
Regular Paper

Effective Derivation of a Mapping of Variables in a Loop Structure

Kozo Okano†, Shinji Kusumoto‡, and Yukihiro Sasaki‡
†Faculty of Engineering, Shinshu University, Japan

‡Graduate School of Information Science and Technology, Osaka University, Japan
okano@cs.shibshu-u.ac.jp, kusumoto@ist.osaka-u.ac.jp

Abstract - Static program analysis enables us to analyze a
program without performing an actual execution run, but the
analysis of loops is, however, difficult in general. In order to
solve this problem, one of existing techniques derives a map-
ping between variables using regression analysis on data ob-
tained by multiple executions of a program (run history). The
technique is a kind of a hybrid approach and when we ana-
lyze a complicated loop using the technique, it may derive an
incorrect mapping. Our new proposed technique overcomes
this problem using recurrence relations. It first obtains a run
history and then performs regression analysis on loop itera-
tions and variables based on the run history. It finally derives
a recurrence relation on the variables occurring in the loop
body. Experiments confirm that it can derive useful mappings
that we cannot derive by the existing technique.

Keywords: loops, static analysis, recurrence relation, run
history, mapping

1 INTRODUCTION

In software engineering, especially in the maintenance phase
of software, engineers need to understand software by reading
or analyzing code. In such situations, program analysis meth-
ods can be helpful. Program analysis methods will produce
an abstract summary of the behavior of a given fragment of
code, usually a function, or a method (in object-oriented pro-
gramming language). The abstract summary is usually in the
form of a formal specification such as Java Modelling Lan-
guage [1].

Program analysis methods are divided into two categories:
(1) static program analysis types and (2) dynamic program
analysis types. Static program analysis methods do not need
to execute the target program while dynamic program analysis
methods will.

Static program analysis methods use many concrete meth-
ods such as symbolic execution [2] and model checking [3].
Recently other approaches have emerged. e.g., heuristic meth-
ods [4], and automatic predicate abstraction based methods,
such as SLAM [5], BLAST [6]. Static program analysis meth-
ods using logic sometimes utilize SAT/SMT solvers [7]. SAT/SMT
solvers are enhanced SAT solvers with background theories.
A SAT solver is a simple solver for satisfiability problems
on logical expressions over propositional variables (boolean
variables). Some examples of background theories include
decision problems on integer expressions and expressions over
arrays and tuples (record types). Thus, SAT/SMT solvers
can solve decision problems on programs. There are many

SAT/SMT solvers including popular solvers are such as Z3
[8] and Yices [9].

For dynamic program analysis, Daikon [10] is a well-known
tool. It derives program assertions from data obtained from
execution logs of the target programs. The execution is usu-
ally performed many times in order to infer accurate asser-
tions. Recently approaches based on regression analysis [11]
have been proposed [12]. Le [12] proposed a method that de-
rives a mapping from a family (or a set of sets) of variables to
a set of variables before and after a target loop structure using
regression analysis. It first executes the target loop multiple
times with varying input values. Based on the data obtained
by the execution, it then performs regression analysis. The
analysis infers a mapping between variables before and after
a target loop.

Therefore, it can easily analyze programs with loop struc-
tures. However, it can deal with only linear and quadratic
mappings. Consequently, it cannot infer an exponent map-
ping which represents Fibonacci sequences.

Our proposed approach overcomes this problem as follows.
First, we perform dynamic program analysis, and then we ob-
tain data on the number n of loop iterations and the program
variables. Next, we perform regression analysis on the data
and obtain a relation between n and the program variables.
Then we construct a recurrence formula on the program vari-
ables by static analysis on the loop body. The recurrence for-
mula represents a relation between the program variables for
the n+ 1-th and n-th loops. We can obtain their closed-form
solution of the recurrence formula, which represents the pro-
gram variables for n. By combining the closed-form solution
and the results of the regression analysis, we obtain a final
mapping representing the mapping between variables before
and after a target loop.

The remainder of this paper is organized as follows. Sec-
tion 2 presents disadvantages of the existing methods as pre-
liminaries. Section 3 gives the proposed method. Sections 4
and 5 show experimental results and discussion, respectively.
Finally, Section 6 summarizes this paper.

