
Industrial Paper

Evaluation of Databases for Enterprise Systems Dealing with Images

Tsukasa Kudo†, and Yuki Furukawa†

†Faculty of Informatics, Shizuoka Institute of Science and Technology, Japan
kudo.tsukasa@sist.ac.jp

Abstract -
Nowadays, since various sensors such as surveillance cam-

eras, wearable devices are used, various large amount of data
became to be stored in the databases. To manipulate such a
data, NoSQL databases have been put to practical use. Espe-
cially, MongoDB provides GridFS interface, and it was shown
that the performance of such a data manipulation exceeded
MySQL which is the conventional relational database. Here,
to apply MongoDB to the enterprise systems, it is noted that
there is the problem that the join operation is not provided.
However, as for the business systems dealing with a large
amount of data that takes time, it is expected that the effect
of using MongoDB exceeds this problem. In this study, we
conduct the comparative evaluation between MongoDB and
MySQL for the actual production management system, which
is a type of enterprise system. As a result, we show Mon-
goDB is superior to MySQL in the case to manipulate a large
amount of data even if the join operations are performed. Fur-
thermore, we show it is possible to construct the configuration
that takes each advantage of both by using program language
such as Java. In this configuration, MongoDB manipulates
a large amount of data; MySQL manipulates the other data
including the join operation.

Keywords: MongoDB, database, GridFS, join operation,
production management system

1 INTRODUCTION

Nowadays, various devices are spreading rapidly, such as
smartphones, surveillance cameras, and various wearable de-
vices. As a result, it is becoming possible to enter various
data efficiently into the systems using such an inexpensive
entry device [5], [7]. Therefore, even as for the enterprise
systems, it is expected that the system can be operated more
efficiently by utilizing not only conventional character and
numeric data but also various kinds of sensing data such as
images and videos.

In order to store and manipulate such a data, various kinds
of NoSQL databases have been proposed and put to practi-
cal use [15]. Among them, there is MongoDB [3] which is a
kind of the document-oriented NoSQL database: it stores the
data as documents of semi-structured data model expressed
by JSON; particularly, it equips GridFS interface to treat the
enormous data efficiently [14]. Here, these documents corre-
spond to the records of the relational database (RDB). And,
as for a large amount of data, we had also confirmed that its
performance of MongoDB had been superior to MySQL, es-
pecially in the insertion [11]. However, to apply MongoDB

to the enterprise systems, it is noted that there is the problem
that the join operation is not provided.

So, in order to expand its application area in the enterprise
systems, it is necessary to solve the problem about the above-
mentioned join operation. Here, since the large amount of
data manipulation performance of MongoDB is superior to
MySQL as above-mentioned, it is expected that the through-
put in the entire system can be enhanced by using it, even if
the performance deteriorates in the join operation. However,
we could not find the study that has evaluated such a perfor-
mance on the premise of the actual enterprise systems.

In this study, we explore the join operation from the view
of MongoDB application. Its aims are as followings. First,
we show the application field where MongoDB is superior to
RDB, though the join operation is used. Second, we show
the program structure, by which the join operation and a large
amount of data manipulation can be performed efficiently.

So, our goal in this study is to evaluate such a performance
and to show the requirements to apply MongoDB to the en-
terprise systems. As a target system of this evaluation, we
used an actual production management system, which is a
type of enterprise system. It was mainly configured to ex-
ecute SQL statements directly by using batch files, though
the complex processing was implemented by using the stored
procedure [12]. And, we attempt comparative evaluations be-
tween MySQL and MongoDB in two cases.

In the first case, we migrate the above-mentioned SQL state-
ments directly to MongoDB’s statements and show the com-
parative evaluation results on this migration productivity and
performance. In addition, we show that the manipulation in-
cluding the numerous large amount of data deteriorates the
performance of MongoDB in this case. In the second case, we
use the programing language Java and its database drivers and
show the comparative evaluation results of the performance.
And, we show that the above-mentioned deterioration can be
solved and MongoDB’s performance to manipulate a large
amount of data is superior to MySQL in this case. Further-
more, we show it is possible to construct the configuration that
takes each advantage of both databases: MongoDB manipu-
lates a large amount of data; MySQL manipulates the other
data including the join operation.

The remainder of this paper is organized as follows. Sec-
tion 2 shows the related work, and Section 3 shows the ab-
stract of the target system to clarify the precondition. Section
4 shows the correspondence of data manipulation between
MySQL statements used in the system and Mongo shells,
which is the data manipulation statements of MongoDB, and
we show the implementation of the system by using Mongo

International Journal of Informatics Society, VOL.10, NO.2 (2018) 63-73

ISSN1883-4566 © 2018 - Informatics Society and the authors. All rights reserved.

63

Figure 1: Evaluation result of performance comparison

shells. In Section 5, we show the results of comparative eval-
uations between MongoDB and MySQL in the case of direct
migration from SQL statements to Mongo shells. Similarly,
Section 6 shows the comparative performance evaluations in
the case of utilizing programing language Java. And, we dis-
cuss these results in Section 7. Lastly, Section 8 concludes
this paper.

2 RELATED WORK

The comparative evaluations between RDB and NoSQL
databases have been performed on such as the data modeling,
data manipulation, and performance.

