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Abstract - Equipment condition monitoring (ECM) has at-

tracted much attention recently in industrial domains, espe-

cially as the Internet of Things (IoT) has been emerging and 

growing rapidly. Monitoring the fluctuations of sensor data 

generated by industrial equipment is an important issue when 

trying to detect equipment anomalies. This paper proposes a 

new fast online algorithm for analyzing a novel magnitude 

fluctuation feature computed from unsteady time series. The 

magnitude fluctuation is defined by a convex-shaped pattern 

which consists of an upward trend leg and a downward trend 

leg. This definition enables the extraction of anomalous 

spikes and operational regimes in sensor data of equipment 

by using the amplitude and duration of an extracted convex-

shaped pattern. We also show that the computational com-

plexity of our proposed algorithm is O(n), where n is the 

length of the input time series; this complexity enables real-

time sensor data processing with a sampling period at the mi-

crosecond level. 

Keywords: Magnitude Fluctuation Analysis, Anomaly De-

tection, Feature Extraction, Time Series Datamining, Equip-

ment Condition Monitoring, Online Algorithm 

1 INTRODUCTION 

As the Internet of Things (IoT) [1] has been emerging and 

growing, sensor big data that is streamed from various kinds 

of equipment in power plants, industrial facilities, and build-

ings can be made available for monitoring, diagnosis, energy-

saving, productivity improvement, quality management, and 

marketing. As a result, industry has paid much attention to the 

use of big sensor data generated from equipment or facilities 

in order to create a smart society.  

Equipment Condition Monitoring (ECM) is a commonly 

used service based on sensor big data, and data mining tech-

niques are key components in making ECM smarter [2]. This 

paper proposes a new magnitude fluctuation feature for un-

steady and random time-series as a tool for a data mining 

technique, and also describes an efficient online algorithm for 

computing it from sensor big data.    

After mechanical equipment has been operated for a long 

time, convex-shaped spikes are often observed in sensor data 

such as the torque current of motors or the pressure inside a 

pipe, because of frictional wear, adhesion of foreign sub-

stances, etc. Therefore, extracting convex-shaped spikes in 

sensor data is useful for detecting anomaly or degradation of 

equipment. However, convex-shaped patterns occur in sensor 

Figure 1: Transient data with spikes 

data not only as symptoms of degradation but also of con-

trolled operating patterns or random noise (Figure 1). In most 

cases, the heights of convex-shaped patterns are different de-

pending on whether it is a control operating pattern, a degra-

dation symptom, or noise. As shown in Figure 1, the height 

of an operational pattern is often larger than that of a degra-

dation symptom pattern. In its turn, the height of a degrada-

tion symptom pattern is often larger than that of noise. In this 

work, we define extended maximal convex curves to represent 

a convex-shaped pattern in a time series, along with its height, 

which we call amplitude. Furthermore, we propose a fast 

online algorithm to extract extended maximal convex curves 

from a time series, by introducing a novel operation "leg re-

duction", which will be explained later in Section 2.2. Online 

algorithms are typically a requirement for realizing real-time 

equipment condition monitoring. 

Magnitude fluctuation for unsteady data has been studied 

from the perspective of data mining by Fink et al [3]. They 

proposed the concept of a leg, and its associated search 

method to find a global trend in a time-series including small 

variations such as noise. The dotted lines in Figure 2 are ex-

amples of legs.  Both lines show the global upward trend that 

includes local up-down segments. However, their method 

treats only single legs, finding an upward or downward trend, 

(a) Transient data (normal)

(b) Transient data with spike (anomaly)
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Figure 2: Leg 

but can't determine the magnitude of fluctuations. A convex 

curve could be defined as the continuous occurrence of up-

ward and downward trends. However, in the case of a trape-

zoidal subsequence with noise, it is non-trivial to select con-

vex curves from several candidates. This is the reason for the 

need of a new notion of an "extended maximal convex curve", 

and it will be discussed later in Figure 6 in section 2.1. Fur-

thermore, a naïve application of Fink's algorithm to extract a 

convex curve needs a computation proportional to 𝑛 × 𝑙  , 

where 𝑛 is the length of a given time series and 𝑙 is the aver-

age length of legs. In contrast, the computational complexity 

of our proposed algorithm is O(𝑛), and it doesn't depend on 

the length of the convex curve.   

There are also related works on time series processing with 

legs [4] [5].  These previous works of ours proposed the com-

putation of the frequency of fluctuations in time series where 

upward trends and downward trends appear alternately and 

iteratively. A leg frequency is defined for a given window 

size and an amplitude. Regarding the difference between our 

previous works and this research, whereas the leg frequency 

has window size as a parameter that should be optimally se-

lected by users, the amplitude of a convex curve in this re-

search has no parameter. This means a higher usability of the 

amplitude of a convex curve. This paper is the extended ver-

sion of our earlier work [6]. The main difference with [6] is 

that in this paper we show the proof and the evaluation of our 

proposed algorithm, while [6] only suggested its possibility. 

Related works on extracting pattern from time series include 

motif discovery [7][8], discord discovery [9] [10] and auto-

regression [11]. The difference between these existing works 

is whether an algorithm has window size as a parameter or 

not. This means that our work does not need to decide an ap-

propriate window size. 

Related work on finding a subsequence that includes a dis-

tinctive pattern in an online setting is online segmentation 

[12]. The difference between that existing work and our work 

is that the former is exclusive segmentation, but the latter is 

overlap segmentation. Our segmentation problem is how to 

extract all of the convex curves included in a time series, 

while a convex curve may include some other convex curves. 