2 PRELIMINARIES

In general, static analysis approaches sometimes have trou-
ble handling loop structures. In model checking, we over-
come this problem by using several techniques such as loop
unwinding and Craig interpolation for the approximation of
loop invariants. In general, such techniques are not omnipo-
tent due to memory limitations and calculating complexity.
For this reason, some of the existing methods contrive sev-

International Journal of Informatics Society, VOL.10, NO.2 (2018) 75-83

ISSN1883-4566 © 2018 - Informatics Society and the authors. All rights reserved.

75

eral methods, such as bounded unwinding [13], user-specified
time-out mechanisms [14], and so on. In [15], the S2E tool
utilizes Path Selection function which enables us to control
the termination of a loop with multiple criteria. For example,
PathKiller can stop loop iteration up to a user specified num-
ber. In another approach, Xie et al. [16] proposed a method
which returns an unknown value for a variable that cannot be
analyzed. Le [12] proposed a method based on regression
analysis. It can derive a mapping between variables before
and after a given loop structure, it claims that the method can
derive more accurate mapping than others.

2.1 Regression Analysis
Regression analysis is an estimating method for the rela-

tionships among variables. It includes many techniques for
modeling and analyzing several variables, when the focus is
on the relationship between a dependent variable and one or
more independent variables.

Regression analysis is usually based on a regression model.
Regression models involve the following parameters and vari-
ables:

• The unknown parameters, denoted as β, which may
represent scalars or vectors.

• The independent variables, X.

• The dependent variables, Y.

A regression model relates Y to a function of X and β.
Y ≈ f(X, β)
In a formal manner, the approximation is typically formal-

ized as E(Y | X) = f(X,β). To carry out regression analy-
sis, the form of the function f must be specified in advance.

2.2 Segmented Symbolic Analysis (SSE)
The approach in [12] (SSE for short) uses approximation

functions (regression models) shown in Table 1.

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x
2
1 + β5x

2
2

(x1 and x2are the input and the output, respectively)

There are many cases in which the functions in Table 1
are not applicable. For example, the program for generating
Fibonacci numbers in Listing 1 cannot apply the functions in
Table 1.

Table 1: Transformation Table for Loops

Model example values for β0 ∼ β5

Constant y = 0 0
Simple Linear y = x1 0 except for β1

Multiple Linear y = 2 · x1 + x2 β4 = 0, β5 = 0
Polynomial Linear y = x2

1 + x1 · x2

if x1 > 0
Piece-wise Linear then y = x1 cannot be expressed

else y = 3

Listing 1: Program for Fibonacci Numbers

p u b l i c c l a s s T e s t F i b o {
p u b l i c i n t c f (i n t n) {

i n t c u r r e n t = 0 ;
i n t prev = 1 ;
i n t p r e v p r e v = 0 ;
i f (n > 0){

f o r (i n t i = 0 ; i < n ; i ++) {
c u r r e n t = p re v + p r e v p r e v ;
System . o u t . p r i n t (c u r r e n t + ” ”) ;
p r e v p r e v = pr ev ;
p r ev = c u r r e n t ;

}
re turn c u r r e n t ;

} e l s e {
System . e r r . p r i n t l n (

” I n p u t i s l e s s t h a n 1 ”) ;
re turn −1;

}
}

}

In general, it is hard to apply regression analysis on Fi-
bonacci numbers because its closed-form solution is expo-
nential to the number of loop iterations and it cannot be rep-
resented by the functions in Table 1.

SSE requires preparing many input patterns to output exe-
cution logs, which contain a large number of execution paths.
Insufficient execution paths lessen the accuracy of the approx-
imation. This is another disadvantage of the approach. In
other words, the approach is not useful for a program with
many branches in its loop structures, which makes the cover-
age of the test cases low.

3 OUR PROPOSED METHOD

In this section, we describe the differences between the ex-
isting method presented in [12] and our proposed method.

Our proposed method derives a mapping between variables
before and after the target loop. The approach can easily deal
with loop structures.

SSE uses mapping via regression analysis only. It loses
precision in the approximation. Our proposed method uses
regression analysis only to derive a mapping between argu-
ments (of the given Java method) and the number of iterations
of the target loop (of the given Java method). A relation be-
tween n, the number of iterations of the target loop, and the
variables of the loop, is obtained by static analysis used in
cooperation with an analysis tool for mathematics like Math-
ematica. This combination produces approximation with high
accuracy.