Firstly, for a large amount of data manipulation, MySQL
and Oracle, which are the relational database management
system (RDBMS), provide BLOB data type [13]; MongoDB,
which is a kind of document-oriented NoSQL database, pro-
vides GridFS interface [10]. And, it was shown that Mon-
goDB excelled about the performance to manipulate such a
data. Moreover, we have already conducted the compara-
tive evaluations on the performance between MongoDB and
MySQL for the video data, and we found MongoDB was
much more efficient as shown in Fig. 1. Especially, as for
the insertion, in this case, MongoDB was 25 times faster than
MySQL [11].

Incidentally, there is a method of saving a large amount
of data by using the file system without using the databases.
However, as for this method, it is pointed out that there are
some problems: the authority to access the data cannot be
managed; it is difficult to perform the automatic backup such
as the replication [18].

Similarly, the comparative performance evaluations of the
CRUD operations (insertion, query, update, and deletion) were
performed for the data that had been handled by RDB tradi-
tionally, such as text and numerical data. As a result, it was
shown that the performance of MongoDB is superior to RDB
[4], [6].

On the other hand, it has been pointed out that there were
two problems to apply it to the enterprise systems: first, it
does not maintain the ACID properties of the transaction; sec-
ond, it does not equip the join operation for the plural collec-
tions which correspond to the tables of RDB [16].

As for the first problem, namely the transaction, we had
shown a solution in our previous study. Here, the transaction
of MongoDB can maintain the ACID properties only on the
manipulation of an individual document, which corresponds

Figure 2: MongoDB structure with embedded document

to the table in RDB. So, firstly, we developed the transaction
processing method, by which the ACID properties could be
maintained even on the manipulation of plural documents [8].
Next, to evaluate this method, we applied it to the prototype
of the actual production management system. As a result, we
showed that this method could maintain the ACID properties
even on the plural documents manipulation of a large amount
of data in addition to the conventional character and numeric
data [9].

Furthermore, we showed the application field where Mon-
goDB’s large amount of data manipulation is effective through
these studies. Concretely, we had been advancing its appli-
cation study for the production management system utilizing
images and videos in order to improve the efficiency of the
inventory management work. Here, conventionally, the in-
ventory quantity of various kinds of parts must be counted,
and it makes the workload higher. So, we had conceived
the method, in which the inventory manager judges visually
whether there had been the necessary inventory quantity by
using the images and videos [9]. As a result, the manager
could perform this business at the office based on the inven-
tory plan calculated beforehand, instead of counting the in-
ventory at the field.

Here, the join operation is not provided by MongoDB. In-
stead, it is recommended to use the data model of the non-first
normal form, called As for the second problem, namely the
join operation, it is recommended to use the data model of the
non-first normal form, called “embedded documents”. Since
MongoDB is based on the semi-structured data model shown
in Fig. 2, each document of the collection is able to have the
individual data structure. So, for example, the attribute “affil-
iation” in Fig. 2, which is usually saved in the different table
by the normalization in the case of RDB, can be saved in the
document “member” as the embedded document. So, they
can be queried without using the join operation. The com-
parative performance evaluation between MongoDB with this
method and RDB with the join operation was performed, and
it has been shown that MongoDB was superior to RDB [6].

However, with this method, it needs to have the same data
in the plural documents as the embedded document, and it
arises the problem like the update anomaly of RDB. For ex-
ample, in the case where the name of affiliation in Fig. 2 is
changed, many records must be updated. For this problem,
by using a programming language, the join operation can be
composed even of MongoDB [1]. That is, if the query re-
sult of one collection includes the data of foreign key to refer
another collection, then it can be utilized to query another col-
lection. Then, the joined data can be composed of both query

T. Kudo et al. / Evaluation of Databases for Enterprise Systems Dealing with Images64

Figure 3: Structure of BOM of target system.

results. Here, in the case of using such a data manipulation, it
is expected that its performance will be deteriorated.

On the other hand, as above-mentioned, the performance
of the large amount data manipulation of MongoDB is so su-
perior to RDB. So, it is expected that high performance can
be obtained by applying MongoDB to the enterprise systems
that manipulate a large amount of image data, even in the case
where the join operations are implemented by this method.

However, we could not find the study, which evaluated the
performance of the image data manipulation being accompa-
nied by the join operation, on the premise of the actual enter-
prise systems.

3 TARGET SYSTEM

3.1 Target Function of Production
Management System

The target enterprise system of this study is an actual pro-
duction management system of some company which our lab-
oratory is supporting. And, some of their functions have been
already in operation; the others are currently under devel-
opment. We use MySQL for RDBMS, and the calculation
processing of each function is executed collectively by batch
processing, then the results are stored into the database. We
use Excel to entry the source data or to output the processing
results as forms. We show the outline of the target system
below.

The first is the material requirement calculation function,
which has been already in operation and manages the bill of
material (BOM) [17] as shown in Fig. 3. In this figure, Prod-
uct A consists of 6 of part X, 4 of Y, and 5 of Z. And, parts X
and Y are manufactured from 5m2 board material P and 2m
stick material S respectively. As for the part Z, the commer-
cial goods are purchased. In this way, by managing the BOM,
it is possible to calculate the material cost of A based on the
unit price of P, S and the price of Z.

The configuration of this processing is as follows. The data
for the calculation consists of the BOM, products, parts, ma-
terials as shown in Fig. 3. And, they are stored in the tables
of MySQL, and it is changed if necessary by using MySQL
for Excel which is a linkage tool between MySQL and Excel.
Then, the calculation processing is executed for all the data in
a lump sum, and it is not necessary to specify the parameters.
So, its process is described only by SQL statements, and they
are executed as a batch file for Windows. Lastly, by using the
view tables, the calculation results are converted to the vari-
ous forms to be handled easily. Then, they are output by using
the above-mentioned MySQL for Excel.