When a larger fluctuation includes smaller fluctuations as 

shown in the bottom graph in Figure 1, the smaller convex 

curve is included by the upward or downward trend in the 

larger convex curve.  

The rest of our paper is organized as follows. Section 2 de-

scribes the definition of maximal convex curve and its math-

ematical properties. Section 3 shows a maximal convex curve 

amplitude calculating algorithm, and analyzes its order of 

complexity. Section 4 evaluates our proposed algorithm em-

pirically. First, we show that it can extract convex-shaped 

spikes in transient data by experimental means. Second, we 

show that the execution time of our algorithm is  

 
Figure 3: Upward and downward legs 

linear in n. Section 5 provides conclusions and directions for 

future work. 

2 MAXIMAL CONVEX CURVE 

This section defines the amplitude of the maximal convex 

curve at each time of a given time series as a feature which 

shows the degree of magnitude fluctuation of the time series. 

The merit of our proposed feature is that it is parameter free. 

It means that it is not necessary to tune parameters when we 

use this feature. On the other hand, most of the features of 

time series proposed in the existing studies depend on at least 

the window size, so how to select an optimal window size is 

often a problem.  

2.1 Definition of a Maximal Convex Curve 

The maximal convex curve at each time t is defined as a pair 

of the maximal leg from t toward left and that toward right. 

However, a naive definition of a maximal leg makes its am-

plitude unstable. Therefore, we introduce an extended maxi-

mal leg from t toward left or right to obtain a robust definition. 

Definition: time series X, subsequences  X[p:q]  

A Time Series X=[x1,…,xm] is a continuous sequence of 

real values. The value of the i-th time point is denoted by 

X[i] = xi. 

  A subsequence 𝑆 = [xp, xp+1,...,xq] = X[p:q] is a continuous 

subsequence of X starting at position p and ending at position 

q.  We denote the length of a subsequence 𝑆 by len: 

𝑙𝑒𝑛(S) ≡ 𝑞 − 𝑝 + 1 

Definition: Leg  

Let X  be a time series. We define a leg by a subsequence 

𝐿 = 𝑋[𝑙: 𝑟] that satisfies the conditions below. 

∀𝑖.  𝑙 < 𝑖 < 𝑟      (𝑋[𝑟] − 𝑋[𝑖])(𝑋[𝑖] − 𝑋[𝑙]) > 0 

That is, a subsequence 𝑋[𝑙: 𝑟] has a maximum and a mini-

mum at the terminal points l, r. 

If 𝑋[𝑟] − 𝑋[𝑙] > 0, a leg 𝐿 is called an upward leg. 

If 𝑋[𝑟] − 𝑋[𝑙] < 0, a leg 𝐿 is called a downward leg. 

Figure 3 shows examples of upward and downward legs. 

(   𝑋(  ))

(   𝑋(  ))

(   𝑋(  ))X[  :  ]:  upward leg

X[  :  ]:  upward leg 

X[  :  ]:  downward leg                  

time（t）

(   𝑋(  ))

Value(X)
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Figure 4: Maximal leg from t toward left 

Definition: Sign and amplitude of a leg 

We define the sign and amplitude of a leg L= 𝑋[𝑙: 𝑟]  by the 

functions below. We denote them by 𝑎𝑚𝑝 and 𝑠𝑖𝑔𝑛 respec-

tively:  

𝑎𝑚𝑝 (𝐿) = 𝑎𝑏𝑠 (𝑋[𝑟] − 𝑋[𝑙]). 
   The absolute function 𝑎𝑏𝑠(𝑎) means the absolute value of 𝑎.  

𝑠𝑖𝑔𝑛 (𝐿) =  1        if  (𝑋[𝑟] − 𝑋[𝑙]) >   0 

               =  0        if  (𝑋[𝑟] − 𝑋[𝑙]) =   0 

               = −1     if  (𝑋[𝑟] − 𝑋[𝑙]) <   0 

By the above definition, the sign of an upward leg is plus 

and the sign of a downward leg is minus. 

Definition: A Maximal Leg from t toward left 

Let X be a time series and t be a time point in X.  

We define a Maximal Leg from t toward left by a leg 𝐿 =
𝑋[𝑙:  ] that satisfies the following condition. 

  For any 𝑙′ < l , X[𝑙′:  ] is not a leg the amplitude of which  

is larger than that of X[𝑙:  ].  

   That is,  

for any 𝑙′  such that  𝑙′ < l  and 

      𝑠𝑖𝑔𝑛(𝐿) (𝑋[ ] − 𝑋[𝑙]) ≤ 𝑠𝑖𝑔𝑛(𝐿) (𝑋[ ] − 𝑋[𝑙′ ]) 
some 𝑗 such that 𝑙′ ≤ 𝑗 <  𝑙 exists and j satisfies  

𝑠𝑖𝑔𝑛(𝐿) (𝑋[ ] − 𝑋[𝑗]) ≤ 0  

Figure 4 shows an example of a maximal leg from    to-

ward left. 𝑋[  :   ] is a maximal leg from    toward left. On 

the other hand, 𝑋[  :   ] is a leg, but not a maximal leg from 

   toward left.  

Definition: A Maximal Leg from t toward right 

We define a Maximal Leg from t toward right by a leg 𝐿 =
𝑋[ : 𝑟] that satisfies the following, with everything else is the 

same as "Maximal Leg from t toward left": 

  For any 𝑟 < 𝑟′, X[ : 𝑟′] is not a leg the amplitude of which  

is larger than that of X[ : 𝑟].  

Definition: Convex curve at t in X 

Let X be a time series and t be a time point in X.  

