnP, CBrowsing,

SSL communication (digital sign etc.)
d DNS communication (name resolution),

RST/ACK send, UPnP

Table 6: Main transition pattern of each model with proposed
method

Traffic No. representative Main
pattern of model transition

malware pattern
samples

0 219 BKDR IRCBOT dd
1 79 WORM DOWNAD a→ a
2 6 WORM DOWNAD a→ a, Cd→ d
3 3 WORM DOWNAD b→ b
4 2 TROJ KRYPTIK c→ d, Cd→ c
5 2 WORM DOWNAD d→ d, Ca→ a
6 1 WORM DOWNAD a→ a, Cd→ d
7 1 TROJ MAILBOT a→ a, Cd→ d
8 1 WORM DOWNAD b→ b
9 1 BKDR SMALL b→ d, Cd→ b

10 1 WORM DOWNAD d→ d, Cc→ c
11 1 WORM ALLPLE a→ a

results are summarized in Table 5. Each code represents one
or more traffic features.

The main transition pattern of each model with the pro-
posed method is shown in Table 6.The proposed method
created 12 representative models, and each traffic pat-
tern had bias of main transition pattern. In contrast, the
one-representative-model method created one representative
model, as shown in Table 7. A comparison of the main
transition patterns of proposed method with that of the one-
representative-model method shows that the latter is included
in the main transition patterns of proposed method. It also
shows that there is a big difference between the identification
rate of the two methods. Therefore, the number of traffic pat-
terns with the latter method is insufficient. A greater number
of models is needed to represent the infected traffic. The tran-
sition pattern depends on the number of feature classes. If the
feature is classified to more complex classes, it is unavoidable
that combination explosion will occur. In this study, we set to
four codes for vector quantization algorithm.

6.2 Effectiveness of Detection
We discuss the effectiveness of detection by proposed

method. As mentioned, the proposed method had the high-
est identification rate. To evaluate the effectiveness to repre-

Table 7: Main transition pattern of one representative model
Representative model Main transition pattern
WORM DOWNAD d→ d

Table 8: Mean value of minimum distance between represen-
tative model and all malware traffic samples

Method Training Testing
data data

Proposed method (time interval 10 s) 10.34 27.17
Proposed method (time interval 20 s) 3.02 4.45
Proposed method (time interval 30 s) 10.19 13.61
Proposed method (time interval 40 s) 5.30 5.99
Security-vendor-definition-based 12.67 15.62
method (time interval 60 s)
One-representative-model method 5603.65 3534.65
(time interval 60 s)

sent the model of proposed mehotd, we calculated the min-
imum value of the cumulative minimum distance between
each representative model and the target malware traffic sam-
ple in the training data. We calculated the mean value of the
minimum value of all combinations of representative mod-
els and all malware traffic samples in the training data. The
shorter the distance between the representative model for each
traffic pattern and all malware traffic samples in the training
data, the better the representative models represent all mal-
ware traffic samples in the training data. We calculated the
minimum value of the cumulative minimum distance between
each representative model and the malware traffic samples in
the testing data. We also calculated the mean value of the
minimum value of all combinations of representative models
and all malware traffic samples in the testing data. We did
the same for the model based on the vendor’s definitions and
the one representative model. These results are summarized
in Table8.

The proposed method (20-s time interval) had the mini-
mum distance for the training and testing data. It was about
a quarter that of the security-vendor-definition-based method
for the training data. It is about 1/1800 that of the one-
representative-model method (the method without clustering
of malware samples) for the training data. The shorter the
cumulative minimum distance, the better the models of in-
fected traffic patterns represent the features of all the traffic.
Therefore, the proposed method represents the infected traffic
pattern better than the two other methods shown in Table 8.

We investigated the transition pattern of malware samples
classified as each traffic pattern. To show the difference of
transition pattern, we show a example of the histogram of
transition pattern of two worms in Fig. 8 and Fig. 9. In these
figures, horizontal axis is transition pattern and vertical axis
is ratio of appearance transition pattern. The worm shown in
the Fig. 8 is classified as traffic pattern 0. The worm shown
in the Fig. 9 is classified as traffic pattern 1.

The outline of the histogram of two worm samples is dif-
ference each other. There are many transition patterns of d
→ d in the Fig. 8. There are many transition patterns of a→
a in the Fig. 9. Worm malwares are selected as two traffic
patterns. So worm malwares are separated into some groups.
The results demonstrate that it need to represent infected traf-
fic data with some traffic patterns.
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Figure 8: The histogram of worm of traffic pattern 0

Figure 9: The histogram of worm of traffic pattern 1

6.3 Detection of Unknown Malware

Finally, we discuss the detection of unknown malware. In
our experiments, we created models of normal and malware-
infected traffic from only training data and used the models
to identify malware traffic samples in the testing data. Six
classes of ten malwares from the security vendor’s definitions
were included in the testing data and not in the training data.
A malware class corresponds to malware with the same pre-
fix family name. Malware with the same prefix family name
is considered to be subspecific malware. The ten malware
traffic samples represented six malware classes: two were
PE SALITY malware, one was TROJ KRYPTK malware,
one was TROJ LSADCOM malware, two were TROJ SPNR
malware, three were TROJ VILSEL malware, and one was
TSPY FAREIT malware. The remaining 190 malware traffic
samples were subspecific malware found in the training data.
When we focused on the hash value of the malware traffic
samples, the training and testing data did not overlap, and the
testing data was unknown malware.

As shown In Table 1, the proposed method had an identifi-
cation rate of 100% for four of the five time intervals. That is,
all malware traffic samples in the testing data were correctly

identified, including the unknown malware traffic samples of
the malware classes included in the training data and the un-
known samples of the malware classes not included in the
training data. The proposed method is thus able to identify
unknown malware samples of a malware class not included in
the training data.

7 CONCLUSION

Our method for detecting malware-infected traffic samples
is based on the similarity between the pair of malware sam-
ples in this paper. Simulation evaluation demonstrated that
the proposed method can effectively identify malware-infect
traffic with high accuracy.

Future work includes conducting a large-scale experi-
ment to better evaluate the effectiveness of the proposed
method.Since normal traffic must be classified as normal
when practical, a method for detecting infected traffic com-
bined with a method for detecting normal traffic must be stud-
ied. In this paper, we focused on detecting malware infec-
tions (including unknown malware infections). Future work
includes investigating how to create models of normal traffic
for use in classifying unknown normal traffic.
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Abstract - In recent years, IPv6 wireless sensor networks 

have been widely spread in various fields including IoT en-

vironments, because of the development of low-power sen-

sor devices and wireless communication technologies. How-

ever, on these sensor networks, it is difficult to use secure 

communication technologies that can become large over-

head, due to power saving of the wireless nodes is important. 

As one approach to deal with this problem, a method of fo-

cusing on Nonce which is one element of security, and sepa-

rating it from secure communication is proposed, though 

this method can be used only when the reliability of com-

munication ensured. Therefore, it remains a problem that not 

suit in environments such as wireless sensor networks where 

the reliability of communication is not ensured, since multi-

hop networks and the like is used. In this paper, we propose 

a Nonce truncation method that can deal with such environ-

ments. Our method is implemented on the nodes that estab-

lish secure communication, and transfer information of 

about several bits that can estimate the Nonce associated the 

ciphertext as the truncated Nonce value. We also evaluated 

the effectiveness of our method by comparing the lifetime of 

the devices between our method and the previous method, 

and could confirm the effectiveness in a simple secure 

communication model. 

Keywords: IoT, Reliability of Communication, Secure 

Communication, Nonce 

1 INTRODUCTION 

Recently, IPv6 (Internet Protocol version 6) wireless sen-

sor networks have been widely spread in various fields in-

cluding IoT environments, because of the development of 

low-power sensor devices and wireless communication 

technologies. The penetration rate of these devices has been 

increased, and as can be seen from Fig.1, about 50 billion 

devices will be interconnected in 2020 [1]. It is also ex-

pected to be utilized in various fields.  

On the other hand, these sensor networks are typically 

composed of communication devices with limited compu-

ting resources such as battery capacity, CPU performance, 

and little memory. These characteristics are often due to cost 

constraint and physical constraints on such as size and avail-

able energy. Also, these tight limits make it difficult to at-

tain some high load functions like secure communication  

Figure 1: The number of connected IoT devices in the 

world 

that are pretty much taken for granted for conventional net-

works. So, mechanisms considering these resource con-

straints are required in the sensor networks. 

In addition, wireless sensor networks that called LLNs 

(Low power and Lossy Networks) are about to become 

widely spread. LLNs have restrictions not only on the re-

source constraint of the above-mentioned but also on the 

networks. The network constraint involves instabilities such 

as low data rate and high packet loss rate are accompanied 

in the communication environment, its reliability is not 

guaranteed. These tight constrained networks are needed to 

meet the demand for IoT services in various fields. There-

fore, there are various factors that impose these restrictions, 

such as an introduction of simple and highly scalable UDP, 

and use of a multi-hop network to deal with a wide range of 

sensing. 

In general, in these wireless sensor networks including 

LLNs, low power consumption wireless communication 

standard represented by Zigbee [3] is introduced. However, 

these standards are based on IEEE 802.15.4 [4] as a data 

link layer technology, and its frame size is small. Therefore, 

considering resource constraints, it is required some data 

size reduction scheme for side information like protocol 

control information. As the information to be reduced, the 

IPv6 header that supports the IoT service is no exception. 

As one of the proposals for introducing IPv6 into such con-

strained networks, IETF (Internet Engineering Task Force) 

has established a policy to expand part of these low power 

consumption wireless communication standards. As a typi-

cal example of this, there is a method of providing an adap-

tation layer for using IPv6 technology on IEEE 802.15.4. 