Figure 4: Monthly total of each spec

Remarks) : Manufactured; : Start to prepare shipment; : Delivery; : Used

Figure 5: Manufacturing schedule

The second is the production planning function, and the
plan is made based on received or expected receipt orders.
The contents of the order are designated by the specification
(spec) sheet composed of each product type and its quantity,
which has spec identifier (ID). And, this system targets the
common products specified by the spec ID. That is, though
the order includes the custom ordered products which are in-
dividually specified in each order, they are not administered
by this system. We show the sample of the output documents
in Fig. 4 and 5. Figure 4 shows the monthly total number
of each spec, and it is used to grasp the long-term order sta-
tus. Figure 5 shows the monthly work plan which is made
per order, and it is used to grasp the daily milestone. We are
currently conducting the operational test of this function and
preparing the necessary data.

In this function, since the parameter must be specified such
as the target month, we composed this in Excel and Excel
VBA (Visual Basic for Excel applications). Concretely, pa-
rameters are entered from Excel sheet, then by Excel VBA,
SQL statements are created and the corresponding batch file
is started to execute these statements. Lastly, its results are
processed to output forms by Excel VBA similar to the first.
Moreover, we composed some MySQL data manipulations by
the stored procedure or stored function [12]. For example, to
make the production planning, we must estimate the number
of business days excluding holidays. So, it is necessary to
ensure that the calendar to show the number of each business
day from the beginning of the year. And, since such process-
ing includes the iterative processing, it cannot be done by only
the simple SQL statements.

The third is the inventory management function that saves
the status of each product shelf as the images and videos. Fig-
ure 6 shows the inventory images, and these are stored in the
database. The aim of this function is to provide the inventory
image with its necessary quantity information to the manager
at the office to confirm the satisfaction of its inventory. So,
it is necessary that the manager can set the inventory status
based on the confirmation results, and the images of the spec-

International Journal of Informatics Society, VOL.10, NO.2 (2018) 63-73 65

Figure 6: Inventory management utilizing images

ified products must be queried based on the manufacturing
schedule shown in Fig. 5. To introduce this function, we are
currently conducting the evaluation of its prototype.

Incidentally, the actual system is composed of various func-
tions besides the above: it calculates the MRP (Material Re-
quirement Planning) [17], which is the necessary quantity of
the parts and materials, by the linkage of the production plan
and BOM; the various management documents are output,
and so on. However, since the data manipulation patterns are
covered by the above-mentioned cases, we conduct the com-
parative study on only those in this study.

3.2 Database Structure and Data
Manipulations

Figure 7 shows the ER diagram of the target system; be-
low, we indicate the table name and attribute name in the ER
diagram in italic. In addition, we show only the main ta-
bles and attributes for the sake of simplicity. (1) of Fig. 7
corresponds to the material requirement calculation function,
and parts (parts) and products (product) are associated with
BOM (BOM). And, the following price is set to the unit price
(price unit) of parts: price unit of part price is set in the
case where the part is purchased; price per 1kg (price kg) of
material is set in the case where the parts are manufactured
from the material associated with material ID (mat id).

(2) of Fig. 7 corresponds to the production planning func-
tion, and the data of calendar such as the number of busi-
ness days is calculated by the holiday information (holiday);
the order and product are associated with specification com-
posed of specification and spec. The schedule data shown
in Fig. 5 is calculated and saved into manufacture plan, in
which each milestone date is included: manufacturing com-
pletion date (m date num), start date to prepare shipment
(c date num), delivery date (d date num) and used date at
the ordering company (u date num).

(3) of Fig. 7 corresponds to the inventory management
function, and saves the inventory status of products as images
and videos. stock shelf indicates product shelf, in which
the products are stored. And, stock shows the status of the
inventory: the image or video name (doc name) saved in
image; the correspondence data between them and product
shelf is saved in stock(p id, doc name); the inventory quan-
tity (quantity) of stock is set if necessary. Here, since the
images and videos are captured at any time, their capture time

(chk time) is included in the primary key of stock, and the
relationship between stock and stock shelf becomes many-
to-one. Firstly, the image and video data is saved from the
camera into the folder of the PC, then saved into image; And,
the necessary data for this processing is downloaded from the
database to the work folder of the PC when necessary.

We extracted the data manipulation patterns of these tables
from the functions mentioned in Section 3.1, and got patterns
shown below. Incidentally, the basic CRUD data manipula-
tions of the single table are excluded.

(a) Join operation: in (1), each part is joined with the prod-
ucts which use the part respectively, and the results are
saved into parts cost. So, the join operation between
BOM and parts is performed.

(b) Iterative operation: in (2), to set the number of business
day (date num) of calendar, the division of the busi-
ness day and holiday are set to the column holiday of
calendar firstly. Then, the numbers of business date
are set sequentially from January 1st, that is, it consti-
tutes the iterative operation. Incidentally, it is imple-
mented by the stored procedure in MySQL.

(c) Grouped aggregation operation: in (1), the product of
material cost and quantity, which are expressed by cost
and p quantity of parts cost and calculated in (a), are
aggregated for each product, and stored into producrt
price.

(d) Selection of record with the self-join operation: in (1),
since part price has a history on the estimated date
(est ymd), the record having the max estimate date
must be queried for each part id. In the SQL state-
ment, this is expressed by the subquery with the self-
join operation as shown in Fig. 8.