3.1 Outline of Our Proposed Method
Here, we give an outline of our proposed method.
The inputs and the outputs of our method are summarized

as follows.

• Input: a Java method with a single loop structure

K. Okano et al. / Effective Derivation of a Mapping of Variables in a Loop Structure76

• Output: an approximation of the loop structure in the
method, if successfully generated, otherwise a failure
is returned.

Note that for a method with multiple loop structures, we
can divide the method into several methods where each method
has a single loop structure.

For example in Listing 2, a method with multiple loop struc-
ture can be translated into several methods where each has
only a single loop structure as shown in Listing 3.

In order to convert a nested loop structure into a simple
loop structure, we use a new counter vpc which indicates
which loop is selected.

Listing 2: Multiple Loops Structure

p u b l i c c l a s s M u l t i p l e L o o p s {
p u b l i c i n t ex (i n t n) {

i n t l o c a l = 0 ;
f o r (i n t i =0 ; i< n ; i ++)

l o c a l += i ;
i n t x = l o c a l ;
i n t y = l o c a l ∗2 ;
f o r (i n t j =0 ; j < n ; j ++)

f o r (i n t k =0; k < n ; k ++) {
x ∗= 3 + k ;
y += x + j ;

}
re turn x + y ;

}
}

Listing 3: Method with a Single Loop Structure

p u b l i c c l a s s M u l t i p l e L o o p s {

p u b l i c i n t ex1 (i n t n) {
i n t l o c a l = 0 ;
f o r (i n t i =0 ; i< n ; i ++)

l o c a l += i ;
re turn l o c a l ;

}

p u b l i c i n t ex2 (i n t loc , i n t n) {
i n t x = l o c ;
i n t y = l o c ∗2 ;
i n t i = 0 ;
byte vpc = 1 ;
whi le (vpc < 2){

sw i t c h (vpc) {
case 1 ;

i f (j < n) {
vpc = 2 ;
j ++;
k = 0 ;

} e l s e {
vpc = 3 ;

}
break ;

case 2 ;

i f (k < n) {
x ∗= 3 + k ;
y += x + j ;
k ++;

} e l s e {
vpc = 1 ;

}
break ;

}
}

}
re turn x + y ;

}

p u b l i c i n t ex (i n t n) {
i n t tmp = ex1 (n) ;
re turn ex2 (tmp , n) ;

}
}

Thus, for a method with a multiple loops structure, our pro-
posed method is also applicable. For nested loops, it is known
that such loops can be translated into a single loop. Therefore,
in principle, this method is also applicable.

We limit the class of the input Java method as follows be-
cause we will use SAT/SMT solvers in later analysis stages.
The allowed types are bool, byte, short, int, float, double,
and arrays of them. The proposed method cannot deal with
String. For control structures, it allows for the use of if,
for, while statements.

Through of the section, we use the following variables:
x: arguments of the given (target) method
y: variables which a user want to analyze
n: the number of iterations of the loop

Figure 1 shows the architecture of a tool proto-type of our
proposed method.

The procedure is summarized as follows.

Step 1: Add proper print statements to the target source code
in order to store execution logs on y and others.

Step 2: Execute the program with varying x and obtain a suf-
ficient number of execution logs.

Step 3: Analyze the logs and obtain the execution paths, re-
lations between x and the execution paths, and a record
on n.

Step 4: Using regression analysis, infer the relation between
x and n.

Step 5: As a recurrence relation, obtain a relation between
ys at the entry point and ye at the exit point of the loop
body.

Step 6: Solve the closed-form of the recurrence relation ob-
tained in Step 5.

Step 7: Finally, calculate an expression representing a rela-
tion between y, x, and n by integrating Step 3, Step 4,
and Step 6.