Specifically, there are 6LoWPAN (IPv6 over Low-Power 
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Wireless Personal Area Networks) [5] which compresses 

IPv6 header or UDP header for alleviating a problem that 

the frame size of IEEE802.15.4 is too small in the introduc-

tion of the IPv6 technology, RPL (IPv6 Routing Protocol for 

Low Power and Lossy Networks) [6] which is a routing pro-

tocol to support the above-mentioned unstable communica-

tion environment, and so on. Here, there are many tech-

niques related to the introduction of IPv6, but there are 

many reasons why this approach is mainly performed. First, 

IPv6 allows for a huge amount of addresses and provides 

easy participation in the network by such as SLAAC (State-

Less Address Auto Configuration). Thus, it is possible to 

deal with the interconnection of the aforementioned enor-

mous number of IoT devices, which is difficult in IPv4. In 

addition, IPv6 based networks can be interconnected readily 

between the devices including other IPv6 networks because 

the networks don't need intermediate entities like protocol 

translation. In consequence, the network scalability is high, 

and it can deal with various scenarios requested by IoT ser-

vices. There are many other advantages, but it is said that 

IPv6 is more appropriate than IPv4 for the reasons men-

tioned above. Therefore, IPv6 has a high affinity wireless 

sensor networks including LLNs, and these technologies are 

expected to be used in various environments including smart 

grid, smart factory, and others as the core technology. 

While it is expected that such communication scheme tar-

geting LLNs based on IEEE 802.15.4 with IPv6 will become 

widespread, security problems such as unauthorized access 

aimed at valuable information assets exchanged over the 

wireless sensor network are also becoming apparent [7]. 

However, most of the research on this communication 

scheme is concerned with the network construction, and 

discussion on security has not been sufficiently done. For 

example, 6LoWPAN technology described above compress-

es only the header information, so does not support large 

size security elements for secure communication. Moreover, 

although the constraint on the small frame size is relaxed by 

the compression scheme, the header information occupies 

much of the frame size remains. Therefore, the importance 

of considering reduction of side information like secure el-

ements is higher than sensor networks without IP. Therefore, 

the importance of considering reduction of side information 

like secure elements is higher than sensor networks without 

IP. In addition, despite there are proposals for the light-

weight secure communication methods for wireless sensor 

networks without IP which was a major before the spread of 

IoT service, it has a big different background from recent 

sensor networks with network constraints like LLNs. For 

example, a method of separating Nonce which is one securi-

ty element from communication and reducing its size to zero 

is proposed. However, in the lossy network, it is difficult to 

operate the Nonce correctly in this method, so it can become 

a heavy process. Hence, in an actual scenario, it is necessary 

to consider a lightweight truncation of Nonce method that 

can properly operate according to the frame loss rate. For 

this reason, it is difficult to apply conventional security 

technology for the LLNs environment. Especially, the prob-

lems that cannot support IEEE802.15.4 small frame size, 

and unstable communication quality are left. 

In this paper, we discuss the unstable communication qual-

ity and the resource constraints of sensor devices which are 

the features of LLNs. Then, we design a secure communica-

tion method that can deal with these features. To this end, 

we focus on Nonce (Number used once) which is one of the 

security elements and address a method to truncate this. Al-

so, in this method, we design a lightweight secure commu-

nication scheme that can operate without applying excessive 

overhead to sensor devices at any frame loss rate.  

 

2 RELATED WORK 

 

As the previous method, a lightweight secure communica-

tion method has been proposed, which is focusing on Nonce 

that is a part of security elements, and completely separating 

this from the communication. In the following, we describe 

the mechanism of the previous method and its applicability 

to LLNs, based on the basic secure communication technol-

ogy. 

2.1 Overview of Basic Secure Communication 

In this section, we describe the general secure communica-

tion establishment method, and the secure design when ap-

plying it to the LLNs based on IEEE 802.15.4, in considera-

tion of the data frame structure. 

2.1.1 Establishing General Secure Communi-

cation 

Strictly speaking, the establishment method of secure 

communication differs depending on the required security 

requirements and the Block Cipher Modes of Operation se-

lected according to the requirements. As famous examples 

of the Modes of Operation, there are CBC (Cipher Block 

Chaining) mode and CTR (CounTeR) mode that provide 

confidentiality of communication data, and CCM (Counter 

with CBC-MAC) mode combines confidentiality and au-

thenticity in an efficient way as authenticated encryption 

mode [8]. Among them, CCM mode can deal with pro-

cessing resource constraints and frame size restriction of 

sensor devices. That's because this mode can process of en-

cryption and decryption in parallel by the same algorithm, 

and does not expand data size of ciphertext.  Moreover, this 

mode is known as high versatility because has many security 

requirements that can be provided, can apply various fields. 

Hence, it also coincides exactly with the design concept of 

the communication scheme for LLNs. Therefore, we de-

scribe how to establish secure communication in CCM 

mode on the premise of introduction to LLNs. The overview 

of the operation is depicted in Fig.2. 

Figure 2 shows the flow from an establishment of secure 

communication between sensor devices until the Sender 

generates an encrypted frame from the plaintext, and then 

from this frame to the plaintext by the Receiver. In this fig-

ure, Key is a secret key, Nonce is a security element to make 

it possible to use the same Key multiple times without secu-

rity risk, and MAC (Message Authentication Code) is a se-

curity element to provide integrity or authenticity, added  
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Figure 2: Basic operation of secure communication 

 

only when using CCM mode. As the initial operation of se-

cure communication establishment, sensor devices share the 

key being secret information, then communicate Nonce, 

MAC, and encrypted frame as public information. Thereaf-

ter, Nonce and MAC that change according to the corre-

sponding encrypted frame are continuously communicated, 

and these are verified whether each value is correct when 

the Receiver decrypts the frame.At this time, in particular 

with respect to the calculation method of Nonce, the value 

corresponding to each encrypted frame must be unique from 

the viewpoint of security risk. In the NIST (National Insti-

tute of Standards and Technology), they have listed several 

recommended specifications and calculation methods of 

Nonce, and the size should be 8 bytes or more [9]-[10]. Fur-

ther, as one of the calculation methods, a method using a 

counter value starting from an arbitrary value (for example, 

zero) is recommended. The value is incremented and shared 

every time different ciphertexts are generated. SNEP de-

scribed later in section 2.2 and our proposed method de-

scribed later in chapter 3 are based on this calculation meth-

od. 

2.1.2 Secure Communication Design in LLNs 

(Low power and Lossy Networks) 

Figure 3 shows an example of a simple data frame struc-

tures when the above described secure communication is 

applied to LLNs. 

In Fig.3, (a)(b)(c) commonly indicate the frame structure 

when IP technology is introduced on IEEE 802.15.4 and 

encrypted using CCM mode. In addition, for each frame 

structure, (a) is introduced UDP into IPv6, (b) is introduced 

6LoWPAN and RPL over (a), and(c) is introduced SNEP 

described later in section 2.2 of the previous method over 

(b).  As can be seen from the figure, the security elements 

communicated can be large overhead and suppress MAC 

payload in the environment with limited frame size as LLNs. 

Therefore, there is a possibility of increasing the processing 

load of sensor devices through fragment processing, it is 

desirable to make the size as small as possible. In particular, 

in each frame structure excluding (c), the ratio of Nonce to 

MAC payload occupies so large that if Nonce can be com-

pletely eliminated, on average about 16% and about 12% of 

the payload can be expanded. 

In order to properly operate the Block Cipher Modes of 

Operation, there is no strict restriction that each security 

element must secure a certain size or more. However, if you 

select the smallest value among the simply selectable sizes, 

there is also the possibility of impairing the safety of secure  
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Figure 3: Structure pattern of encrypted frames in LLNs 

(Low power and Lossy Networks) 

(a): 802.15.4 + IPv6 + UDP 

(b): 802.15.4 + 6LoWPAN + Compressed UDP + RPL 

(c): 802.15.4 + 6LoWPAN + Compressed UDP + RPL + 

SNEP 

 

communication. From that point of view, NIST recommends 

the size of Nonce is 8 bytes or more. Thus, a method of re-

ducing the size without losing the safety of secure commu-

nication is ideal.  

2.2 SNEP (Secure Encryption Network Pro-

tocol)  

Following the previous section, a method of separating 

Nonce from communication and reducing its size to zero 

without reducing the safety of secure communication called 

SNEP (Secure Network Encryption Protocol) has been pro-

posed as a part of a large security schema named SPINS 

(Secure Protocols for Sensor Networks) [11]. Figure 4 

shows the simple operation flow. Specifically, SNEP is the 

method of sharing only the initial value of Nonce, and there-

after incrementing the Nonce value stored in the sensor de-

vices according to the number of received encrypted frames. 

If an encrypted frame is lost in the middle due to interrup-

tion of communication, decryption fails because the Nonce 

corresponding to the subsequent encrypted frame does not 

mesh. For this reason, the resynchronization process is per-

formed to transmit the entire value of Nonce every time the 

encrypted frames are lost. By taking such a series of proce-

dures, it is shown that in an environment with the stable 

communication quality, the communication overhead on the 

sensor devices by secure communication is reduced. On the 

other hand, in the environment such as LLNs which the 

communication quality is unstable and the frame loss rate 

can be high, the resynchronization process frequently occurs. 

Therefore, this means secure communication overhead of 

sensor devices is actually increasing, and network conges-

tion problem may occur. 
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Figure 4: Simple operation flow of SNEP (Secure Network 

Encryption Protocol) 

 

3 PROPOSAL METHOD 

 

3.1 Research Tasks 

In the previous method, if an encrypted frame is lost in the 

middle due to interruption of communication or the like, it is 

necessary to repeat the resynchronization process of Nonce 

for recovery secure communication. Therefore, it is not sup-

ported in the environment where the frame loss rate can be 

high. Also, according to a general secure communication 

method, the ratio of encrypted frames occupied by Nonce is 

large, and there is a possibility that a heavy load is applied 

to the sensor devices and the network itself due to inefficient 

fragment processing. For this reason, any method is difficult 

to adapt to LLNs where communication quality is unstable 

and frame size is limited, and a method capable of dealing 

with these problems is required. 