We define a convex curve at t in X by a subsequence 𝑆 =
𝑋[𝑙: 𝑟] that satisfies the following conditions. 

(i)  𝑙 <  <  𝑟  

(ii)  𝑋[𝑙:  ] is a leg. 

  (iii) 𝑋[ : 𝑟] is a leg. 

  (iv) sign(𝑋[𝑙:  ]) sign(𝑋[ : 𝑟]) < 0  
We denote it by 𝑋[𝑙:  : 𝑟], and call t the vertex of the convex 

curve. 𝑙 and 𝑟 are called left terminal and right terminal of   

 
Figure 5: Maximal convex curve 

the convex curve, respectively. We call an interval [𝑙: 𝑟] sup-

port of the convex curve. 

Definition: Maximal Convex Curve at t in X 

We define a maximal convex curve at t in X by a subsequence 

𝑆 = 𝑋[𝑙: 𝑟] that satisfies the following conditions.  

(i)  𝑙 <  <  𝑟  

(ii)  𝑋[𝑙:  ] is a maximal leg from   toward left. 

  (iii) 𝑋[ : 𝑟] is a maximal leg from   toward right. 

  (iv) sign(𝑋[𝑙:  ]) sign(𝑋[ : 𝑟]) < 0  

Figure 5 shows the example of a maximal convex curve. 

𝑋[  :   :   ] is a maximal convex curve at   . 

Definition: Signed Amplitude of a maximal convex curve 

Let 𝐶 = 𝑋[𝑙:  : 𝑟] be a maximal convex curve. 

We define the amplitude 𝑎𝑚𝑝𝑐(𝑋  ), sign 𝑠𝑖𝑔𝑛𝑐(𝑋  ) and 

signed amplitude 𝑠𝑖𝑔𝑛𝑒𝑑𝐴𝑚𝑝𝑐(𝑋  )  of a maximal convex 

curve at t in X, respectively, by the functions below:  

  𝑎𝑚𝑝𝑐(𝑋  )  ≡   min (𝑎𝑚𝑝(𝑋[𝑙:  ]) 𝑎𝑚𝑝(𝑋[ : 𝑟]))  
  𝑠𝑖𝑔𝑛𝑐(𝑋  )  ≡   𝑠𝑖𝑔𝑛(𝑋[𝑙:  ]) 
  𝑠𝑖𝑔𝑛𝑒𝑑𝐴𝑚𝑝𝑐(𝑋  )  ≡   𝑠𝑖𝑔𝑛𝑐(𝑋  ) × 𝑎𝑚𝑝𝑐(𝑋  ) 
If t is not a vertex of a maximal convex curve, we define the 

amplitude at t to be zero. 

The above definition of a maximal convex curve is not ro-

bust in the sense that even a small change of the value at the 

vertex of a convex curve can lead to a large change of ampli-

tude value. For example, in Figure 6, suppose that  X(  ) =
X(  ) and X(  ) = X( 5). If X(  ) = X(  ) = X(  ), a maxi-

mal convex curve at    is X(  :   :  5) and its amplitude is 

(X(  ) − X(  )).  If X(  ) is just a little less than X(  ), a 

maximal convex curve at    is X(  :   :   )  and a maximal 

convex curve at    is X(  :   :  5). And, the amplitude of each 

convex curve is (X(  ) − X(  )). That is, just a small change 

of X can make a great change of the amplitude. 

In real sensor data, even real-valued data may have discrete 

values by the limitation of a sensor or a measuring device, 

such that they often might have the same values. Therefore, 

the above is not an atypical contrived case. 

We introduce the concept of an extended leg in order to obtain 

a robust definition of a maximal convex curve. 

Definition: Extended Leg  

We define an Extended Leg by the sequence 𝐿 = 𝑋[𝑙: 𝑟] that 

satisfies the condition below. 

∀𝑖.  𝑙 < 𝑖 < 𝑟      (𝑋[𝑟] − 𝑋[𝑖])(𝑋[𝑖] − 𝑋[𝑙]) > 0 

∨   𝑋[𝑖] = 𝑋[𝑟] 

X[  :  ]:  maximal leg from   toward left 

(   𝑋(  ))

(   𝑋(  ))

Value(X)

time（t）

(   𝑋(  ))

X[  :  :  ]: maximal convex at   

(   𝑋(  ))

(   𝑋(  ))

(   𝑋(  ))
time（t）

Value(X)
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Figure 6: Extended maximal convex curve 

 
Figure 7: Examples of extended legs 

Figure 7 shows the example of an extended leg. When we 

assume that 𝑋[  ] = 𝑋[  ] and 𝑋[  ] = 𝑋[  ], 𝑋[  :   ] and 

𝑋[  :   ] are extended legs, but 𝑋[  :   ] and 𝑋[  :   ] are not 

extended legs.  

"Maximal Extended Leg from t toward left and right" can be 

defined by the same way as "a Maximal Leg from t toward 

left and right", respectively.  

Definition: Extended Maximal Convex Curve at t in X 

Let X be a time series and t be a time point in X.  

We define an extended maximal convex curve at   in X by a 

subsequence 𝐶 = 𝑋[𝑙: 𝑟] that satisfies the following condi-

tions. We denote it by 𝑋[𝑙:  : 𝑟] 
(i)  𝑙 <  <  𝑟  

(ii)  𝑋[𝑙:  ] is a maximal extended leg from   toward left. 

  (iii) 𝑋[ : 𝑟] is a maximal leg from   toward right. 

The amplitude, sign and signed amplitude of an extended 

maximal convex curve at t are defined similarly to those of a 

maximal convex curve.  