International Journal of Informatics Society, VOL.10, NO.2 (2018) 75-83 77

a method

with

loops

maps

coddesponding

to the loops, if

possible

dun

histody

a map on

control

variables and

the loop

iterations

general

solutions

input

output

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7

an

instrument

ed method

instrument
regression

analysis
execution

Mathematica

static analysis

on the loops’

bodies

Composition

table on the

loop

iterations

and control

variables

analysis

execution

patterns

recurrence relations

for the loopsi bodies

Figure 1: Tool overview

void sample(int a, int b){

a = a + 1;

if(a > 0){

b = b * 2;

}

while(b < 0){

b = b + 5;

}

}

void sample(int a, int b){

a = a + 1;

pw.println(“a = a + 1;”);

if(a > 0){

pw.println(“a > 0”);

b = b * 2;

pw.println(“b = b * 2;”);

}else{

pw.println(“!(a > 0)”);

}

pw.println(“//loop1”);

while(b < 0){

pw.println(“b<0”);

b = b + 5;

pw.println(“b < 0”);

pw.println(“b = b + 5;”);

}

pw.println(“//loop1 end”);

pw.println(“!(b < 0)”);

}

Target method:sample

The modified method:sample’

Figure 2: Print statement instrument for obtaining execution
logs

In the following subsections, we will explain Steps 1, 3, 4,
5, 6, and 7 which are important steps of our proposed method.

3.2 Step 1

In order to store execution logs, we add print statements to
the target source code (Figure 2).

This step is similar to the Instrument step of Daikon [10], a
famous tool for detecting invariants of programs.

In Fig. 2, pw is an instance of PrintWriter class. pw
uses its println method to output log to a text file. The
statement is inserted after assignment statement of the origi-
nal code. For a control statement, such as an if-statement, it is
also inserted to output the information on the condition of the
path. For example it will output “a > 0” for the path in which
the condition holds. For a loop structure, it outputs start and
end markers as shown in Fig. 2, as well as the information on
the condition.

JDT [17] is used to implement such an instrument.

3.3 Execution paths
Many paths are considered with regard to the conditions in

the loop structure. Thus, we have to enumerate every pattern
of the paths.

In general, a path in a loop structure is defined as a se-
quence of sentences executed for a given a concrete set of
values of variables in the loop structure.

We call any path enumerated “an execution path (in the
loop).” In general, the number of “if-statements” is i, and
then there are 2i execution paths at most.

3.4 Step 3-1
Here, we obtain a relation between x of the given method

and the statements in the loop body.
The execution logs contain records on x and the number of

occurrences of the execution path.
We explain this more precisely using the example in Fig. 3.
Let us assume that the upper left code is the target method.

The method contains two execution paths as shown in Fig. 3.
We can see from the figure, that if the argument i is 25,

then Execution Path2 (EXP2) occurs twice and EXP1 occurs
three times.

Figure 3 shows only three tuples, but, we actually obtain
these tuples with more than 100 executions varying the values
of i. The same value 100 is used in the existing method. Many
studies including [18] have proposed how to generate efficient
values of the inputs (arguments).

3.5 Step 3-2
Next we confirm the order of the executing paths. Figure 3

shows the situation in which EXP2 is first executed twice and
then EXP1 is executed three times.

Let us assume that in general executions of a loop body,
each execution path occurs repeatedly and successively.

K. Okano et al. / Effective Derivation of a Mapping of Variables in a Loop Structure78

Figure 3: Analysis of Run history

Execution path assumption: For any values of
the variables, if an instance of an execution path
occurs more than twice, then the execution paths
occur successively.

Under this assumption, we can abstract this sequence as the
following regular expression.

(EXP2)∗(EXP1)∗ (1)

At Step 3-2, we obtain such regular expressions on the ex-
ecution patterns.

When we recall Fig. 3 we observe that in the sequence,
EXP2 is first executed twice and followed by three executions
of EXP1. We call such a pattern an execution pattern.

We enumerate every execution pattern from the execution
logs. For each execution pattern, we abstract the constants
representing the number of occurrences with the Kleene clo-
sure symbol ∗. For example, three occurrences of the execu-
tion path EXP1 is abstracted as (EXP1)∗.

For a loop, we can obtain a set of execution patterns.
For simplicity, hereafter we consider execution patterns in

a form of (EXP1)∗(EXP2)∗ · · · (EXPn)∗(n > 0). For
other cases, we return failure of analysis.

Figure 4: Relation between loop iterations and control vari-
ables

3.6 Step 4
Here, we describe how to derive a relation between x and

the number of occurrences of an execution path (which is ob-
tained at Step 3-2).

We use R [19], a regression analyzer.
Figure 4 shows relations between arguments (integers i and

j) and an execution path named “loop.” Loop0.0 stands for
“loop.”