In this paper, we propose a method to deal with the above 

problem by estimating Nonce only by sensor devices itself 

from the truncated value that the size changes according to 

the frame loss rate. 

3.2 Basic Operation 

In this section, we describe the basic mechanism for trun-

cating a Nonce. As the block cipher mode of operation for 

establishing secure communication, CCM mode is used. 

Also, as a calculation method of Nonce corresponding to 

each encrypted frame, a counter value that increments the 

value according to the frame is used.  

As a basic idea, we propose the method to minimize Nonce 

resynchronization processing for frame loss which the prob-

lem in the related research. The overview of the proposed 

method, the device sends a small amount of information that 

can estimate Nonce as a hint instead of transmitting the en-

tire Nonce value. Then, the receiver estimates the entire 

Nonce value to be synchronized from this hint and Nonce 

stored on the device. Hereafter, we describe the operation 

flow according to Fig.5. 

 
Figure 5: Operation flow in the case where the truncated 

Nonce length is 1 

(a): entire Nonce value can be estimated 

(b): entire Nonce value cannot be estimated 

 

The first step, the initial value of Nonce is shared between 

Sender and Receiver, and the whole value is stored in the 

sensor device as in the previous method. Thereafter, in the 

sharing of Nonce, only the N of least significant bits (N 

LSBs) are assigned on communication. Hereinafter, this N 

bit is called a truncated Nonce length. Figure 5 shows the 

operation flow in the case where the truncated Nonce length 

is 1 as the specific example. 

In Fig.5, (a)(b) commonly begin already synchronized en-

tire Nonce between Sender and Receiver devices and esti-

mate the entire Nonce value from the truncated value while 

the devices communicate several encrypted frames. First, (a) 

shows that the receiver succeeds in receiving the third en-

crypted frame after losing only the second encrypted frame. 

At this time, since there is a difference in the entire value of 

Nonce internally stored between the two sensor devices, 

receiver fails in decryption the third encrypted frame. At this 

stage, move on to step 2 of (a). Since the value of the re-

ceived truncated Nonce is 1, the receiver can decrypt the 

third encrypted frame by estimating the entire value of 
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Nonce that is greater than internal Nonce value and 1 LSB 

equals 1. On the other hand, in the case of (b), the receiver 

receives the fourth encrypted frame after losing the second 

and third encrypted frames, hence fails in decryption even if 

estimates the entire value of Nonce like (a). This is because 

there was a big difference in the entire values of Nonce in-

ternally stored between both sensor devices. In the case (b) 

shown in this figure, although correct Nonce is "…0010 

0110b", in fact, it is estimated "…0010 0100b" by mistake. 

In such a case, recovery secure communication by perform-

ing resynchronization process sharing the entire value of 

Nonce. Generally, such resynchronization process occurs 

only when the truncated Nonce length is x bits and the frame 

is lost consecutively for 2
x

times or more. For example, in 

the case of (b), this process occurs because the frame has 

been lost 
1

2  times that is twice consecutively. 

Therefore, depending on the selection of the truncated 

Nonce length, the same problem as SNEP may still occur. 

For this reason, it is necessary to select the truncated Nonce 

length flexibly so as to minimize the number of the resyn-

chronization process according to the frame loss rate of the 

communication environment. Table 1 shows the occurrence 

probability of the resynchronization process according to x 

bits of truncated Nonce length and frame loss rate. 

3.3 Optimization of the Resynchronization 

Process Occurrence Count 

Considering the characteristics of LLNs, it is necessary to 

minimize the occurrence probability of the resynchroniza-

tion process as much as possible so that the same problem as 

SNEP does not occur.  For that purpose, it is ideal to flexi-

bly select the truncated Nonce length as short as possible 

according to the frame loss rate. For example, referring to 

Table 1, if we fix the truncated Nonce length to 4 bits, it 

seems that can support any frame loss rate. However, in 

actual fact, there is a possibility that the frame loss rate sud-

denly changes due to temporary noise or the like, so it is 

required to deal with dynamic link quality.  

In order to deal with this problem, we use ETX (Expected 

Transmission Count) [12] adopted in routing protocols used 

in many wireless sensor networks including RPL. 

ETX is a metric index using link quality, and its value is 

defined as the reciprocal of the frame arrival rate. Specific 

ally, it can be found using the following equation (1) where 

Ept is the frame loss rate. 

 

Table 1: Probability of the resynchronization process oc-

currence according to the truncated Nonce length and frame 

loss rate 

1

1 pt
ETX

E
=

−
                                (1) 

 

By solving this equation (1) for Ept, the packet loss rate can 

be obtained. Therefore, in the sensor devices having infor-

mation corresponding to Table 1, it is possible to select the 

truncated Nonce length dynamically to minimize the occur-

rence probability of the resynchronization process to any 

value or less.  

 

4 EVALUATIONS 

 

About the proposed method and previous methods in this 

research, we performed evaluation experiments after imple-

menting these on the network simulator. Hereinafter, we 

describe the experimental environment, evaluation method, 

experiment method and the detail of these. 

4.1 Experiment Environment 

We implemented the proposed method and (b)(c) in Fig.3 

as the previous methods on ContikiOS, which is a built-in 

OS for sensor networks, and operated on the network simu-

lator Cooja [13] attached to ContikiOS.  

Specifically, as shown in Fig.6, we created a simple small-

scale model that established secure communication between 

two sensor devices such as Sender and Receiver, operated 

each method in this model. At this time, we emulated all 

sensor devices as Zolertia Z1 hardware [14].  

For simplicity, unidirectional communication is performed 

from the Sender to the Receiver, and encrypted frames are 

transmitted and received in this scenario. 

Detailed simulation parameters in the experimental envi-

ronment are shown in Table 2. The communication standard 

conforms to (b) in Fig.3 as the general standard. In addition, 

only the length of Nonce is selected from among 0 to 8 bits 

or 8 bytes different according to the frame loss rate. Fur-

thermore, the 0 bit corresponds to SNEP as the previous 

method and the 8 bytes without special handling to Nonce 

corresponds to the general method. In the block cipher mode 

of operation, we used AES-CCM* mode standardized on 

Zigbee which extended the CCM mode. Also, a frame loss 

rate is used as an index representing communication quality 

in LLNs. Moreover, considering the resynchronization pro-

cess due to frame loss, experiments were performed until all 

data arrives at Receiver and completely decrypted after es-

tablishing secure communication. 

4.2 Evaluation Method 

In each experimental method, we measured the lifetime of 

the sensor device from the power consumption of the Sender 

emulated as Zolertia Z1 hardware on Cooja. We evaluate the 

effectiveness by calculating and comparing the lifetime ratio 

of each method where general method (b) in Fig.3 as 1 value.  

 

 

1 64% 36% 16% 4% Ept

2 40% 13% 2.5% 0% Ept

4 2.8% 0% 0% 0% Ept

x 80% 60% 40% 20% Ept

80% 60% 40% 20% EptTruncated 

Nonce Length

Frame Loss Rate

21

22

24

2x2x 2x 2x 2x
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4.3 Experimental Method 

One experiment for each combination of frame loss rate 

and truncated Nonce length and the other experiment in the 

case of continuing to select the optimal truncated Nonce 

length to minimize the number of the resynchronization pro-

cess. We describe the details of each experiment method 

below. 

4.3.1 Experiment for Each Combination of 

Frame Loss Rate and Truncated Nonce 

Length 

In this experiment, we evaluate whether the length of each 

Nonce can correspond to any communication quality assum-

ing LLNs environment as the proposed method and the pre-

vious method.  First, about the lifetime ratio of each sensor 

devices, we calculated from the power consumption until the 

Receiver took 1,000 KB of data from the Sender 10 times 

and decrypted all the data. At this time, to evaluate the per-

formance for each length of Nonce in accordance with the 

frame loss rate, the experiment was proposed at intervals of 

10% to 20% in the frame loss rate in Table 2.  

4.3.2 Experiment for Continuing to Select the 

Optimal Truncated Nonce Length 

In this experiment, we evaluate whether the effectiveness 

can be shown compared with the previous method when 

dynamically selecting optimum Nonce length using the pro-

posed method. The basic simulation parameters were as 

shown in Table 2, but the frame loss rate was changed ran-

domly between 20% and 80%, and the occurrence probabil-

ity of resynchronization process was always 5% or less us-

ing ETX. Also, it was assumed that 1000 KB of data was 

transmitted ten times a day. In such an environment, we 

calculated the average lifetime ratio of sensor devices in 

each method. 

 

5 RESULTS AND DISCUSSION 

 

5.1 Results 

The results obtained in each experimental method are 

shown in the following section. 

 

 
 

Figure 6: Experiment environment 

 

Table 2: Simulation parameters 

 
 

5.1.1 Experimental Results for Each Combi-

nation of Frame Loss Rate and Truncat-

ed Nonce Length 

The result obtained by the experiment according to the 

combination of frame loss rate and the truncated Nonce 

length is shown below.  

Figure 7 shows the Sender's lifetime ratio measured for 

each frame loss rate and truncated Nonce length (hereinafter 

referred to as x) in the simulation parameters shown in Table 

2. In the case where the frame loss rate was 20% or less, all 

the proposed method and the previous method had improved 

the lifetime compared with the general method of transmit-

ting 8 bytes of Nonce. On the other hand, when the frame 

loss rate exceeded 20%, the lifetime sharply decreased ac-

cording to the length of Nonce. In particular, the rate of de-

crease was remarkable when the truncated Nonce length was 

4 bits, but in the case of 8 bits, any frame loss rate was im-

proved. Also, it could be seen that the truncated Nonce 

length at which the lifetime improves most was different 

depending on the frame loss rate except 0%. 
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Figure 7: Lifetime ratio according to truncated Nonce 

length and frame loss rate by simulation 

 

Table 3: Lifetime ratio obtained for each method by simu-

lation 

 

5.1.2 Experimental Results for Continuing to 

Select the Optimal Truncated Nonce 

Length 

The result obtained by the experiment for continuing to se-

lect the optimal truncated Nonce length so that the occur-

rence probability of the resynchronization process within 

5% is shown in following Table 3. The effectiveness of the 

proposed method is clear because the proposed method was 

improved the lifetime by about 6%, while SNEP that previ-

ous method dropped the lifetime about 37% when compared 

with the lifetime of the general method that transmitted 8 

bytes of Nonce. 