(e) Images and videos operation: in (3), the images and
videos of the inventory shelves are stored into image,
so these data must be inserted and queried. In MySQL,
this is executed by “load file” function to insert, and
“select into dumpfile” statement to query.

4 IMPLEMENTATION OF DATA
MANIPULATION USING MONGODB

4.1 Implementation Policy
In MongoDB, the Mongo shell is provided for methods for

the CRUD operations and the interactive data manipulations
which have JavaScript interface. And, similar to the SQL
statements, JavaScript files can be executed as the batch file,
or as a function like the stored procedure in SQL. In this study,
we implemented the Mongo shell as a batch file on Windows
as shown in Fig. 9. In Fig. 9, “JSfile.js” is the JavaScript file
including the Mongo shell methods; and, it is executed by in-
putting to “mongo” command; then the execution results are
output to “out.csv” file by a print statement of JavaScript.

Below, we show the implementation of each operation men-
tioned in Section 3.2. Incidentally, we describe only the main

T. Kudo et al. / Evaluation of Databases for Enterprise Systems Dealing with Images66

(1)

(2)

(3)

Figure 7: ER diagram of database

Figure 8: Max value query by self-join

Figure 9: Batch file of Mongo shell

attributes and operations for the sake of simplicity. In the ac-
tual system, related attributes and operations are added to the
following logic.

4.2 Implementation of Join and Iterative
Operation

In the Mongo shell, the join operation is not provided. So,
the collections were joined as follows: firstly, we copied the
collection corresponding to “many” of many-to-one into the
temporary new collection; then, we added the fields of the
collection corresponding to “one” to the above collection. In
this way, we could create the result collection of the join op-
eration.

In Fig. 10, we show the case of (a) in Section 3.2, in which
parts and BOM are joined to create parts cost. In (1) of
Fig. 10, parts cost is created by copying BOM , then cost

Figure 10: Join operation procedure of MongoDB

field of parts cost is set to price unit field of parts in (2)
as follows. Firstly, by using find method in (3), which corre-
sponds to select statement of SQL, all the documents of parts
are queried. Here, documents are sequentially set to partRec
as same as the cursor operation of SQL. Next, update method
at (4), which corresponds to update statement of SQL, updates
the value of cost attribute of all the documents that match the
query condition shown by the first parenthesis “{ }” which
expresses the pair as of “{field name:field value}”. Here, the
query condition is such that all these attribute values equal to
the specified attribute values. In addition, if parts cost col-
lection does not have cost field, then it is inserted.

International Journal of Informatics Society, VOL.10, NO.2 (2018) 63-73 67

Figure 11: Aggregation method of MongoDB

Incidentally, in the case where the join operation is per-
formed for only some of documents matching the specified
query condition, only the target documents are inserted at (1)
in Fig. 10. For this operation, insert method corresponding to
insert statement of SQL is used.

Next, the iterative statement, which is while statement and
so on, can be used in the Mongo shell. So, we implemented
the iterative operation to create calendar shown in (b) of Sec-
tion 3.2 by using these statements, like the stored procedure
in SQL.

4.3 Implementation of Aggregation and
Self-Join Operation

Mongo shell provides the aggregate method, which corre-
sponds to the aggregation operator and group by clause of
SQL. So, as for the aggregation operation of material cost
for each part in (c) of Section 3.2, it can be executed by this
method. In this method, as shown in (1) of Fig. 11, $group
expression shows the fields to be aggregated, and $sum ex-
pression shows the aggregation method of summation like the
SQL statement. Incidentally, the aggregation results can be
got by the cursor operation like Fig. 10.

Similarly, as shown in (2) of Fig. 11, the selection opera-
tion of record having the max value shown in (d) of Section
3.2 can be performed by the aggregate method, and the lat-
est estimated date was queried from part price in this case.
Here, since MongoDB does not provide the join operation, we
configured the operation to query the target document again
from part price using the queried estimated date and part id
value. In Fig. 11, $match expression in aggregate method
specifies the query condition. Also, findOne method queries
only the single document, and in this figure, it queries as of
the query condition that parts id is “P0001” and est ymd is
the queried estimated date.

4.4 Image and Video Data Manipulation
The upper limit of the document size of MongoDB is 16

MB, and the GridFS interface is provided for data exceed-
ing this limit. Using this interface, the image and video data
is saved into GridFS collection divided from other attributes.

Figure 12: Image insertion and query command

Table 1: Comparison of CRUD operation

MySQL MongoDB Class
SELECT find(), findOne() CRUD
INSERT insert()
UPDATE update()
DELETE remove()
(Join operation) (a)

[many].copyTo()
JOIN syntax [one].find() (use cursor)

[many].update()
Stored procedure JavaScript (b)
Stored function JavaScript
Group BY clause aggregate() (c)
(Query record with max value) (d)
self-JOIN operation aggregate()

+ subquery findOne()
(Image and video operation) (e)
INSERT MONGOFILES

+ LOAD FILE() command (put)
SELECT INTO MONGOFILES

DUMPFILE command (get)

And, since the data insertion and query are performed by uti-
lizing mongofiles command, not the Mongo shell, we config-
ured to perform this command in batch files which are sepa-
rated from the JavaScript files.