Please note that the left side is extended but the right side is 

not extended in the above definition, so that we do not count 

the larger amplitude twice. For example, in Figure 

6,𝑋[  :   :   ] and 𝑋[  :   :  5]  are extended maximal convex 

curves, but  𝑋[  :   :  5]  is not an extended maximal convex 

curve.  

Definition: Amplitude function, Positive amplitude function 

Let 𝑋  be a time series. Amplitude function 𝑎𝑚𝑝𝑋( )  is a 

function from each   in 𝑋 to the signed amplitude of the ex-

tended maximal convex curve at  . If   is not vertex, its am-

plitude is defined to be 0. Positive amplitude function is de-

fined to be 𝑚𝑎𝑥(𝑎𝑚𝑝𝑋( ) 0). Negative amplitude function is 

defined to be 𝑚𝑖𝑛(𝑎𝑚𝑝𝑋( ) 0). 

2.2 Properties of Maximal Convex Curves 

This section discusses the amplitude property of a maximal 

convex curve for deriving a fast online algorithm to calculate 

a maximal convex curve at each time t. A maximal convex 

curve can be defined at the point at which X is a locally max-

imal or minimal value. Hereafter, we assume that X is a lo-

cally maximal time series that consists of only locally maxi-

mal or minimal values. 

Overlap segmentation makes it difficult to extract a maximal 

convex curve. The reason is that an online algorithm needs to 

know the time when the maximal amplitude is decided for 

each point, while reading data in order. In worst case, the con-

vex curve that has the largest amplitude might not be decided 

until the last data is read. We introduce a novel operation "leg 

reduction" for searching the time when the maximal convex 

curve is decided. Leg reduction decides the convex curve and 

simplifies time series by removing the points which are the 

vertex of decided convex curves. Leg reduction is classified 

into three types, which are middle, left and right leg reduc-

tions, depending on the positions where maximal convex 

curves are decided. This section describes the definition and 

mathematical property of leg reductions. 

2.2.1 Local Maximal Preserving Transformation 

Before describing leg reductions, we introduce local maxi-

mal preserving transformation to reduce the problem simpler. 

Local maximal preserving transformation is an operation to 

remove the points that are not the vertex of convex curves 

from given time series. We note that the amplitude of the 

point that is not the vertex of a convex cure is defined to be 

zero. We will define locally maximal time series and posi-

tioned time series for the preparation to define local maximal 

preserving transformation. 

Definition: Locally maximal time series 

For any t, X is a locally maximal time series if it satisfies the 

following condition: 

∀ .  (X[t + 2] – X[t + 1]) (𝑋[t + 1]– X[t]) < 0 

Locally maximal time series can be obtained from a given 

time series by removing the points that are neither a local 

maximum nor a local minimum (Figure 8).   

Definition: Positioned time series 

Positioned time series is a two-dimensional array Y = [X P], 
which consists of time series  X = [𝑥  …  𝑥𝑖  …  𝑥𝑛] and po-

sition series P = [1 …  𝑖 …  𝑛].  And we call  [X P] a posi-

tioned time series generated from X. 

 Definition: Local maximum preserving transformation 

Let X be a time series, and  [X P]  be a positioned time series 

generated from X.  A local maximal preserving transfor-

mation is defined as the repeated below procedures from 

E = [X P] until the following procedure from E  to E  can 

no longer be applied. 

(   𝑋(  )) (   𝑋(  ))

(   𝑋(  ))

X[  :  :  ]:  maximal convex curve at   
X[  :  : 5]:  maximal convex  curve at   
X[  :  :  ]:  extended maximal convex curve at   
X[  :  : 5]:  extended maximal convex curve at   

time（t）

Value(X)

(   𝑋(  )) ( 5 𝑋( 5))

(   𝑋(  )) (   𝑋(  ))

(   𝑋(  )) (   𝑋(  ))

X[  :  ] is an Extended leg
X[  :  ] is not an Extended leg
X[  :  ] is not an Extended leg

time（t）

Value(X)
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Figure 8: Local maximum preserving trans 

 

 
Figure 9: Middle leg reduction 

Let E = [X  P ] be a positioned time series.   

If X [t] = X [t + 1]  or  
   ( X [t + 1]  −  X [t]) ( X [t + 2]  −   X [t + 1])  >  0,  

then we get E = [X  P ]  
by removing X [t + 1] and P [t+1] from X  and  P , respec-

tively, by the following. 

For 0 ≤ i < t,   X [i] ≔ X [i],  P [i]:= P [i]  

For t ≤ i ≤ len(X ) − 1, X [i] ≔ X [i + 1], P [i]:= P [i+1]  

Proposition 1: Conservation of convex amplitude in local 

maximum preserving transformation 

Let  X   be a time series, and  E = [X  P ] be a positioned 

locally maximal time series obtained from  X  by a local max-

imum preserving transformation. If a maximal convex curve 

C  is defined at 𝑖 in X , then there is a maximal convex curve 

C  that is defined at j in X  such that P [𝑗]  =  𝑖, with the same 

amplitude of 𝐶 , that is, 𝑎𝑚𝑝𝑐(X   𝑗) =  𝑎𝑚𝑝𝑐(X  𝑖) , and 

vice versa. 

[Proof] A maximal convex is only defined at a local maximal 

or minimal point. And the amplitude of a leg is not changed 

by a local maximum preserving transformation. Therefore, a 

maximal convex curve in X  has the corresponding convex 

curve in X , and vice versa. 

2.2.2 Middle Leg Reduction 
Definition: Middle leg reduction (Figure 9) 

Let t t + 1 t + 2 t + 3  be time points at a locally maximal 

time series X. If X[t: t + 3] satisfies the following conditions 

(we call them middle leg conditions), the procedure to remove 

X[t + 1] and X[t + 2] from X is called a middle leg reduction.  