5.2 Discussion 

From the results shown in Fig.7 and Table 3, the effective-

ness of the proposed method is clarified because previous 

methods cannot deal with unstable communication quality 

such as LLNs, whereas the proposed method improves the 

lifetime. This is considered because the number of resyn-

chronization process has decreased, and the number of 

fragmentation data has also decreased because the ratio in 

the encrypted frame occupied by Nonce is reduced. Also, if 

the truncated Nonce length is about 4 to 8 bits, the lifetime 

is roughly improved in any frame loss rate, except when the 

loss rate is extremely high. This means that truncated Nonce 

length is enough size to operate in the LLNs environment. 

On the other hand, depending on the select of the truncated 

Nonce length, it is also clear that the possibility of greatly 

decreasing the lifetime also remains, and as also shown from 

the results in Table 3. So, it is effective to select continually 

the optimum truncated Nonce length. 

However, in the experimental environment, since evalua-

tion is limited to a simple secure communication model be-

tween two devices, in the future it is necessary to verify the 

effectiveness from many aspects according to the real envi-

ronment. Particularly, there are many problems such as deal-

ing with frame delay, handling burst loss caused by network 

congestion problem. It is also necessary to consider ap-

proaches to deal with these problems. Moreover, in order to 

further improve the proposed method, we will adjust the 

number of times to estimate the entire Nonce value accord-

ing to the truncated Nonce length. Therefore, it is necessary 

to measure the processing load in the decryption process and 

the resynchronization process, and to measure how many 

times the decryption process can be increased. 

 

6 CONCLUSION 

 

In this paper, we discussed the unstable communication 

quality and the resource constraints of sensor devices which 

are the features of LLNs. Then, we designed the secure 

communication method that could deal with these features. 

To this purpose, we focused on Nonce which is one of the 

security elements and proposed the method to truncate this. 

As a result, we prevent the frequent occurrence of Nonce 

resynchronization processing at the time of frame loss, 

which was a problem of the conventional method, and min-

imize the number of times of processing. In consequence, 

we showed the effectiveness of the proposed method as a 

lightweight secure communication method that deals with 

unstable communication quality, and without excessive se-

cure communication overhead to sensor devices by reducing 

encrypted frame size. As the evaluation method, we imple-

mented the proposed method and the conventional method 

on sensor terminal which emulated, measured its lifetime 

ratio and compared it. Specifically, we first measured the 

effect of each method on the lifetime for each frame loss 

rate. After that, we assumed an environment in which the 

frame loss rate varies randomly, and compared the influence 

of each method on the lifetime. 

 As future prospects, there are we should address examine 

experiments and evaluation methods considering various 

more real environments. In particular, we consider that the 

high frame loss rate in the assumed environment is not prac-

tical in the real environment, which is limited to the simple 

performance evaluation of the methods. Therefore, first of 

all, it is important to focus on this situation and strictly eval-

uate the usefulness of the proposed method. And, it is also 

necessary to deal with the response to burst loss of encrypt-

ed frames and the delay problem in real connectionless net-

work. Furthermore, in order to improve the performance of 

the proposed method, we will adjust the number of times to 

estimate the entire Nonce value according to the truncated 

Nonce length by measuring and comparing the processing 

load in the decryption process and resynchronization process.  
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Abstract - Machine learning is being actively used to
detect malware-infested hosts and their malicious com-
munications. When applying machine learning, design-
ing the right feature is the key for accurate detection.
BoW (Bag of Words)-based feature extraction is widely
applied in natural language processing and also utilized
for malicious communication detection. However, BoW-
based feature extraction does not always scale for han-
dling network logs that often have new data sequences.
By focusing on the fact that new data sequences in net-
work logs are in many cases mostly similar but partly
different, we propose a new detection method based on
a data compression algorithm. Since the compression
algorithm has a characteristic that data size after com-
pressing is related to similarity of data, a compression
algorithm based feature can be utilized for classification.
According to our evaluation results with real-field proxy
logs in an enterprise network, the proposed method has
better at detection than a BoW-based detection method.
In particular, its true positive rate (TPR) in a low false
positive rate (FPR) area (0.5%) is over 30% higher than
that for the BoW-based method. In addition, the results
show that the proposed method effectively detects an in-
fected host communicating with malicious URL that in-
cludes partially modified string from original malicious
logs.

Keywords: malware, log analysis, data compression,
machine learning

1 INTRODUCTION

Malware is becoming more sophisticated and has so
many variants that anti-virus software does not detect
all of them. In fact, it is reported that over 127.5 million
pieces of malware were registered in 2016 [1]. To com-
pliment the fact that detection at the endpoint is not
always successful, network log analysis is one solution
that monitors logs taken from network devices such as
proxy and firewall and finds malicious communications
derived from infected hosts.
In current log analysis, many monitoring rules have

been deployed. Examples include network scans being
detected once the number of different destination IP ad-
dresses from one source IP address exceeds a predefined

threshold and a specific malware infection being deter-
mined if one host accesses a blacklisted URL. Many mon-
itoring rules are based on operators’ elaborations on cre-
ating rules, deciding thresholds, and maintaining black-
lists. However, as malware has evolved to become able
to change communication patterns easily, heuristic rule
creation adds cost to operations and has difficulty catch-
ing up with malware modification. As a result, machine
learning is gaining attention for automatically detecting
evolving malware and for helping operations.
In applying machine learning for network log analy-

sis, first, machine learning calculates feature values from
network logs. For instance, feature values range from
the length of a string, frequency of terms in device logs,
and so on. Second, machine learning will classify the
data into legitimate or malicious on the basis of feature
values. In this process, infected hosts and malicious com-
munications are detected.
There are many detection algorithms from LR (Logis-

tic Regression), SVM (Support Vector Machine), Ran-
domForest, and DNN (Deep Neural Network). However,
the most critical factor for accurate detection is design-
ing the right feature for the problem.
BoW (Bag of Words)-based features are widely ap-

plied in natural language processing and also utilized to
detect malicious communications. However, BoW-based
feature extraction does not always scale for handling net-
work logs, which often have new data sequences.
By focusing on the fact that new data sequences in

network logs are in many cases mostly similar but partly
different, we propose a compression algorithm based fea-
ture and apply it to supervised learning for detecting
malicious communications and infected hosts.
Simply put, a compression algorithm based feature is

one form of the compression rate of data, which means
how small the data becomes after being compressed. When
the data sequence is similar to that in existing malicious
data, the compression rate should be small because this
data sequence is effectively compressed. On the other
hand, if another data sequence is totally different from
that in existing malicious data, the compression rate
should be large. In this sense, the compression rate can
be useful for finding if one data sequence is similar to
that in malicious data. Consequently, the compression
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rate can contribute to detecting malicious communica-
tions.

We evaluated the proposed method with real proxy
logs taken from an enterprise network. The results show
that the proposed method is better at detection than
the BoW-based method. In particular, the results show
that the proposed method effectively detects an infected
host communicating with a malicious URL that includes
a partially modified string from original malicious logs.

Overall, our research makes three contributions.

1. We first apply the compression algorithm feature
to supervised machine learning to detect malicious
communications and infected hosts.

2. We evaluate the proposed method with real enter-
prise proxy logs and demonstrate that the proposed
method performs better than a BoW-based classi-
fier.

3. We analyze true positive and false negative use
cases and clarify that the proposed method effec-
tively detects partially modified strings from orig-
inal malicious logs.

2 RELATED WORK

2.1 Classification Based on
Compression Algorithm

Benedetto et al. [2] proposed relative entropy. Al-
though patterns of the same consecutive code or similar
repeated code are effectively compressed, patterns of dif-
ferent code are not. Relative information volume of data
sequence x against data A is linked to how well data is
compressed. Based on this observation, Benedetto et al.
define relative entropy as how well new data x will be
compressed with existing data A. Consequently, this is
formulated as follows.

CA(x) = Z(A cat x)− Z(A) (1)

where Z is the function to output the data size after
compression, and cat is the function to concatenate the
first and second data sequences. Sometimes, normalized
relative entropy is also used, which is defined to divide
relative entropy by the size of data x.

Relative entropy has been applied to classification prob-
lems in several research areas [3] - [7]. To classify data
x into group A and B, data x is normally classified into
the more similar group. Relative entropy can be used as
one index of expressing similarity; when relative entropy
with group X is small, data x is similar to group X.

Bratko et al. [5] applied relative entropy to classify
spam e-mails. They reported that it was more accurate
than BoW based classification.

Nishida et al. [6] introduced a smoothing parameter
and set the score in accordance with the following equa-
tion to classify malicious tweets from twitter logs.

Score =
CA(x) + γ

CB(x) + γ
(2)

where γ is a smoothing parameter that should be set
large to alleviate the impact of minor letters appearing
a few times in a data string. Data x is classified as A
if the score is small and B otherwise. This scoring tech-
nique enables us to apply a compression algorithm for a
classification problem of comparably long data. Nishida
et al. [6] also demonstrated that classification of twit-
ter logs with this scoring mechanism has better accu-
racy than feature extraction with morphological analysis
and classification with a CW(Confidence-Weighted lin-
ear classification) method [8].
Different compression algorithms are used depending

on their purposes. It is reported that LZSS (gzip), LZW
(compress), PMP (rar) are applicable for text data [3]-
[6]. Adachi et al. [7] reported that bzip is applicable for
music pieces.