We show the examples of these commands in Fig. 12.
Here, “-d” indicates the database, and “-l” indicates the file
name on the disk. That is, we can save the image data into
the database with the different name from the name as of disk
file. Incidentally, since this command is a utility executed in
Windows command line, connection and disconnection with
the database is performed at each its execution.

Finally, in Table 1, we show the summary of the implemen-
tation method comparison between MySQL and MongoDB.
Here, the column “Class” indicates the classification of these
data manipulations. “CRUD” shows the basic data manipula-
tion, and others indicate the number in Section 3.2.

5 IMPLEMENTATION OF SYSTEM AND
COMPARATIVE EVALUATIONS

In order to demonstrate the target production management
system can be constructed by using MongoDB, we imple-
mented the principal part of this system by using MongoDB

T. Kudo et al. / Evaluation of Databases for Enterprise Systems Dealing with Images68

according to the correspondence of CRUD operation shown
in Table 1. Then, we conducted the comparative evaluations
of the program volume and execution performance between
MongoDB and MySQL.

5.1 Implementation Using MongoDB

First, as for the material requirement calculation function
shown in (1) of Fig. 7, we implemented the process to create
product price. Here, cost data of parts price and material
is reflected into parts, then product price is created from
parts via parts price. We implemented this processing us-
ing the Mongo shell as the batch file shown in Fig. 9.

Second, as for the production planning function shown in
(2) of Fig. 7, we implemented the following processing: one
creates calendar from holiday; the other makes the csv files
for the aggregation and schedule document shown in Fig. 4
and Fig. 5 respectively. We implemented this processing us-
ing the above-mentioned batch file, and we embedded the pa-
rameters in the JavaScript program directly without linking
with Excel for the sake of simplicity.

Third, as for the inventory management functions shown in
(3) of Fig. 7, we implemented the following two processing
shown in Fig. 12. Incidentally, these implementation methods
are same as MySQL except the execution command as shown
below.

One is the processing to save the pictures and videos of the
product shelves into image, and to insert the correspondence
data between stock shelf and image into stock, that is, this
creates the correspondence between the shelves and the im-
ages or videos. To save the images and videos data, their
file name in the camera must be grasped in the insertion pro-
gram. So, we implemented this processing using Excel VBA
to make the insertion batch file, in which insertion is executed
by mongofiles command. And, we implemented the corre-
spondence data insertion program by using the Mongo shell,
which is executed by the batch file.

The other is processing to query the image and video data.
Similar to above, we implemented this processing to be ex-
ecuted by mongofiles command, which was made by using
Excel VBA based on the given query condition: specified
shelves, or the product shipment date and so on.

5.2 Comparative Evaluations of Program
Volume

In order to perform comparative evaluations of productivity
between MongoDB and MySQL, we counted the number of
source lines of the programs respectively. Table 2 shows these
results, and (1) shows the material calculation; (2) shows the
production planning function. Incidentally, since the user in-
terface programs of the inventory management system op-
erations were made by using Excel VBA as mentioned in
Section 5.1, and they were common to both databases. So,
we omitted their evaluation. Here, (2) was divided into the
three processings: Plan(C) shows the creation processing of
manufacture plan in (2) of Fig. 7; Plan(O) shows the pro-
cessing to output the query results into csv files for the forms

Table 2: Comparison of program volume (line)

MySQL MongoDB
SQL Else Total Shell Else Total

(1) Material 15 0 15 24 29 53
(2) Plan(C) 8 64 72 12 91 103
(2) Plan(O) 11 7 18 8 24 32
Total 34 71 105 44 144 188
(2) Plan(P) 0 180 180 0 180 180
(1): Material requirement calculation function
(2): Production planning function
C: create data; O:output to csv file; P: print document

shown in Fig. 4 and Fig. 5; Plan(P) shows the output pro-
cessing of these forms from the csv files. Moreover, since the
statement other than the SQL statement and Mongo shell is
necessary, we show their individual volume in this table.

The function indicated by (1) in Table 2 could be config-
ured only by the SQL statements in MySQL. However, in
MongoDB, it was necessary to use JavaScript in addition to
the Mongo shell. In this case, the number of source lines of
the latter was about 3.5 times that of the former. On the con-
trary, the processing indicated by Plan(C) and Plan(O) in (2)
could not be described only by SQL statements in MySQL, so
it had to be described with the stored procedures and stored
functions; MongoDB was the same as MySQL. In this case,
the former number of source lines was about 2 times that of
the latter.

The processing indicated by Plan(P) in (2) is the printing
of a form, and there was no database access. So, this pro-
cessing was common to MySQL and MongoDB. That is, the
processing to output the form consists of data extraction from
the database indicated by Plan(O) and printing as of Plan(P).
In this case, the ratio of Plan(P) was 91% in MySQL and 85%
in MongoDB.

5.3 Comparative Evaluations of Elapsed Time

We executed each processing mentioned in Section 3.1 on
the standalone PC environment to evaluate the elapsed time
comparatively. Here, we modified each processing to exe-
cute only the database access including the data format op-
erations as the batch file, that is, the following processings
were excluded: defining the parameters, printing of forms and
so on. The execution environment is as follows. CPU is i7-
6700 (3.41GHz); memory is 16GB; the disk is SSD memory
of 512GB; OS is Windows 10. We adopted MySQL (Ver.
5.7.12), MongoDB (Ver. 3.4.3) for the database.