A plot located in the first row, second column in Fig. 4
shows a relation between i and j.

In a similar way, plots in the first row, third column, and
in the second row, third column show relations between i and
the number of executions of the “loop,” and between j and
the number of executions of the “loop,” respectively.

The plot in the first row, second column in Fig. 4 indicates
that there is no correlation between i and j due to their ran-
domness.

Additionally, we find that there is no correlation between
j and the number of loop executions. However, there is a
strong correlation between i and the number of loop execu-
tions. For the case where i is negative, the number of execu-
tions of “loop” becomes 0. For the case on i > 0, the number
of executions of “loop” becomes i.

Such a relation can be obtained using the regression analy-
sis for each execution path.

For example, let i and j be arguments.
Let a0, a1, a2 · · · be coefficients.
The following model (expression) can be used in regression

analysis.

n = a0 + a1i+ a2j + a3ij + a4i
2 + a5j

2 (2)

For Fig. 4, we obtain a result in which a1 equals 1 and the
other coefficients are 0. Thus, we obtain a relation n = i.

Note that n is the number of iterations. Thus, it does not
have a negative value. We assume that n = 0 when n < 0 for
later analysis steps.

International Journal of Informatics Society, VOL.10, NO.2 (2018) 75-83 79

Figure 5: Conversion of Execution int SSA form

For the case of failure of regression analysis, we return
analysis failure.

3.7 Step 5

Here, for each execution path i, we derive a relation be-
tween variables yi

0 and yi
k, where y is a vector of variables

appearing in the execution path i. The suffixes are the same
as the SSA form explained bellow.

First, a series of assignment statements of the execution
path into SSA (static Single Assignment) form [20]. In SSA
form every variable can appear in at most one assignment.
In order to satisfy this condition, an original variable is, in
general, divided into several variables when it is involved in
several assignment statements. For such a case, the divided
variables are distinguished by their own suffixes.

For example, an execution path can be translated into the
SSA form shown in Fig. 5. The execution path uses variable z
and y. Their corresponding variables for the first assignment,
are represented as z0 and y0. At line 1, z+y is assigned for z.
In such a case, variables z0 and z1 are used. In a similar way,
at line 3, z2 is used. The suffixes play a role to distinguish
variable z at different positions.

Next, using the SSA forms, we derive a recurrence relations
on the variables.

In Fig. 5, the first values of the variable z and y are rep-
resented as z0 and y0. The final values are represented as
variables z2 and y2. Using the SSA form, we can infer that z2
equals z1 + 1 and z1 equals z0 + y0. Thus, z2 and y2 equal
z0+y0+1 and z2+y1, respectively. Because y1 equals y0+1,
we infer that y2 equals z0 + y0 + 2.

The obtained equations can be represented as the following
recurrence relations:

z[n+1] = z[n] + y[n] + 1, y[n+1] = z[n] + y[n] + 2 (3)

Here, z[0] and y[0] stand for the seed values, i.e., z0 and y0
for the variables z and y. Symbols z[n] and y[n] stand for the
general term of z and y obtained by repeating n-times of the
SSA form.

3.8 Step 6

Here, we solve the recurrence relation.

For example, we can obtain the following recurrence rela-
tion from an SSA form in Fig. 5.

z[n+1] = z[n] + y[n] + 1, y[n+1] = z[n] + y[n] + 2 (4)

Let us assume that the seed values of z and y are z0 and
y0, respectively. We can obtain a closed-form solution for the
recurrence relation using Mathematica[21], as follows.

z[n] =
1

2
(−4 + 3 · 2n + 2ny0) (5)

y[n] =
1

2
(−2 + 3 · 2n + 2nz0) (6)

It is difficult to obtain such a complex expression using the
existing method [12].

3.9 Step 7

Here we integrate the obtained analysis results in the pre-
vious steps and generate the final mapping.

Let us assume that the execution pattern is (EXP1)∗(EXP2)∗

· · · (EXPk)∗, and that the number of execution times of EXPi
is mi.
yi
0 stands for the initial values at the entry of EXPi

Let y = Fi(y
i
0, n) be the mapping obtained at Step 6.

Let Gi(x) be the mapping obtained at Step 4, where mi =
Gi(x).

Let us consider the following cases.