2.2 Method of Extracting Feature from
URL String

The BoW method is widely used to extract features
from strings. BoW decomposes string text into words by
separation of letters or morphological analysis and then
generates each word as a one-dimensional feature. Since
a URL is deemed as a one text string, BoW features can
be extracted. Kumagai et al. [9] proposed BoW-based
feature generation to apply LR supervised learning with
L1 regularization and demonstrated that their method
has better area under curve (AUC ) than blacklist based
detection.
Nelms et al. [10] proposed describing a URL attribute

with a regular expression and applying unsupervised learn-
ing to generate a malware-specific URL access template.
By comparing a target URL and the above template,
the method successfully detects malware communication
even when malware slightly modifies its access pattern.
In the security context, on the basis of knowledge on

malware analysis, many kinds of statistical features have
been proposed [11] such as the length of a URL and ratio
of vowels in a URL.

3 PROPOSAL

We propose applying a compression algorithm based
feature to apply supervised learning to detect malicious
URLs and infected hosts. Since a large part of malware
uses HTTP as a communication protocol with C2 servers,
it can be mixed with normal Web access and is hard for
operators to distinguish. Thus, in our research, we focus
on analyzing HTTP proxy logs and detecting malicious
URLs to find infected hosts.
An important observation on malware communication

in HTTP is that they tend to access C2 servers with
a slightly modified URL string in order to slip through
blacklist-based detection with minimum engineering ef-
fort. In this case, simple blacklist matching does not
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Figure 1: Overview of proposed method

Table 1: Dataset

Number of hosts Number of logs Collection Period Log Type

Malicious Logs 71,310 7,152,479 Feb. 2015 - Jul. 2015 Sandbox logs

Legitimate Logs 1,940 36,581,398 Feb. 2014 - Mar. 2014 Proxy logs in enterprise

catch up with malicious URLs since malware may have
various URL access patterns even if its modifications are
small. In this sense, we expect the compression algo-
rithm based feature to correctly describe the similarity
between a slightly modified malicious URL and a known
malicious URL.
To the best of our knowledge, our proposal is the first

to apply a compression algorithm to detect malicious
communication URLs and infected hosts. In addition,
our method is different from existing compression al-
gorithm based methods in that we use a compression
algorithm-based score as a feature in supervised learning
and the feature can be combined with other features.
Furthermore, our research considers a URL structure
that has many kinds of attributes such as FQDN, PATH,
and QueryString to generate a multi-vector compression
algorithm feature for each attribute.
Figure 1 shows an overview of the proposed method.

The flow of our proposal is as follows.

1. Input raw logs and execute preprocessing to obtain
malicious URLs, legitimate URLs and test URLs

2. Compress malicious URLs and legitimate URLs to
generate compress model

3. Input malicious URLs and legitimate URLs with
application of compress model to generate com-
pression algorithm features, namely Zpos(Malicious
Compression Rate) and Zneg(Legitimate Compres-
sion Rate). Zpos and Zneg are defined in equation
(3) and (4) respectively. Features are calculated
for each attribute of a URL.

4. Train classifier with compression algorithm features
and generate prediction model

5. Generate compression algorithm features from test
URLs with application of compress model

6. Detect malicious URLs and infected hosts with ap-
plication of prediction model

As with preprocessing, suitable data must be selected
in machine learning for correctly estimating a classifier’s
performance. We execute two-phase cleansing in this
process. First, we delete duplicate URLs in legitimate
and malicious logs. This is because hosts may access the
same URLs repeatedly. To correctly estimate a classifier,
we leave first-to-appear logs in a dataset and eliminate
duplicate logs.

Second, we eliminate URLs included in both malicious
and legitimate logs, since having the same logs in both
datasets may degrade the classifier’s performance. In
fact, there are many cases in which the same URLs are
included in both logs. For instance, some service URLs
are automatically accessed from specific applications in-
stalled in many environments. Search engine URLs are
also often accessed from infected hosts for connectivity
checks and included in malicious logs.

As for the compression algorithm features, we define
Zpos and Zneg as follows.

Zpos(x) =
Cpos(x) + γ

L(x) + γ
(3)

Zneg(x) =
Cneg(x) + γ

L(x) + γ
(4)

where Cpos and Cneg are relative entropy between data x
and malicious log(pos) or legitimate log(neg), L is data
size of x, and γ is a smoothing parameter.
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4 EVALUATION METHOD

4.1 Dataset

The dataset used for all evaluations is shown in table
1.
Malicious logs are taken from an in-house sandbox [12]

where we run over 70K malware downloaded on a daily
basis from a malware-sharing site and collect pcaps to
extract URL information. Legitimate logs are taken from
real-environment proxy in an enterprise network.

4.2 Evaluation Indices

Evaluations are executed on the basis of a holdout test
that uses previous data in time series as the training
dataset and evaluates with later data in time. Evaluation
indices are AUC , partial AUC (pAUC ) [13], and true
positive rate (TPR)0.5% [14].
AUC is the area under the curve drawn on a 2D surface

of a false positive rate (FPR) and TPR by changing the
score threshold. pAUC is the area under the curve of a
limited range of a FPR [p1, p2]. Considering the TPR as
a function having a FPR as a variable, AUC and pAUC
are defined as follows.

AUC =

∫ 1

0

TPR dFPR (5)

pAUC =

∫ p2

p1

TPR dFPR (6)

Through our evaluation, we set [p1, p2] = [0, 0.1].
TPR0.5% is the TPR value for a low FPR, specifically

FPR = 0.5%. In security operations, a low FPR is cru-
cial since the final judgment is done by operators. pAUC
and TPR0.5% are important indices to estimate detection
capability with a low FPR.

4.3 Selection of Compression Algorithm

The first evaluation is aimed at selecting a suitable
compression algorithm. Several kinds of compression al-
gorithms are used in existing research, so through our
evaluation, we can select one algorithm that performs
with both good accuracy and the least CPU (central pro-
cessing unit) time.
We tested major compression algorithms LZSS (zip,

LZ77), LZT [15] (a variant of compression algorithms
LZW and LZ78), bzip2, and LZMA. To limit CPU time,
since some compression algorithms take a very long time,
we sampled 10 K malicious logs from Dec. 2014 and Jan.
2015 Sandbox logs and 10 K legitimate logs from Feb.
2015 and Mar. 2015 Proxy logs. In addition, we take the
URL as only one attribute to generate a feature vector
and execute a simple scoring calculation as follows.

Score =
Zneg

Zpos
(7)

The process of registering a training dataset to a com-
pression algorithm feature generator differs depending on

how the compression algorithm works. Now, we overview
the compression algorithm and its characteristics.

LZSS utilizes a sliding dictionary, which compresses
data by only recording relative position and data sizes
when the target data matches the longest data in the pre-
vious sliding window. Thus, one characteristic of LZSS
is that data outside of the sliding window are not consid-
ered for compression. In general, a 32 kB sliding window
is widely utilized. However, we implemented LZSS with
a 20 kB sliding window for lowering computational cost.
The compression rate of target data x is calculated by
combining x with each 20 kB window data and applying
LZSS and then returning the minimum compression rate
as the final score.

LZT is a variant of LZW, and both are utilized in gif
format files and compression commands. The same as
LZW, LZT compression is based on dynamic dictionary
insertion where new data sequences are added in a dictio-
nary and target data x is recognized as the dictionary ID
whose data sequence has the longest match with the tar-
get data. In LZT, dictionaries are composed with a Trie
tree. In our evaluation, the compression rate of target
data x is calculated by looking up the dictionary. Unlike
LZW, which discards new data sequences when the dic-
tionary is full, LZT swaps the LRU (least recently used)
data sequence for a new data sequence.

bzip2 and LZMA utilize block sort and Markov al-
gorithm based compression, respectively. The same as
LZSS, bzip2 needs a blocking area, and LMA needs a
sliding dictionary area. However, these areas are much
larger than those for LZSS. Hence, our implementation
stores all data for the compression algorithm where the
compression score is calculated by simply combining tar-
get data x with the training dataset and compressing it.

For implementation, we utilized an existing python li-
brary for LZSS (libz), bzip2 (libzip2), and LZMA(liblzma).
LZT is implemented in-house with cython.

In this evaluation, we set the classifier as an SVM,
and TPR/FPR as a per log-basis calculation. We set
the smoothing parameter as γ = 10 for all evaluations.

4.4 Selection of URL Attributes and
Classifier

A URL has several attributes such as the URL itself,
FQDN, Path, and QueryString. (For simplicity, in this
research, we use Path to mean both Path and QueryS-
tring.) Through our evaluation, we can select the best
URL attributes for detecting malicious URLs.

We evaluate the accuracy of URL attributes. We take
an URL itself, FQDN, Path, and combination of FQDN
and Path for testing. In this evaluation, we set the clas-
sifier as an SVM, the compression algorithm as LZT, and
TPR/FPR as a per host-basis calculation.

The classifier is another factor for selection. We evalu-
ate detection capability between different classifiers: Ridge
regression, linear SVM, LDA(Linear Discriminant Anal-
ysis), NB (Naive Baise), and Adaboost. To conduct fair
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Table 2: Classifier Performance and Execution Time
Comparison Between Compression Algorithm

Algo. Configs CPU
Time

AUC pAUC TPR0.5%

LZSS level 6 16490s 0.968 0.0797 60.90%
LZT 24bit

dict
20s 0.973 0.0825 68.10%

bzip2 level 9 68690s 0.521 0.0057 0.40%
LZMA ― 98112s 0.975 0.0828 68.30%

comparison, we execute grid-search to select best hyper-
parameters for each classifiers. Implementation is done
by using a python scikit-learn library. In this evalua-
tion, we set the URL attribute as the FQDN and Path
combination, the compression algorithm as LZT, and
TPR/FPR as a per host-basis calculation.