𝑎𝑏𝑠(𝑋[ + 1] − 𝑋[ ]) > 𝑎𝑏𝑠(𝑋[ + 2] − 𝑋[ + 1])  … (1) 
𝑎𝑏𝑠(𝑋[ + 3] − 𝑋[ + 2]) ≥ 𝑎𝑏𝑠(𝑋[ + 2] − 𝑋[ + 1]) 

                                                                                ...(2)  

More concretely, a middle leg reduction from  E = [X  P ] 
to  E = [X  P ] is described by the following. 

Let E = [X  P ] be a positioned time series, and X  be a lo-

cally maximal one that satisfies middle leg conditions.  For 

1 ≤ i ≤ t,        X [i] ∶=  X  [i],        P [i] ∶=  P  [i]  
For t + 1 ≤ i ≤ len(X  ) − 2, 

                                  X [i] ∶=  X  [i + 2], P [i] ∶=  P  [i + 2] 

We note that inequality (1) does not contain an equal sign, 

whereas the inequality (2) contains an equal sign. It corre-

sponds to the definition of extended maximal convex curve.   

Proposition 2: Conservation of convex amplitude in a middle 

leg reduction 

Let E = [X  P ] be a positioned local maximal time series, 

and E = [X  P ] be a positioned time series obtained from 

E  by a middle leg reduction. 

(i)  For i ≤ t,        𝑎𝑚𝑝𝑐(X  𝑖) =  𝑎𝑚𝑝𝑐(X  𝑖)  
      For i ≥ t + 1  𝑎𝑚𝑝𝑐(X  𝑖) = 𝑎𝑚𝑝𝑐(X  𝑖 + 2)   
(ii)  𝑎𝑚𝑝𝑐(X   + 1) =  𝑎𝑚𝑝𝑐(X   + 2) 
                                   = abs(X [t + 2] − X [t + 1]) 
 [Proof] 

(i) When  X [t + 1] and  X [t + 2] are removed from  X  
a subsequence X [t: t + 3]  is a leg the sign of which is the 

same as X [t: t + 1]  and  X [t + 2: t + 3].  X [t] and X [t +
3] keep being local maxima. Therefore, E  keeps being a po-

sitioned local maximal time series. Therefore, the amplitude 

of every convex curve at a time point t in X  except for t + 1 

and t + 2 is not changed after a middle leg reduction, because 

of the definition of a maximal leg from t. 
 (ii) If X [t: t + 3]  satisfies the middle leg conditions, a leg 

X [t: t + 1] is a maximal leg from t + 1 toward left and  

X [t + 1: t + 2]   is a maximal leg from t+1 toward right. 

Therefore, 

   𝑎𝑚𝑝𝑐(X    + 1) 
   = min (𝑎𝑚𝑝(X  [ :  + 1]) 𝑎𝑚𝑝(𝑋1[ + 1:  + 2]) 
   = abs(X  [t + 2] − X  [t + 1]) 
𝑎𝑚𝑝𝑐(X   + 2)  = abs(X  [t + 2] − X  [t + 1]) is proved 

similarly. 

2.2.3 Left Leg Reduction 
Definition Left leg reduction (Figure 10) 

Let 1 2 3  be time points at a locally maximal time series X. 

If X[1: 3] satisfies the following conditions, a procedure to re-

move 𝑋[1] from X is called a left leg reduction. 

𝑎𝑏𝑠(𝑋[2] − 𝑋[3]) ≥ 𝑎𝑏𝑠(𝑋[2] − 𝑋[1])              
The above condition is called a left leg condition. 

 
Figure 10: Left leg reduction 

X1 =  [1,2,2,3,2,4,5,5,0,6]

P1 =  [1,2,3,4,5,6,7,8,9,10]

X2 =  [1,3,2,5,0,6]
P2 =  [1,4,5,7,9,10]

Value(X)

Value(X)

time（t）

time（t）

Middle leg reduction

(t,X(t))

(t+1,X(t+1))

(t+2, X(t+2))

(t+3, X(t+3))

(t,X(t))

(t+3, X(t+3))

(2, X(2))

(3, X(3))

(1, X(1))

(2, X(2))

(3, X(3))

Left leg reduction
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Figure 11: Shrinking time series 

More concretely, a left leg reduction from  E = [X  P ] to 

E = [X  P ] is described by the following: 

Let End =len(X ). 

For i ≤ End −1,  X  [i] := X  [i+1],     P  [i] := P  [i+1] 

Proposition 3: Conservation of convex amplitude in left leg 

reduction 

Let X  be a time series, E = [X  P ] be a positioned local 

maximal time series generated from X, and  E = [X  P ] be 

a positioned time series obtained from E1 by a left leg reduc-

tion. 

(i)  For i ≤ len(X )  − 1,  𝑎𝑚𝑝𝑐(X  𝑖) =  𝑎𝑚𝑝𝑐(X  𝑖 + 1)  
(ii)  𝑎𝑚𝑝𝑐(X  2) =  abs(X [2] − X [1]) 
[Proof] The proof for Proposition 3 is similar to that of Prop-

osition 2. 

We define shrinking time series for describing proposition 4. 

Definition: Shrinking time series (Figure 11) 

The locally maximal time series X is called shrinking if it   

satisfies the following condition. 

     ∀ . abs(X(t+1) – X(t)) > abs(X(t+2) – X(t+1)) ...(3) 

Proposition 4: By repeating middle and left leg reductions 

until they can no longer be applied, we get a shrinking time 

series. 