1. k = 1 holds

2. k > 1 and ∀i∃c : 0 < i ≤ k, (Gi = cx or Gi = c)
holds

3. ∀i, j : 0 < i, j ≤ k,Gi = Gj holds

4. otherwise

For the first three cases, we can obtain the result as follows.
For case (1), the final mapping is y = F1(y

1
0, G1(x)).

For cases (2) and (3), the final mapping is y
= Fk(· · ·F2(F1(y

1
0, G1(x)), G2(x)), . . . , Gk(x)).

For case (4), we conclude that the mapping cannot be gen-
erated and failure is returned.

We shows an example for the case (2):
Let (EXP1)∗(EXP2)∗ be the execution pattern.
Let us consider a situation where when EXP1 is executed n

times, then the value of variable y increases by n, and if EXP2
is executed n times. Then, the value of variable y increases
by 10n.

In such a case, equations F1(y
1
0 , n) = y10+n and F2(y

2
0 , n) =

y20 + 10n holds. Additionally let us assume that when i > 0
EXP1 and EXP2 are executed i and 1 times, respectively; and
that when i ≤ 0 EXP1 and EXP2 are not executed.

By integrating all of the above, we can obtain the final map-
ping y = y10 for i ≤ 0, and y = y10 + x+ 10 for i > 0.

K. Okano et al. / Effective Derivation of a Mapping of Variables in a Loop Structure80

4 EXPERIMENTS

The setup of the experiments is summarized as follows.

• OS: Windows 7 Enterprise 64bit

• CPU: Intel Xeon E5-2609 2.40GHz × 2

• Memory: 48.0GB

• Java: JRE7

• R: version 3.0.2

• Mathematica 9.0.0

• Z3: z3-4.3.0

4.1 Overview of the experiment
The research questions are summarized as follows.

RQ1 Mapping quality: Is the obtained mapping accurate?

RQ2 SAT/SMT applicability: Is the obtained mapping appli-
cable to SAT/SMT solvers?

RQ3 Range of Capability: Can more types of mapping be
obtained from as compared to the existing method?

We use Z3 for criteria for RQ2
Table 2 summarizes the target programs and each program

contains loop structures.

4.2 Results
Tables 3 and 4 show the execution times and results of our

experiments.
For RQ2, a ✓ mark means that the output values, that are

obtained from the mapping using random inputs varying from
0 to 200, have relative errors within 10% against the true val-
ues. A × mark stands for other cases.

5 DISCUSSION

5.1 RQ1
With Mathematica, we can correctly derive closed-form

solutions of the recurrence formulae obtained from the pro-
grams. For some programs not shown in Table 2, we can-
not derive their closed-form solutions. The reasons are that
1) Mathematica cannot deal with them, and 2) in general, not
every recurrence relation has a closed-form solution. For such
cases, the existing methods also cannot be applied.

5.2 RQ2
There are mappings that are not applicable to SAT/SMT

solvers. For example, for Newton, our method derives an ex-
pression

√
a cosh(2n cosh−1 √a). Z3 cannot deal with the

expression.
For such a case concolic testing [22], [23] might be a solu-

tion for further analysis.

5.3 RQ3
The existing method, in principle, cannot derive a correct

mapping for a Fibonacci generator. The existing method ap-
proximates it as quadratic equations. It, however, has large
relative errors for a large input. Thus, advantage of our pro-
posed method is confirmed.

5.4 Execution Times
A large proportion of execution times are occupied by Math-

ematica computation. Particularly, solving the closed-form
solutions is highly time consuming.

5.5 Other Discussions
The proposed method in this work uses regression analysis

for obtaining a mapping between the number of loop itera-
tions and arguments. In general, obtaining a relation between
variables before and after the target loop is a complex task.
For this reason, relative errors arising from regression analy-
sis become small. Consequently, our approach has the advan-
tage for cases in which (1) a mapping between the number of
loop iterations and arguments is linear or quadratic, and (2) a
relation between variables before and after the target loops is
complex.

5.6 Limitation of the Methods
The closed-form solution is obtained using Mathematica in

this work; thus the ability of obtaining the solution depends
on Mathematica.

We assume that the patterns of execution paths are in the
restricted form shown earlier in the execution path assump-
tion. If the code violates the assumption, then the proposed
method cannot be applied.