4.5 Comparative Evaluation

We evaluate the proposed method in comparison with
the conventional BoW-based detection method. First,
we compared detection capabilities of the proposed and
conventional methods. We also measured detection ac-
curacy over time to find out how fast trained models
deteriorate. Computational efforts are another impor-
tant factor for practical use, so we measure CPU time
and memory usage of the proposed and BoW method.
BoW of a URL is extracted by setting /, ?,=,& as a
separator and splitting the URL. In this evaluation we
set the classifier as SVM, the compression algorithm as
LZT, and TPR/FPR as a per host-basis calculation.

5 EVALUATION RESULT

5.1 Selection of Compression Algorithm

Table 2 shows the evaluation results for different com-
pression algorithms. LZMA gives the best AUC , pAUC
and TPR0.5% but takes the longest to compute. In con-
trast, LZT gives similar AUC , pAUC , and TPR0.5% to
LZMA and computes very fast. Hence, we selected LZT
as the default compression algorithm in the later evalu-
ation. bzip2 and LZSS do not perform as well as LZMA
and LZT.

5.2 Selection of URL Attributes and
Classifier

Table 3 shows the evaluation results of different at-
tributes of a URL. From these results, the combination of
URL attributes FQDN and Path gives the best TPR0.5%

and pAUC . Hence, we select the FQDN and Path com-
bination as the default URL attribute in the later eval-
uation.
To select a suitable classifier, first, we visualize mali-

cious and legitimate features. We calculated the com-
pression algorithm feature and mapping onto a 2D sur-
face in Fig. 2 where the horizontal axis is Zpos (i.e., the

Table 3: Evaluation between URL attributes

URL attributes AUC pAUC TPR0.5%

URL 0.8965 0.0720 41.80%
FQDN 0.8956 0.0631 43.60%
Path 0.7990 0.0562 43.20%
FQDN, Path 0.9306 0.0825 65.30%

Figure 2: Compression algorithm feature mapping of ma-
licious logs (red) and legitimate logs (blue)

malicious compression rate) and the vertical axis is Zneg

(i.e., the legitimate compression rate).
This visualization shows that although some overlap-

ping areas exist, malicious logs (red legend) and legit-
imate logs (blue legend) are mapped in the upper-left
and lower-right areas, respectively. Many of malicious
and legitimate logs seems to be linearly separated on the
basis of Zpos and Zneg. Hence, these visualized results
suggest that linear classification works well.
Table 4 shows the detection capability of different clas-

sifiers. SVM gives the best TPR0.5% and pAUC . Hence,
we select SVM as default classifier in later evaluation.

5.3 Comparative Evaluation

Table 5 shows the evaluation results for the proposed
and BoW-based classification methods. From these re-
sults, the proposed method has better TPR0.5% and pAUC
than the conventional BoW-based classification method.
Figure 3 shows the TPR0.5% deterioration over time

where the vertical axis is TPR0.5% and the horizontal
axis is time in weeks. This figure shows that TPR0.5%

gradually decreases over time. However, the proposed
method always achieves a higher TPR0.5% than the BoW
method until 14 weeks have past.
Table 6 and 7 show comparison with BoW method on

CPU time and memory usage, respectively. Proposed
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Table 4: Evaluation between classifiers

Classifier AUC pAUC TPR0.5%

Ridge α=0.1 0.9268 0.0791 59.40%
SVM C=0.025 0.9306 0.0825 65.30%
LDA 0.9291 0.0784 57.30%
NB 0.8166 0.0602 13.50%
AdaBoost 0.9420 0.0785 58.30%

Table 5: Evaluation with conventional BoW-based clas-
sification method

Method AUC pAUC TPR0.5%

Proposed 0.9306 0.0825 65.30%
BoW 0.9030 0.0657 32.00%

method consumes most of CPU time for compression
process and its time is longer than any other process of
BoW method. Still, once compression is completed, fea-
ture generation, training and detection are finished with
less CPU time than BoW method. As for memory us-
age, proposed method consumes small memory for com-
pression process and less memory for feature generation,
training and detection compared with BoW method. Al-
though BoW method generates one-hot vector for ev-
ery single word appeared in URL so that memory usage
tends to increase, proposed method generates compres-
sion algorithm feature vector in several dimensions so
that memory usage does not steeply increase.

6 CONSIDERATION

We consider the reason the compression algorithm fea-
ture contributes to better classifying malicious and legit-
imate logs. Figure 4 shows the histogram of Zpos of URL
attributes for both malicious and legitimate logs, where
the red and blue zone are histograms of malicious and
legitimate logs, respectively. The histogram of malicious
logs contains three peaks: A) the compression rate is
very small, B) the compression rate is as high as that
for legitimate logs, and C) the compression rate is very
high.

A sample URL that belongs to pattern A is shown
in table 8. For security reason, FQDN is masked with
’www.example.com’ and QueryString values are masked
with meta words. The first row shows the original URL
string and its length, the second row shows the LZT com-
pressed state and relative entropy with malicious logs,
and the third row shows that with legitimate logs, where
’|’ shows that data sequences between ’|’ marks are ex-
pressed in 1 code. In compressing with malicious logs,
the table shows that a 1,352-bit-long URL is compressed
to 220 bits and many data sequences are expressed as
1 code. Especially in QueryString of URL, almost one
key (e.g. ”dstid=1”) or one combination of a key and
value (e.g. ”countryid=...”) is compressed as 1 code.
This observation suggests that a QueryString key and

Figure 3: TPR deterioration over time

Table 6: CPU Time Comparison with Conventional
Method (seconds)

Method Compress Generate
Feature

Train Detect

Proposed 13,809 3,752 22 438
BoW - 7,145 950 408

value combination that exists in the training dataset is
automatically recognized and compressed as 1 code. In
contrast, a key and value combination that does not ex-
ist in the training dataset is automatically split. This is
one use case that QueryString key exists but its value is
modified in malware communication.

Other examples of pattern A for the FQDN attribute
are FQDNs having sequential numbers in host names
such as host1.example.com and host2.example.com. These
FQDNs are recognized as totally different strings by ex-
act matching, but in the compression algorithm that has
the characteristic of longest matching, two FQDNs are
recognized as similar strings. In fact, host2.example.com
is compressed as |host|2.|example.com| after training data
host1.example.com. This is another use case that FQDN
is partially modified to similar FQDN.

URLs belongings to pattern B tend to have same FQDNs
existing both in malicious URLs and legitimate URLs.
Since Path of these URLs are different, compression rate
does not get so small against both malicious logs and
legitimate logs and makes detection difficult.

A typical URL belongings to pattern C is shown in
table 9. This URL has an encoded or encrypted string.
The second row shows compression results of the URL. It
shows that the compression rate becomes large for both
malicious and legitimate logs and makes classification
difficult.

From this consideration, the proposed method is ca-
pable to detect malicious URL strings that are similar
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Table 7: Memory Usage Comparison with Conventional
Method (MB)

Method Compress Generate
Feature

Train Detect

Proposed 2,401.0 15,999.8 4.7 424.4
BoW - 56,988.2 1,241.2 529.4

Legitimate Logs	Malicious Logs	
A	

B	

C	

Figure 4: Histogram of Zpos.

to but slightly different from existing malicious URLs.
Of course, attacker can totally change URL strings from
past attack vectors, in this case, proposed method does
now work well. However, assuming that many attackers
tend to use existing attackers’ tool kit to set up their at-
tack vectors and these tools are not so often drastically
modified, proposed method should still be feasible.

7 CONCLUSION

We proposed a novel method for detecting malicious
communication of infected hosts by generating a com-
pression algorithm feature of URL attributes and clas-
sifying with supervised learning. Through evaluation,
we demonstrated that the proposed method has higher
detection capability than the conventional BoW-based
detection method. In particular, its TPR in a low FPR
area (0.5%) is over 30% higher than that of the BoW-
based method. In addition, we clarified how the compres-
sion algorithm works in classification and demonstrated
a real use case in which the proposed method detected
malicious URL strings that are similar to but slightly
different from existing malicious URLs.
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Abstract - In a teleworking environment, sharing the states
of workers is important to facilitate smooth communication;
this requires a worker state estimation method to be adaptable
to various workspaces. Previous methods have realized high
estimation accuracy, but they have needed laborious manual
work to suitably tag the learning data. This paper proposes a
novel worker state estimation method by reducing the man-
ual task of labeling using three automated processes: sensing,
clustering, and selecting. A prototype system was developed
and tested in two workspaces for evaluation. The system se-
lected 26.1% and 22.5% of the obtained data for labeling in
workspace 1 and workspace 2, respectively. As the data for
labeling decreased, the observation time of a worker also de-
creased. Approximately 75% of the manual work could be
reduced. The estimation accuracy was 93.2% in workspace
1 and 76.0% in workspace 2. This method was effective in
reducing the manual labor involved in estimation. The esti-
mation accuracy differed depending on the use conditions of
the workspace. Methods to improve this metric are also dis-
cussed.

Keywords: Worker state estimation, Worker state sharing,
Telework, Unsupervised clustering method

1 INTRODUCTION

A broadband network enables internet connectivity and al-
lows the sharing of multimedia content. This allows a social
infrastructure to be built, with which people can collaborate
using multipoint video conferencing systems, chat systems, e-
mails, and telephone conferences. In many companies, work-
ers work remotely from various places, such as their homes.
To work in cooperation with an organization, communica-
tion between the group members is important. Workers often
need to communicate with remote workers; however, this also
means that, while communicating, the individual work of the
remote worker being contacted must be suspended. If remote
workers are interrupted at inappropriate times, their individ-
ual work would suffer and, their productivity would decline
[1][2]. When working in a common room, there is a shared
awareness between the workers; a worker easily notices the
states of the other workers. Therefore, a worker can initiate
communication at an appropriate time. However, in telework-
ing, a worker is not able to easily discern the states of other
workers, and therefore, abruptly sends them a message, either

through a chat system or by a telephone call, thereby inter-
rupting the work of those workers. For effective remote col-
laboration, recognition of the states of the remote workers is
important. Related research [3]–[7] has reported on the sig-
nificance of this factor.