We show the evaluation results in Table 3. “Material” shows
the elapsed time of the material calculation shown by (1) of
Table 2, and it includes the manipulation (a), (c) and (d) men-
tioned in Section 3.2. The elapsed time of MongoDB was ap-
proximately 11 times that of MySQL. “Calendar” and “Plan”
are parts of the production planning function: the former cre-
ates calendar, and as for MySQL, it was executed by stored
procedure with the iterative manipulation shown in (b) of Sec-
tion 3.2; similarly, the latter created manufacture plan by

International Journal of Informatics Society, VOL.10, NO.2 (2018) 63-73 69

Table 3: Comparison of elapsed time (second)

Processing MySQL MongDB Ratio Manipulate
Material 1.07 11.90 11.1 (a), (c), (d)
Calendar 9.58 5.10 0.5 (b)
Plan 0.32 26.84 83.0 (a) (3-join)
Image(in) 23.48 260.78 11.1 (e)
Image(out) 0.24 77.76 324.0 (e)
Remarks: Ratio=MongoDB/MySQL

SQL statement to join the 3 tables, calendar, order and spec.
The elapsed time of MongoDB was about 0.5 and 83 times
that of MySQL respectively. “Image(in)” shows the case to
insert the image data of actual product shelves into database
from the disk: the number of images is 340, and the size of
each image is from 0.9 MB to 2.9 MB; “Image(out)” shows
the opposite case to the previous case, that is, the same data
is queried from the database to store into the disk as files.

As a result, in this case, the elapsed time of MongoDB was
about 11 and 324 times that of MySQL respectively. That
is, MongoDB was degraded despite being more efficient than
MySQL in manipulating a large amount of data. The reason
for this was as follows. Firstly, since the mongofiles com-
mand must be executed for each file as the Windows com-
mand individually, the connect operation occurs for each file
insertion and database query. So, the delay occurred in this
process. On the contrary, MySQL could execute all the data
manipulations by connecting once similar to the other opera-
tions.

By the way, we separated the fields of the images and videos
from the inventory table (inventory) and composed the indi-
vidual table (image) as shown in Fig. 7 even in MySQL. This
was due to the results of the preliminary study: in the case of
gathering all these fields to one table, the extreme delay oc-
curred. That is, to confirm the inventory, firstly we saved the
inventory image shot in the order of the shelf ID to this ta-
ble; then, updated shelf ID (shelf id) according to the image
order. However, this update operation took more than 20 sec-
onds for the above-mentioned 340 data, and it was too long
for the operations. Here, it was pointed out that the instances
of LONGBLOB should not in the query results if it was not
really necessary [13]. However, as a result of this preliminary
study, we found that the extreme latency occurred not only
in this case but also in the case where the images and video
column was not included in the data manipulation.

6 PERFORMANCE EVALUATION USING
JAVA

6.1 Implementation Using Program Language

As shown in “Image(in)” and “Image(out)” of Table 3, the
performance to manipulate the image data of MongoDB, in
this case, is inferior to RDB, though the performance to ma-
nipulate the single large amount of video data is better than
RDB as shown in Fig. 1. Here, as mentioned in Section 4.4,
the connection to, and disconnection from the database are

Figure 13: Image data manipulation statements

performed for each execution of mongofiles command, and a
large number of image data manipulations were performed by
this command in this evaluation. As a result, this performance
deterioration occurred.

On the other hand, for example, MongoDB Java driver pro-
vides GridFSBucket class for GridFS interface, and the mul-
tiple image data manipulation can be performed after con-
necting once. Therefore, in order to prevent the performance
degradation shown in Table 3, we implemented this manipu-
lation by using Java. And, we also performed the compara-
tive performance evaluation between MongoDB and MySQL.
Here, as for MySQL, this manipulation was implemented by
using Java, too.

As for the implementation environment, we used Java Plat-
form Standard edition 8, MongoDB Java driver Ver.3.5.0 and
MySQL Connector/J Ver.5.1.1.41. Other environments were
the same as in Section 5.3. And, the implementation target
was the inventory management function using images shown
in (3) of Fig. 7.

Firstly, we evaluated the basic function, that is, the indi-
vidual performance of the join processing and image manip-
ulation. Next, we evaluated the combination processing, that
is, the performance of the case where both of the join oper-
ation and image data manipulation are performed. Further-
more, we also evaluated the combination structure of MySQL
for the join operation and MongoDB for the image data ma-
nipulation. Hereinafter, we indicate this structure by “mix”
structure, and its detail is as follows.

The manipulations of a large amount of data such as im-
ages are performed by the streaming in both of MongoDB
and MySQL. Figure 13 shows the examples of the statement
of image data manipulations. Here, “fName” shows the image
file name; “doc name” shows the image name in the database.
(1) and (2) show the insert and select statements of Mon-
goDB to manipulate image respectively: In each first line, the
streaming of Java is defined; in each second line, upload and
download of the image is executed by using GridFSBucket
class respectively. Incidentally, “ObjectID” is the identifier of
the document in MongoDB, and it can be queried by using
the image name “doc name” in advance the select statement
(2). On the other hand, as for SQL statement of MySQL, the
image file name to be inserted is specified by using “load file”
function; the destination image file name of the image data to
be queried is specified by using “dumpfile” clause.

T. Kudo et al. / Evaluation of Databases for Enterprise Systems Dealing with Images70

Therefore, as for the implementation of the image data ma-
nipulation in Java, following composition is possible: firstly,
the target image name “doc name” is obtained and saved into
the variable of type String; then, the statements to manipulate
the image in Fig. 13 are executed. Moreover, in this com-
position, the image name can be queried by using MySQL
and the image data manipulation can be executed by using
MongoDB. In this way, by using this mix construction, it was
expected that the superior operations of each database could
be combined.