5.7 Treats to Validity
The programs used in the experiments are small. The num-

ber of the programs is also small. The results, however, show
that the proposed method can be applicable to programs that
cannot be handled by the existing methods.

The class of variable types for variable is restricted, mainly
due to the limitations of SAT/SMT solvers.

6 CONCLUSION

This paper proposed a new method for inferring a map-
ping between variables before and after a given loop structure.
The experimental results show that our proposed method can
derive complex mapping, which the existing methods cannot
successfully derive.

Our future work includes the application of concolic testing
on our derived mappings, in order to perform efficient and
further analysis.

Acknowledgments

The research is also being partially conducted as Grant-in-
Aid for Scientific Research C (16K00094) and S(25220003).

International Journal of Informatics Society, VOL.10, NO.2 (2018) 75-83 81

Table 2: Target Programs

Program What to process LOC Number of loop structures Number of if statements
Fibonacci Fibonacci numbers 20 1 1
Newton calculation of square root by Newton method 30 1 1

DrawPict draw pictures 39 1 1
DrawPara draw parabola 77 3 10

Summation calculation of summation 20 1 1
Power calculation of power series 20 1 1

Table 3: Execution Times (sec.)

Program Step 1 Step 2 Step 3 Step 4 Step 5 Steps 6 and 7
Fibonacci 2.6 0.62 0.1 4.4 4.4 0.72
Newton 2.3 0.36 0.0 2.4 1.3 0.64
DrawPict 2.7 0.59 0.0 3.0 2.2 0.75
DrawPara 2.5 1.1 0.0 2.9 2.9 0.65
Summation 2.4 0.57 0.05 2.4 2.4 0.66
Power 2.3 0.38 0.0 3.5 3.5 0.75
Program total
Fibonacci 8.4
Newton 5.8
DrawPict 7.0
DrawPara 7.2
Summation 6.0
Power 6.9

Table 4: Experimental Results

Program the existing method our method RQ2
Fibonacci × ✓ ×
Newton × ✓ ×
DrawPict ✓ ✓ ✓
DrawPara × ✓ ✓
Summation ✓ ✓ ✓
Power × ✓ ×

Funding from Mitsubishi Electric Corporation is gratefully
acknowledged.

REFERENCES

[1] G. T. Leavens, A. L. Baker, and C. Ruby: “JML: a
Java modeling language,” Formal Underpinnings of Java
Workshop (at OOPSLA’98) pp.404–420 (1998).

[2] P. Godefroid, N. Klarlund, and K. Sen: “DART: directed
automated random testing,” ACM SIGPLAN Notices,
Vol.40, No.6, pp.213–223 (2005).

[3] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda:
“Model checking programs,” Automated Software En-
gineering, Vol.10, No.2, pp.203–232 (2003).

[4] P. Cousot: “Proving program invariance and termina-
tion by parametric abstraction lagrangian relaxation and
semidefinite programming,” Proceedings of the 6th In-
ternational Conference of VMCAI 2005, Vol. 3385,
pp.1–24, Lecture Notes in Computer Science (2005).

[5] T. Ball and S.K. Rajamani: “The slam project: Debug-
ging system software via static analysis,” Proceedings
of the 29th ACM SIGPLAN-SIGACT POPL’02, pp.1–3
(2002).

[6] T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G.
Sutre, and W. Weimer: “Temporal-safety proofs for sys-
tems code,” Proceedings of the 14th International Con-
ference on Computer Aided Verification, CAV 2002,
pp.526–538 (2002).

[7] A. Biere, M. Heule, H. Van Maaren, and T. Walsh:
“Handbook of Satisfiability,” IOS press (2009).

[8] L. deMoura and N. Bjørner: “Z3: An efficient
smt solver,” Proceedings of Tools and Algorithms
for the Construction and Analysis of Systems 2008,
Vol.4963, pp.337–340, Lecture Notes in Computer Sci-
ence (2008).

[9] B. Dutertre: “Yices 2.2,” Computer-Aided Verification
(CAV’2014), Vol.8559, pp.737–744, Lecture Notes in
Computer Science (2014).

[10] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin:
“Dynamically discovering likely program invariants to
support program evolution,” IEEE TSE, Vol.27, pp.1–
25 (2001).

[11] M. Younger: “Handbook for Linear Regression,”
Duxbury Resource Center (1979).