This research aims to develop a worker state estimation
method for use in teleworking. Figure1 shows the concept
of the worker state sharing system. A terminal is placed in
the room for teleworking. In the figure, co-worker B is a col-
laborator at another location. The role of this terminal is to es-
timate the states of the workers in the room and to share these
states with other co-workers. The terminal is made aware of
the state of a worker, which helps workers to time their com-
munication opportunely. As shown in this figure, the system
confirms the state of a worker and improves accuracy in es-
timation. At this time, the terminal classifies the state of the
worker; the role of the worker is to teach the system how to
share the current state. Following this process, the terminal
does not disturb the worker when crafting, and the worker can
appropriately communicate, or be communicated with, using
a telephone or messenger, after the crafting activity is com-
pleted. The terminal can estimate the state adopted by the
worker.

Many studies on human activity estimation have reported a
high level of accuracy in estimation by using machine learn-
ing [8]. To build an estimator by the conventional method
requires enormous amounts of learning data. The learning
data are created by labeling supervised information onto data
collected from numerous sensors. In many studies, creating
this learning data is large and laborious a manual task.

Therefore, we propose a new method to construct an esti-
mator that reduces the manual task. This method has four pro-
cesses: sensing, clustering, selecting, and labeling. A com-
parison of the conventional method and the proposed method
is shown in Fig. 2. The conventional method manually labels
the sensor data and supervised information, and inputs them
into the learning process. The target data for labeling include
all the sensor data. The proposed method classifies the sen-
sor data using a clustering method. The system selects the
target data for labeling based on the results of the clustering
process. The number of targets equals the number of clusters.
As in the conventional method, the system initially creates an
estimator with these four processes. In the proposed method,
the process from sensing step to selecting step is automated
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worker 

What did you do 
with this video ?

Room for teleworking

terminal

I was crafting.
As I am intensively 
working, please tell 
my coworkers 
“ I will contact you later”

OK, I will tell
everyone so.
coworker B is 
back. 
Try to call now.

Thank you.
I will call B 
soon.

Figure 1: Concept of the worker state sharing system. The
terminal confirms the state of a worker and develops an

estimator.

task. This process of selection decreases the manual tasks
by reducing the number of targets for labeling. The labeling
process is carried out only once after multiple targets are se-
lected by the selection process. The worker observes the tar-
get scenes selected by the selection process and indicates the
worker’s state. An estimator is created by running these four
processes only once. When estimating the worker’s state from
new sensing data, the system calculates the cluster containing
the sensing data. At the time of collection of the sensing data,
the worker’s state is predicted by using the label of the cluster.

A prototype system was developed to evaluate the proposed
method, and experiments were performed in two workspaces.
The evaluation experiments confirmed the reduction in man-
ual work. The rest of this paper is organized structure as fol-
lows. Chapter 2 describes related research on human activity
estimation. Chapter 3 describes the proposed method in de-
tail. Chapter 4 describes the experimental prototype system.
Chapter 5 describes the experimental methods and their re-
sults. Chapter 6 provides a discussion of the results. Chapter
7 presents the conclusions.

2 RELATED RESEARCH

2.1 Human Activity Estimation
Numerous reports on human behavior estimation employ

machine learning [8]. Avrahami et al. [9] reported on the es-
timation of the behavior of convenience store clerks and desk
workers. They used a support vector machine (SVM) and the
K-nearest neighbor (KNN) to learn the states of store clerks
and office workers. A large amount of supervised data is re-
quired for learning using SVM- or KNN-based systems. In
addition, Laput et al. [10] reported on a technological solu-

Sensing

Learning

Labeling

Labeling

Conventional method

Sensing

Selecting

Clustering

Proposed method

Automatic 
task

Manual
task

Sensor
data

Sensor
data

Teacher
information

+

Sensor
data

Sensor
data clusters

Targets
for labeling

Figure 2: Comparison of the differences in the proposed
method and conventional method

tion to estimate the activity in a house, and also used an SVM
as the learning method. Both studies reported a high level of
accuracy in estimation, but they required a large amount of
learning data with supervised information to be generated.

Each telework environment is different in terms of the size
and structure of the room, as well as the size and arrangement
of the furniture. These conditions affect the data input from
the sensor. Collecting data under all conditions is difficult,
and learning data must be generated for each work environ-
ment. Reducing the magnitude of the task of generation of
the learning data is important.

2.2 Sensor for Human Activity Estimation

Previous studies have reported that various sensors can be
used to a estimate human activity. These sensors are classified
into three types, as shown in Fig. 3.

Murao et al. [11] used wearable sensors to estimate the
state of a remote worker. A wearable sensor can typically
sense the worker to which it is attached. A wearable sensor
is battery-powered, and therefore, requires regular charging.
This charging is inconvenient for workers.

A personal computer (PC) is a well-known tool for tele-
working. Hashimoto et al. [12] obtained useful information
about remote workers by maintaining an operational log on
the PCs of the workers. This method only estimates the work
done using a PC.

Other methods for estimation have been proposed that use
ambient sensors. Laput et al. [10] used a sensor module that
combined multiple sensors in a room to estimate human activ-
ity. Avrahami et al. [9] installed a radio frequency (RF)-radar
under a desk to sense human motion without interfering the
work. However, these studies have a heavy manual tasks load
of creating a large amount of learning data by labeling super-

178
Kazuyuki Iso et al. / Worker State Estimation Method with Reduced Manual Task for Teleworking Environment 



Wearable devices

Tools

Ambient sensors

Figure 3: Classification of the sensors that collect the data
for human activity estimation

vised information to sensor data.
Ambient sensors can be installed at locations that do not

interfere with the actual work, and where a stable source of
power is available. An ambient sensor can also collect data
when the worker is not using the PC. Such ambient sensors
are suitable for use in teleworking environments. The pro-
posed method uses an ambient sensor installed in a telework
environment. Our previous research [13][14] reported exper-
iments to collect data using ambient sensors for classifying
workers’ states. The new proposed method creates an estima-
tor using four processes including the selecting process and
the labeling process.

3 PROPOSED METHOD

The proposed method consists of four processes: sensing,
clustering, selecting, and labeling. The process from sensing
to selecting is automated. Only labeling is the manual task.
When developing an estimator with these four processes, the
system records a video simultaneously along with the collec-
tion of sensor data. This video is used to observe the state of
a worker in the labeling process. After clustering the sensor
data, the system selects from the entire video the scene to be
observed. This scene selection process shortens the observa-
tion time. The four processes are described in detail in the
following paragraphs.

3.1 Sensing
The sensing process uses a microphone and distance sen-

sor. The microphone detects signals based on the behavior
of the worker (e.g., worker voice, keystroke sound, and door
opening and closing sounds). The distance sensor detects
the area where the worker is present. Our previous research
[13][14] reported that the states of a worker can be clustered
using vibration and distance sensors. In this research, we
replaced the vibration sensor with a microphone, which can
sense voices and sounds all around in a workspace.

The feature quantity, as shown in Fig. 4, is determined at
fixed time intervals from each sensor data. The microphone

FFT

2.0 2. 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1
time[sec]

500

Shifting 

Feature quantity of microphone data

Window

Frequency filter

Microphone data

Distance sensor data

Moving average

Clustering

Feature quantity of 
distance sensor data

Figure 4: Sensing of the data from a microphone and
distance sensor and calculation method of the feature

quantity.

data are Fourier transformed, and the distance sensor data are
averaged.

3.2 Clustering
This process uses an unsupervised clustering method.

There are many clustering methods [15]. We compared the
following four methods in terms of the accuracy and calcula-
tion time: k-means method, Gaussian mixture model (GMM)
method, mean-shift method, and spectral clustering method
(Table 1). For this evaluation, data were collected in the
workspace for teleworking. The microphone and distance
sensor data collected in the sensing process were used. When
data collection was conducted, the worker’s states were clas-
sified into the following four types: “Meeting via video con-
ference.”, “Using a PC on a desk”, “Crafting on a desk”, and
“Leaving the seat”. The data were collected for one day only.
The calculation time ratio in Table 1 is a ratio for calculating
time using the k-means method.

The proposed method uses the k-means method. The two
methods, mean-shift and spectral clustering, slightly improve
the accuracy compared to the k-means method, but the calcu-
lation time is more than 18 times, which is extremely long.
There is nearly no difference between the accuracies of the
GMM and k-means methods; however, the calculation time
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Table 1: Accuracies and calculation times of the clustering
methods

Method Accuracy Calculation
rate [%] time ratio

k-means 89.4 1.0
GMM 89.6 1.3

Mean-shift 91.0 21.8
Spectral clustering 91.6 18.4
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Figure 5: Example of arranging the sensor data in a time
series and selecting the longest section as the target data

for the latter is short.
The k-means method can be used for clustering with sen-

sors, even on small computers. Miniaturization of a terminal
facilitates installation in the workspace.

3.3 Selecting

The system selects the target data so as to reduce the man-
ual task of labeling. In the labeling process, a worker observes
the video of the sensed time of the target data, determines the
worker state, and labels the target data. The system selects
the target data from the clustering result and cuts out the video
scene captured when the selected data are sensed. The state of
a worker may change frequently in a short time or remain the
same for a long time. When a scene that changes frequently
is selected, the length of the video to be observed is reduced,
but the determination of the state becomes difficult. When a
scene in a specific state continues to be selected, the video
scene to be observed becomes longer, but the determination
of the state is smooth. This process arranges the data into
the cluster in a time series and selects the longest section as
the target data for labeling (Fig. 5). The system cuts out the
video scene from the time when the target data are sensed and
presents the video scene to the worker. The system selects the
data of one section from one cluster.