[Proof] 

Let R be the time series that is gotten by repeating middle 

and left leg reductions until they can no longer be applied.  

The first 3 points of R satisfy the below inequality, because 

left reduction cannot be applied. 

 𝑎𝑏𝑠(𝑅[2] − 𝑅[1]) >  𝑎𝑏𝑠(𝑅[3] − 𝑅[2]) 
Therefore, the first three points satisfy inequality (3) in the 

definition of shrinking time series. 

The next three points satisfy the below inequality, because 

middle leg reduction cannot be applied to the first 4 points of 

R.  
     𝑎𝑏𝑠(𝑅[3] − 𝑅[2]) >  𝑎𝑏𝑠(𝑅[4] − 𝑅[3]) 

Therefore, the first four points satisfy inequality (3) in the 

definition of shrinking time series. 

By repeating the same operation until the end of time series 

R, we get that all the points in time series R satisfy inequality 

(3) based on mathematical induction.  

 Note that if the sign is " ≥ " in inequality (1) of middle leg 

reduction as with that in inequality (2), this proposition is not 

valid. This shows that an extended maximal curve is neces-

sary not only for robust definition but also for fast algorithm. 

 
Figure 12: Right leg reduction 

2.2.4 Right Leg Reduction 

Definition: Right leg reduction (Figure 12) 

Let "End"  be 𝑙𝑒𝑛(𝑋).  If 𝑋[End − 2: End]  satisfies the fol-

lowing condition, 

𝑎𝑏𝑠(𝑋[𝐸𝑛𝑑] − 𝑋[𝐸𝑛𝑑 − 1])
≥ 𝑎𝑏𝑠(𝑋[𝐸𝑛𝑑 − 1] − 𝑋[𝐸𝑛𝑑 − 2]) 

A procedure to remove 𝑋[𝐸𝑛𝑑] from X is called a right leg 

reduction. The above condition is called right leg condition. 

More concretely, a right leg reduction from  E = [X  P ] to 

E = [X  P ] is described by the following: 

For i ≤ len(X )  − 1,  X [i] ∶=  X  [i] , P [i] ∶=  P  [i] 

Proposition5: Conservation of convex curve amplitude in 

right leg reduction 

If a positioned local maximal time series E = [X P]  is shrink-

ing,  

   (i)     𝑎𝑚𝑝𝑐(X 𝐸𝑛𝑑 − 1) = abs(X[𝐸𝑛𝑑] − X[𝐸𝑛𝑑 − 1]) 
           where 𝐸𝑛𝑑 = 𝑙𝑒𝑛(𝑋). 
[Proof] It follows directly from the definitions of a locally 

maximal time series and a shrinking time series.  

2.2.5 Main Theorem 

Theorem: Let X  be a time series. The signed amplitude and 

length of an extended maximal convex curve at t in X can be 

calculated by middle, left and right leg reductions. In other 

words, the amplitude function for X can be also calculated. 

[Proof]  

If we apply middle and left leg reductions repeatedly until 

they can no longer be applied, we get a shrinking time series 

by proposition 4. For all the local maxima and minima that 

are removed by middle or left leg reduction, their amplitudes 

are calculated by proposition 2 and 3.  For the remaining local 

maxima and minima, their amplitudes are calculated by prop-

osition 5. Therefore, all the amplitudes of maximal convex 

curves in X are calculated by middle, left and right leg reduc-

tions. 

3 MAXIMAL CONVEX CURVE AMPLI-

TUDE CALCULATING ALGORITHM 

This section shows an online algorithm to calculate the am-

plitude function for a given time series. The computational 

complexity of a naive algorithm by the definition of a maxi-

mal convex curve is 𝑂(𝑛 ), but that of our proposed one is 

𝑂(𝑛) based on the results in the preceding section 2.2.  

The values of an amplitude function do not depend on the 

order of the applications of a middle leg reduction and a left 

leg reduction, by virtue of the propositions in section 2.2. 

Therefore, we can get an online algorithm by the repetition of 

Value(X)

time（t）

Right leg reduction

(n, X(n))

n := len(X)

(n-1, X(n-1))

(n-2, X(n-2))

(n-1, X(n-1))

(n-2, X(n-2))

len(X) := n-1 
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executable reductions while scanning the values from the be-

ginning. 

Figure 13 shows an algorithm that computes an amplitude 

function.  In Figure 13, "X" is an input time series and "A" is 

the values of the amplitude function at time t for "X". Both 

are implemented as a one-dimensional array. 

Line 1-4 initializes the output "A", variable "S" and "F". "S" 

is a stack that stores the vertexes that are used for leg reduc-

tions. "F" is a flag that decides when the while-loop execution 

terminates. 
Line 6-32 is a main loop that terminates when all the lines 

are scanned. Line 7 pushes a local maximum or minimum to 

the top of stack "S". The first and the last points at "X" are 

treated as local maximum or minimum.  

  Line 8-29 is a while-loop that executes middle and left leg 

reductions until those cannot be applied any more. Line 10-

14 corresponds to a middle leg reduction. If a middle leg re-

duction is executed, then a flag "F" is set to be 1 at line 15, 

else "F" is set to be 0 at line 17. Line 20-22 corresponds to a 

left leg reduction. If a left reduction is executed, then a flag 

"F" is set to be 1 at line 23, else "F" is set to be 0 at line 25. If 

neither a middle leg reduction nor a left leg reduction is exe-

cuted, "F" is set to be 0 at line 28. If "F" equals 0, the while-

loop terminates. Then a function "getNextLocal-Maximum" 

will search the next maximum or minimum point at "X" and 

set it to "i" in line 30. If "i" is the last point at "X", main for-

loop ends. 