6.2 Evaluations of Basic Functions
To evaluate the basic functions, we implemented the fol-

lowing 4 cases by using both of MySQL and MongoDB.

(A) Join operation on three tables (3-Join): this queries the
data of three tables that matches the designated query
condition of p id of product by joining these three ta-
bles in Fig. 7: product, stock and stock shelf .

(B) Self-join operation (Shelf-Join): this queries only the
latest data of stock that matches the designated query
condition of p id. That is, only records having the lat-
est chk time are queried for the pair {p id, shelf id}.
Here, it is composed of the subquery with the self-join
operation in RDB.

(C) Image insertion: this inserts all the image data existing
in the designated folder into the database.

(D) Image download: this downloads all the image data ex-
isting in the designated table of the database into the
designated folder.

As for (A), though we implemented it by cursor operation
in both databases, their structure was different. That is since
MySQL has the SQL statement of the join operation, it is pos-
sible to query the join results as a cursor. On the other hand,
MongoDB has no statement of the join operation. So, we im-
plemented the following processing: firstly, we queried the
target data of product including p id; then, we queried the
target data of stock including shelf id by this p id; lastly,
we queried the target data of stock shelf by this shelf id,
and joined all the query results.

As for (B), we implemented the query by using the sub-
query and self-join operation shown in Fig. 8 in RDB. On the
other hand, as shown in Table 1, MongoDB had the aggre-
gate statement corresponding to the group by clause in RDB.
So, we queried the max value of chk time of stock for the
pair p id, shelf id, then queried the target data by using these
data.

As for (C) and (D), we implemented by the similar struc-
ture in both databases. For (C), we queried all the image data
of the designated folder and inserted them sequentially into
the table. On the contrary, for (D), we queried the image
data sequentially by utilizing the cursor and saved into the
designated folder. Here, in MySQL, we implemented by uti-
lizing the insert and select statements of SQL. And, in Mon-
goDB, though we implemented by utilizing GridFS interface,

Figure 14: Elapsed time of join operation

Figure 15: Elapsed time of image manipulation

the database connection could be maintained by using Java as
above-mentioned.

In Fig. 14, we show the evaluation results of (A) and (B).
The number of data of the three tables was 1063, 2000 and
845 respectively, and the numbers of result data of (A) and
(B) were 1,770 and 339. As shown in Fig. 14, the elapsed
time of MySQL was 0.276 seconds in (A), which is 5 times
faster than 1.435 seconds of MongoDB; the one of MySQL
was 0.017 seconds in (B), which is 33 times faster than 0.561
seconds of MongoDB.

And, in Fig. 15, we show the evaluation results of (C) and
(D). Contrary to the previous results, the elapsed time of Mon-
goDB was 18 times and 9 times faster than the one of MySQL
respectively in these cases. The elapsed time of both was 8.5
and 23.7 seconds in (C) respectively, and 4.0 and 5.5 seconds
in (D).

6.3 Evaluations of Combination Processing

Next, we performed the comparative performance evalu-
ations for the practical processing by combining the above-
mentioned operations. That is, we implemented and evaluated
the following processing: firstly, we queried the target image
name (doc name) by the join operation in (A) or (B); then
we inserted these image data into the database in (C); lastly,
we queried these image data from the database and saved into
another folder in (D). Here, we implemented three cases: the
first was implemented by only MySQL; in the second, (A) and
(B) were implemented by MySQL, and (C) and (D) were im-
plemented by MongoDB; the third was implemented by only
MongoDB. Here, (A), (B) and so on is shown in Section 6.2,
and hereinafter, it is same.

International Journal of Informatics Society, VOL.10, NO.2 (2018) 63-73 71

Figure 16: Elapsed time of combination processing

Table 4: Breakdown time of combination processing (second)

Processing Construct Join Insertion Query
3-Join MySQL 0.285 68.967 17.658

Mix 0.280 25.819 11.506
MongoDB 1.461 25.807 11.419

Self-join MySQL 0.015 21.758 5.531
Mix 0.021 8.304 3.894
MongoDB 0.998 8.196 3.911

We show the evaluation results in Fig. 16, and the break-
down of the elapsed time of each operation in Table 4. Here,
since the query results of (A) and (B) were same as those of
Section 6.2, the number of image data that was manipulated
was also 1,770 and 339 respectively. And, each elapsed time
is indicated as follows: “Join” indicates the join operation;
“Insertion” indicates the image data insertion; “Query” shows
the image data query. As shown in Table 4, since the time to
manipulate image data was longer than the time of joining
operation, the elapsed time as of MongoDB was shorter than
MySQL. Especially, a large difference was observed in the
elapsed time of the image insertion.

In addition, as for the mix structure, which is shown by
“Mix” in Table 4, it was constructed by using MySQL’s join
operation and MongoDB’s image data manipulation. So, for
example, the elapsed time of the join operation is similar to
MySQL; the one of image manipulation is the same as Mon-
goDB. That is, we obtained the superior performance for each
operation as mentioned in Section 6.1. As a result, the best
performance was achieved by the mix structure.

7 DISCUSSIONS

We discuss the evaluation results. First, as for the target
production management system, we found that all the func-
tions implemented by using MySQL could be implemented
by using MongoDB. As the results of the productivity com-
parative evaluations, though the number of MongoDB’s data
manipulation commands increased, the ratio of the descrip-
tion of data manipulation was very small in the actual systems
as shown in the Table 2. Therefore, from the viewpoint of the
overall system development man-hour, we consider that the
importance of the selection concerning the both will be small.