[12] W. Le: “Segmented Symbolic Analysis,” Proceedings
of the 2013 International Conference on Software Engi-
neering, pp.212–221 (2013).

[13] D.R. Cok and J.R. Kiniry: “Esc/java2: Uniting esc/java
and jml: Progress and issues in building and using es-
c/java2 and a report on a case study involving the use
of esc/java2 to verify portions of an internet voting tally
system,” Proceedings of Construction and Analysis of
Safe, Secure and Interoperable Smart Devices: Interna-
tional Workshop, CASSIS 2004, Vol.3362, pp.108–128,
Lecture Notes in Computer Science (2005).

[14] C. Cadar, D. Dunbar, and D. Engler: “KLEE: Unassisted
and Automatic Generation of High-coverage Tests for
Complex Systems Programs,” Proceeding of the 8th
USENIX Conference on Operating Systems Design and
Implementation, pp.209–224 (2008).

[15] V. Chipounov, V. Kuznetsov, and G. Candea: “S2E: A
Platform for In-vivo Multi-path Analysis of Software
Systems,” Proceedings of the 16th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pp.265–278 (2011).

K. Okano et al. / Effective Derivation of a Mapping of Variables in a Loop Structure82

[16] Y. Xie, A. Chou, and D. Engler: “ARCHER: Using
Symbolic, Path-sensitive Analysis to Detect Memory
Access Errors,” Proceedings of the 9th European Soft-
ware Engineering Conference Held Jointly with 11th
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, pp.327–336 (2003).

[17] “Eclipse Java development tools (JDT),” (accessed
2015-05-05). http://www.eclipse.org/jdt/.

[18] K. Kobayashi, Y. Sasaki, K. Okano, and S. Kusumoto:
“Automated assertion generation using PDF and SMT-
Solver,” IEICE Transaction on Information and Sys-
tems, JD, Vol.96, No.11, pp.2657–2668 (2013) (In
Japanese).

[19] “the R statistical package,” (accessed 2015-05-05).
http://cran.r-project.org/.

[20] E. Clarke, D. Kroening, and F. Lerda, “A Tool for
Checking ANSI-C Programs,” Proceedings of the 10th
International conference on Tools and Algorithms for
the Construction and Analysis of Systems, pp.168–176
(2004).

[21] “Mathematica: Wolfram Research,” (accessed 2015-05-
05). https://www.wolfram.com/.

[22] K. Sen, D. Marinov, and G. Agha: “CUTE: A Concolic
Unit Testing Engine for C,” SIGSOFT Software Engi-
neering Notes, Vol.30, No.5, pp.263–272 (2005).

[23] R. Majumdar and K. Sen: “Hybrid Concolic Testing,”
Proceeding of the 29th International Conference on
Software Engineering, pp.416–426 (2007).

(Received October 20, 2017)
(Revised December 27, 2017)

Kozo Okano received his BE, ME, and PhD de-
grees in Information and Computer Sciences from
Osaka University in 1990, 1992, and 1995, respec-
tively. From 2002 to 2015, he was an Associate
Professor at the Graduate School of Information
Science and Technology of Osaka University. In
2002 and 2003, he was a visiting researcher at the
Department of Computer Science of the Univer-
sity of Kent in Canterbury, and a visiting lecturer
at the School of Computer Science of the Univer-
sity of Birmingham, respectively. Since 2015, he

has been an Associate Professor at the Department of Computer Science and
Engineering, Shinshu University. His current research interests include for-
mal methods for software and information system design. He is a member of
IEEE, IEICE, IPSJ.

Yukihiro Sasaki received his BI and MI degrees
from Osaka University in 2012 and 2014, respec-
tively. He currently works for Mitsubishi Electric
Corporation. His research interests include dy-
namic generation of assertion for programs.

Shinji Kusumoto received his BE, ME, and DE
degrees in Information and Computer Sciences from
Osaka University in 1988, 1990, and 1993, respec-
tively. He is currently a Professor at the Graduate
School of Information Science and Technology of
Osaka University. His research interests include
software metrics and software quality assurance
techniques. He is a member of the IEEE, the IEEE
Computer Society, IPSJ, IEICE, and JFPUG.

International Journal of Informatics Society, VOL.10, NO.2 (2018) 75-83 83