In line 10-14, line 10-11 checks the middle leg coditions. 

Line 12 and 13 correspond to the equations (ii) in the propo-

sition 2. Line 14 corresponds to the operation obtaining X  

from X  by a middle leg reduction. A function "pop(S, [2,3])" 

pops the second and the third values of a stack "S" and fills 

them with the values followed the fourth and fifth value in 

order. 

In line 20-22, line 20 checks a left leg condition. Line 21 

corresponds to the equation (ii) in the proposition 3. Line 22 

corresponds to the operation obtaining X  from X  by a left 

leg reduction. A function "pop(S, [3])" pops the third value of 

a stack "S" and fill them with the values followed the fourth 

value in order. 

Line 34-37 is the repeated execution of right leg reductions. 

The main theorem ensures that the remaining values in stack 

"S" can be reduced to "S" whose size is 2 by repeated appli-

cation of right leg reductions.  Line 36 corresponds to the 

equation (i) in the proposition 5. A function "pop(S, [1])" 

pops the first value of a stack "S" and fill them with the fol-

lowed values in order. 

When all the values of "X" are scanned and the size of stack 

"S" becomes 2, "maximalConvexAmplitude" ends and return 

output values "A" in line 38. 

Lastly, we will show the computational complexity of this 

algorithm. Let n be the length of time series "X". The lines 

that depend on n are for-loop (line 6-32), the first while-

loop(line 8-29), "getNextLocalMaximum" (line 30) and the 

second while-loop (line 34-37).  

The repeat count of the for-loop starting at line 6 equals to 

the number of the local maxima and minima of "X" (We call 

the number f). And the total number of reductions in the first 

while-loop starting at line 8 is also smaller than the number f.  

Algorithm: maximalConvexAmplitude (X) 

[Input]       X: time series 

[Variable]  S:Stack, F: Flag, i: Maximum or minimum point at X 

[Output]    A: the values of amplitude function for X 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

// (1) Initilization 

A:= zeros(len(X));  // All the value of A is zero. 

S : = [];          // Initialize a stack 

F := 1;                  // Flag that decides while-loop execution 

// (2) Main loop  

for i:=1 to len(X)       //  len(X) is the length of X  

   S := push(S,X[i]) ; 

   while F == 1 

      if len(S) >= 4         // Prop. 2: Middle leg reduction 

         if abs(X(S[3] – X(S[4])) >abs(X(S[2]) – X(S[3]) and 

             abs(X(S[1])–X(S[2])) ≥ abs(X(S[2]) – X(S[3])) 

             A(S[3]) := X(S[3]) – X(S[2]); 

             A(S[2]) := X(S[2]) – X(S[3]); 

             S := pop(S, [2,3]); 

             F := 1; 

         else              

             F:=0; 

         end if 

      elseif len(S) >= 3  //Prop. 3: Left leg reduction 

         if abs(X(S[1]) – X(S[2])) ≥abs(X(S[2]) – X(S[3])) 

            A(S[2]) := X(S[2]) – X(S[3]) 

S := pop(S, [3]); 

F := 1; 

         else 

            F:=0; 

         end if 

      else 

         F:=0; 

    end while 

   i := getNextLocalMax (X,i) //Prop.1:Local maximal transformation 

   F: = 1; 

end for  

// (3) Post process  

while len(S) >= 3         // Prop.4 and 5: Right leg reduction 

A(S[2]) := X(S[2])  – X(S[1]); 

S := pop(S, [1]); 

end while 

return A; 

Figure 13: Maximal convex amplitude calculation 

Therefore, the computational complexity of the first while-

loop is order O(f), that is, at most order O(n). We note that f 

is smaller than n. Furthermore, the computational complexity 

of the total execution of "getNext-LocalMaximum" is order 

O(n), because it scans the values of "X" just once.  As a result, 

the computational complexity of the for-loop is O(n). 

Next, the total repeat count of the second while-loop is also 

smaller than f. In conclusion, we get the result that the com-

putational complexity of "maximalConvex-Amplitude" is or-

der O(n).   
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4 EVALUATION 

The preceding section showed that our proposed algorithm 

to calculate "amplitude function (the signed amplitude of a 

maximal convex curve at a time)" is online and its computa-

tional complexity is order O(n).  

This section shows that our proposed algorithm can extract 

convex-shaped spikes in transient data and it enables real-

time data processing with a sampling period at the microsec-

ond level by the experiment with simulated data and real data 

[13].  

4.1 Convex-Shaped Pattern Extraction 

First, we show that our algorithm can extract convex-shaped 

spikes from noisy sine data. Second, we confirm that it can 

extract spikes in transient data shown in Fig. 1. Last, we show 

that it can extract various convex patterns by giving the levels 

of amplitudes for space shuttle Marotta Valve data.  

(1) Noisy sine wave with spike 

In Figure 14, the top graph is a sine curve with noise, and 

the bottom graph shows positive amplitude function. This fig-

ure shows that the positive amplitude at a local maximal point 

represents the magnitude fluctuation of convex-shaped pat-

terns even during the transient period. Furthermore, ampli-

tude function can distinguish noisy convex patterns than from 

main convex patterns whose amplitude is approximately 2.5. 

In Figure 15, the top graph is an anomalous transient time 

series mixed with convex-shaped spikes, and the bottom 

graph is the positive amplitude function. It shows that our al-

gorithm can extract not only an operational patterns with 0.5 

scale amplitude, but also convex-shaped spikes with 0.1 scale 

amplitude. 