PC
Video camera

Estimation module

LAN

Direct connect 
via wifi

(a)

(b)

Labeling

Sensing

Selecting

Clustering

Sensor
data

Sensor
data clusters

Target data and
target scenes
for labeling

Video
cameraSensor

PC

esitmation module

Figure 6: Prototype system. (a) Hardware configuration. (b)
Flow of the four processes in the prototype system.

3.4 Labeling
The worker observes the video scene selected by the sys-

tem and determines the worker state. The worker returns the
determined state to the system. The number of video scenes
observed in this process is the same as the number of clusters.
The length of the video scene is shorter than that in the select-
ing process. The observation time for labeling is shorter than
in the case of observing all the video scenes.

The system provides a complete estimator, with the work-
ers labeling each cluster. When new sensing data is provided
to this estimator, the distance between the data and the cen-
ter of each cluster is calculated; the cluster was created by
the k-means method. The closest cluster is selected, and the
worker’s state is predicted by using the label of the cluster.

4 Prototype system to develop estimator using
four processes

As shown in Fig. 6, a prototype system is developed to
evaluate this method. The prototype terminal consists of a
sensor and a small computer, and executes the processes of
sensing and clustering. The timing of the prototype terminal
and video camera are synchronized. The prototype terminal
is described in detail in the next section.
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Figure 7: Prototype terminal with a combination of a
microphone and distance sensors.

The video camera of this system is GoPro5. The prototype
terminal and the PC are connected by the same LAN. Videos
from the camera are transmitted directly to the PC. The clus-
tering results are transmitted from the prototype terminal to
the PC.

In the selecting process, the prototype program on the PC
selects the target data, cuts out the video, and presents the
video scenes to the worker. In the labeling process, the worker
observes the video and labels the target data on the same PC.

The prototype terminal implements the sensing and cluster-
ing processes (Fig. 7). The terminal is used on a work desk.
This terminal receives data from the microphone and distance
sensors synchronously using a microcontroller. The micro-
controller uses Raspberry Pi3 Model B. The microphone used
is ADMP441, manufactured by Analog Devices. The distance
sensor used is GP2Y0A710K, manufactured by SHARP. The
direction of the distance sensor of the terminal is adjusted to
the location where a worker sits. The sensing data from the
two sensors are clustered by the k-means method in this ter-
minal.

5 EVALUATION TEST USING
PROTOTYPE SYSTEM

5.1 Test Procedure

The terminals were positioned at two workspaces for the
evaluation test. The first workspace (WS1) is a private room
used by a worker at his home, that the worker used for tele-
working once or twice in a week. Other co-workers never
enter the room. When working in WS1, the worker in this
room talks to other co-workers by videoconference. The esti-
mator for WS1 was created by collecting data for one day at
this workspace.

The second workspace (WS2) is a university office and is
the room of an instructor. WS2 is primarily used by one

Table 2: Sensing result: collecting time and number of
sensor data

Workspace Total time Number of data
WS1 12h 53min 44,654
WS2 16h 11min 59,105

Table 3: Selecting result: selecting time and number of
sensor data. The last column is the number of video files

created by the selecting process

Workspace Total time Number of Number of
selected data movie files

WS1 3h 21min 12,097 20
WS2 3h 38min 13,095 30

worker, and other co-workers may enter it. In addition, the
worker in this room talks to co-workers via a video confer-
ence. The estimator for WS2 was created from three-day
sensor data, including in-room conferences and video con-
ferences. The sensor data of the different workdays were col-
lected and evaluated.

5.2 Test Result
Table 2 lists the collection time and number of sensor data

determined using the prototype terminal.
The total time and number of data after the selecting pro-

cess are listed in Table 3. The last column is the number of
video files created by the selecting process. The system se-
lects 26.1% of the data for labeling in WS1 and 22.5% data
in WS2. The number of video scenes to observe is small: 20
scenes in WS1 and 30 scenes in WS2. As the target data for
the labeling decreases, the observation time of a worker also
decreases.

The four states of the workers in each workspace are ob-
served in the video after the selecting process.

The states of a worker in WS1 are:

S1-1: Leaving the seat.
The worker leaves the seat and moves to the next room.

S1-2: Using a PC on a desk
For example, the worker creates documents using a PC
on the desk or browses the web.

S1-3: Crafting on a desk
The worker works without using the PC. In this case,
the worker crafts an electric circuit (soldering, cable
making, and circuit assembly).

S1-4: Meeting via video conference.
Workers in both the workspaces use a PC to conduct a
video conference. The workers talk to a remote worker.
The worker in WS1 talks to other people in the same
room.
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S1-2. Using a PC S1-3. Crafting on a desk S1-4.  Meeting via video conference 
with the co-worker in the lower left 
monitor.

S1-1. Leaving the seat

S2-1. Leaving the seat S2-2. Using a PC on the 
wall side desk 

S2-3. Writing or reading 
on the central desk S2-4.  Talking with other co-worker

Figure 8: States of a worker in workspace 1 and workspace 2

The states of a worker in WS2:

S2-1: Leaving the seat.
The worker leaves the seat and moves to the next room.

S2-2: Using a PC on the wall side desk
The worker uses a desktop PC on the wall desk. For
example, the worker creates documents using a PC on
the desk or browses the web.

S2-3: Writing or reading on the central desk
The worker works without using the PC. For exam-
ple, the worker writes or reads paper documents. The
worker works quietly and concentrates on the task.

S2-4: Talking with other co-workers
The worker talks with other co-workers in the same
room. He also talks with a remote co-worker using a
PC to conduct a video conference.

The estimator is created when a labeling result corresponds
to a clustering result. The sensor data for the evaluation were
collected on workdays different from the days when the es-
timator was made. The estimation accuracy at this time was
93.2% for workspace 1 and 76.0% for workspace 2. The esti-
mation results for WS1 are shown in Fig. 9 and are shown in
Fig. 10 for WS2.

The conventional method[9] using a single terminal could
estimate the office workers’ states with an accuracy of ap-
proximately 90%, and the same level of accuracy will be
required in a telework environment. The result of success-
ful estimation in WS1 was 93.2% and was very close to the

workers’ states observed in the video for several hours. The
worker’s states can be shared with an accuracy of 93.2%, and
the effect of reducing unnecessary interruptions will be high.
This result would be sufficient for meaningful sharing with
remote co-workers.

In WS2, the estimation result and the workers’ states
showed a similarity of 76.0%. However, for the time segment
T1 in Fig. 10, the estimation results for state “S2-4: Talking
with other co-workers” were mostly incorrect for a duration
of 25 minutes. The estimation accuracy was lower than that
of WS1 and was insufficient. In the future, the effects of esti-
mation errors need to be examined.

6 DISCUSSION

6.1 Reduction in Manual Tasks by Proposed
Method

The video scene for labeling was reduced by more than
70%. At this time, each video contains the same work scene,
and there is little change. The proposed method reduced the
time required for observation and enabled the efficient deter-
mination of the state of a worker.

The labeling process was short and smooth, and estimators
could be developed for each workspace. The worker state
sharing system using these estimators could be constructed,
and the sharing information was defined according to the task
of each worker and the structure of the workspace. This
method enabled co-workers to share each others state, and
is good for creating communication opportunities according
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Figure 10: Estimation result for 6 h from the start of the work in workspace 2.
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to the states of each worker.
Occasionally, even if a worker uses the same room, the fea-

tures of the work may change, and the tools used may dif-
fer accordingly. In such cases, the estimator may have to be
recreated to account for such changes. We expect the idea
of the present method also contributes to reduce the amount
of manual work to recreate the estimator. To develop a more
robust method, we plan to examine the effectiveness of the
present method to recreate the estimator based on a large
amount of new sensor data generated when the features of
the work has been modified.

6.2 Number of Workers in Workspace and
Configuration of Sensors

The estimation accuracy of WS1 was high at approximately
90%, but the accuracy of WS2 was lower than that of WS1.
One of the differences between the two workspaces was the
number of workers. In time segment T1 in Fig. 10, another
worker entered WS2, and the two workers talked. In addi-
tion, the two workers sometimes quietly browsed documents
or searched for books on a bookshelf. In time segment T2 and
T3 in Fig. 10, a worker in WS2 and a remote worker were
talking to each other via video conference, and there was al-
most no quiet time. The estimation accuracies were different
for these three segments because of the amount of voice data
from the microphone. When designing this system, we as-
sumed that more voice information could be obtained if there
were two workers in the same room.

Only one distance sensor was attached to the terminal, and
the system could not classify the differences in the states de-
pending based on the number of workers. To classify the
states of multiple workers, the terminal should have multiple
distance sensors connected pointing in multiple directions, as
the accuracy would then increase if the sensor data changed.

We will continue to improve the sensors on the terminals
while investigating different conditions of the teleworking en-
vironment. Furthermore, we will install improved estimators
in many telework environments and also evaluate the effect
on remote collaboration work.

7 CONCLUSION

The sharing of the states of a worker with other workers is
important to facilitate effective communication in telework-
ing. In this study, we developed a new method that required
less manual work to develop a worker state estimator. We
tested the new method for estimation in two workspaces. The
system selected 26.1% of the data for labeling in workspace
1 and 22.5% data in workspace 2. As the target data for the
labeling decreased, the observation time of a worker also de-
creased. Thus, 70% or more of the manual work could be
reduced. The estimation accuracy at this time was 93.2%
in workspace 1 and 76.0% in workspace 2. The proposed
method significantly reduced the manual tasks. However, the
estimation accuracy differed depending on the use conditions
at the workspace. This difference may have been caused by
presence of other co-workers. The accuracy could be im-
proved by adding additional distance sensor(s) to consider

other co-workers.
In future, the prototype system will be extended to remote

collaboration to evaluate the effect of this method on smooth
communication in this aspect also.
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