(3) Space telemetry: space shuttle Marotta Valve 

  Figure 16 shows an example of a Space Shuttle Marotta 

Valve time series that are annotated as normal [11]. Marotta 

Valve is a fuel supply valve for airplane or rocket. 

In Figure 17, the top graph is a Space shuttle Marotta Valve 

time series that contains 5 cycles. The bottom graph shows 

the amplitudes that are larger than 3. Red circles in the top 

graph mean the vertexes of convex-shaped patterns.  Dotted 

lines in the top graph are left or right terminals of the convex-

shaped patterns whose vertexes are red circles. This shows 

that our algorithm can extract normal operation patters by 

giving an amplitude as a value that is a little smaller than a 

maximum of one normal cycle. 

Figure 18 is an enlarged view of Figure 17 during times 

from 351 to 390. It shows that the vertexes at around 390 are 

seen as one vertex in Figure 17, but there are two convex-

shaped patterns whose amplitudes are larger than 5 in them. 

In Figure 19, the top graph shows amplitudes that are larger 

than 1.2 and smaller than 3. The red circles and red dotted 

lines have the same meaning as in Figure 17. Each up and 

down spike in energizing phases is extracted from each cycle, 

but the first and the second cycles have other convex- 

 
Figure 14: Convex amplitude of noisy sine wave 

 (2)  Transient data with spike  

 
Figure 15: Transient data with spike 

 
Figure 16: An example of a Space Shuttle Marotta Valve 

time series that are annotated as normal 

shaped patterns except for a normal energizing phase. Figure 

20 is an enlarged view of Figure 19 during times from 95 to 

180. Similarly, Figure 21 is an enlarged view of Figure 19 

during times from 3101 to 3186. The pattern shown by Fig-

ure 19 is a continuously convex-shaped so that it is different 

from normal energizing phase pattern such as Figure 21. 

In Figure 22, the top graph shows amplitudes that are 

larger than 0.46 and smaller than 0.9. The red circles and red 

dotted lines have the same meaning as in Figure 17. Each  

De-Energizing 
Phase

Energizing 
Phase
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Figure 17: Convex-shaped patterns whose amplitudes are larger than 3 

 

 
Figure 18: Enlarged view from 351 to 390 in Figure 17 

   
Figure 19: Convex-shaped patterns whose amplitudes are larger than 1.2 and smaller than 3.0 

International Journal of Informatics Society, VOL.10, NO.2 (2018) 85-96 93



 
Figure 20: Enlarged view from 95 to 180 in Figure 19 (abnormal) 

 
Figure 21: Enlarged view from 3101 to 3186 in Figure 19 (normal) 

 
Figure 22:  Convex-shaped patterns whose amplitudes are larger than 0.46 and smaller than 0.9 

 
Figure 23: Enlarged view from 1389 to 1410 in Figure 22  (abnormal) 
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Table 1: Environment for evaluation 

CPU Intel® Core™  i5-6600 CPU 

3.30GHz 

Memory(RAM) 32GB® 

OS Windows 7 Professional 

Language MATLAB 

 de-energizing phase patterns is extracted from each cycle, 

but the first and second cycles have other convex-shaped 

patterns except in de-energizing phase patterns. Fig. 23 is an 

enlarged view of Fig. 17 during times from 1389 to 1410. It 

shows that there are 3 convex-shaped patterns whose ampli-

tudes are the same as a normal de-energizing phase pattern. 

Those experimental results above showed that amplitude 

function can extract anomalous convex-shaped patterns by 

giving the amplitude value that we wanted to find. 

4.2 Performance 

This section shows the dependency of the computational 

time of our algorithm on the length of time series, for various 

sensor data sets. Table 1 shows the environment for evalua-

tion. 

Figure 24 shows the trend graphs of experimental time se-

ries. Data labels "ECG", "Power", "Respiration" and "Valve" 

are electrocardiogram qtdb/se102, Dutch power demand da-

taset, a patient’s respiration nprs44, and space shuttle Marotta 

Valve TEK16 in the UCR time series classification archive 

[13], respectively. NoisySine is the simulated time series 

shown in Figure 14.  

The lengths of experimental time series are between 0 and 

20000, at a step increase of 2000. The length of TEK16 is 

shorter than 20000, so we obtained a time series of length 

20000 by concatenating the original time series multiple 

times. 

Figure 25 shows the execution times for the 5 time series 

data sets. Each time is an average of the times of 10 trials, in 

order to reduce the effect of variance. The figure shows that 

the execution times depend on the behavior of data, but they 

are linear in n, where n is the length of the time series. The 

lengths of those time series are from 0 to 20000 at an incre-

ment of 2000 samples. The execution times for the length of 

10000 are between 0.01 and 0.04 sec. It means that our algo-

rithm can process one data point per between 10−6 and 4×
10−6.  In other words, our algorithm enables real-time pro-

cessing of time series with sampling periods between 1 and 4 

microseconds. 

5 CONCLUSIONS 

We have proposed a new parameter-free online algorithm 

that calculates the amplitude of a maximal convex curve for 

extracting convex-shaped spikes in transient sensor data. We 

also showed that the computational complexity of our algo-

rithm is O(n), where n is the length of input time series, and 

it enables real-time processing with sampling period ranging 

from 1 to 4 microseconds. 

 
Figure 24: The trend graphs of experimental time series 

 

 
Figure 25: The execution times for experimental time series 

In future work, we will apply our algorithm to the following 

problems: 

- Segmenting time series in order to identify operational re-

gimes of equipment. 

-  Anomaly detection for equipment condition monitoring. 

This work is supported by JSPS KAKENHI Grant Number 

17K00161.  
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