Second, we found some note points to maintain the per-

formance of a large amount of data. As shown in the last
paragraph of section 5.3, it was necessary to separate such a
data column to the individual table even in MySQL as same
as MongoDB. On the other hand, in MongoDB, the connec-
tion to the database should be maintained as shown in Table
3 and Fig. 15, that is, in the case to access such a data many
times, it should be composed by using programing language
and so on.

Lastly, by using programing language, we could use both
of MySQL for the join operation and MongoDB for the im-
age data manipulation as shown in the last paragraph of Sec-
tion 6.1. In the case of manipulating a large amount of data,
by using MongoDB, we could obtain better performance than
MySQL. However, as shown in Fig. 7, there are many pro-
cesses that use no image in the enterprise system. On the
contrary, they utilize the join operation. So, we currently con-
sider that there is a solution to use both as above-mentioned.

8 CONCLUSIONS

In order to manipulate a large amount of data, the appli-
cation of NoSQL database is spreading. However, to apply
NoSQL databases to the enterprise systems, there is the chal-
lenge that the join operation must be implemented efficiently.
In this study, we conducted the comparative evaluations be-
tween MySQL and MongoDB for the actual enterprise sys-
tem in two cases: the implementation by using Mongo shells
and the one by using programming language Java.

In the first case, we found the functions of general SQL
statements could be implemented by using only Mongo shells,
though the performance degraded in the case of manipulating
many large amounts of data such as images.

In the second case, we found that the above-mentioned de-
terioration of performance could be solved, and the elapsed
time to manipulate a large amount of data was longer than the
one of the join operation. That is, better performance was ob-
tained at the whole data manipulations by using MongoDB.
Furthermore, we showed it was possible to construct the con-
figuration that took each advantage of both databases: Mon-
goDB manipulated a large amount of data; MySQL manipu-
lated the other data including the join operation.

For the future challenge, we will expand the application
area of MongoDB by using sharding and improving the data
structure.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 15K00161.

REFERENCES

[1] R. Arora, and R. R. Aggarwal, “Modeling and querying
data in MongoDB,” International Journal of Scientific
and Engineering Research, Vol. 4, No. 7, pp. 141–144
(2013).

[2] M. Bach, and A. Werner, “Document-Oriented Data
Stores of Vision Objects,” Proc. of Innovative Control

T. Kudo et al. / Evaluation of Databases for Enterprise Systems Dealing with Images72

Systems for Tracked Vehicle Platforms, pp. 163–174
(2014).

[3] K. Banker, “MongoDB in Action,” Manning Pubns Co.
(2011).

[4] A. Boicea, F. Radulescu, and L.I. Agapin,“MongoDB
vs Oracle–database comparison,” Proc. of Third Inter-
national Conference on Emerging Intelligent Data and
Web Technologies, pp. 330–335 (2012).

[5] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,”
Mobile Networks and Applications, Vol. 19, No. 2, pp.
171–209 (2014).

[6] C. Győrödi, R. Győrödi, G. Pecherle, and A. Olah, “A
comparative study: MongoDB vs. MySQL,” 13th Inter-
national Conference on EMES, pp. 1–6 (2015).

[7] S. Hiremath, G. Yang, and K. Mankodiya, “Wearable
Internet of Things: Concept, architectural components
and promises for person-centered healthcare,” EAI 4th
International Conference on Wireless Mobile Commu-
nication and Healthcare, pp. pp. 304–307 (2014).

[8] T. Kudo, M. Ishino, K. Saotome, and N. Kataoka, “A
Proposal of Transaction Processing Method for Mon-
goDB,” Procedia Computer Science, Vol 96, pp. 801–
810 (2016).

[9] T. Kudo, Y. Ito, and Y. Serizawa, “An Application of
MongoDB to Enterprise System Manipulating Enor-
mous Data,” Proceedings of International Workshop on
Informatics (IWIN2016), pp. 277–284 (2016).

[10] MongoDB, Inc., “Welcome to the MongoDB Docs,”
https://docs.mongodb.com/ (reffered Oct. 16, 2017).

[11] K. Nagasawa, and T. Kudo, “Development of Mo-
bile Quotation System Utilizing Tablet and MongoDB,”
Proc. of 2017 IEICE General conference, D-9-23, p. 113
(2017) (In Japanese).

[12] Oracle Corp., “Chapter 23 Stored Programs and Views,”
https://dev.mysql.com/doc/refman/5.7/en/stored-
programs-views.html (reffered June 6, 2017).

[13] Oracle Corp., “11.4.3 The BLOB and TEXT Types,”
https://dev.mysql.com/doc/refman/5.7/en/blob.html
(reffered June 6, 2017).

[14] D.R. Rebecca, and I. E. Shanthi, “A NoSQL Solution to
efficient storage and retrieval of Medical Images,” Inter-
national Journal of Scientific & Engineering Research,
Vol. 7, No. 2, pp. 545–549 (2016).

[15] E. Redmond, and J.R. Wilson, “Seven Databases in
Seven Weeks: A guide to Modern Databases and the
NoSQL Movement,” Pragmatic Bookshelf (2012).

[16] K. Seguin, “The Little MongoDB Book” (2011),
http://openmymind.net/mongodb.pdf (reffered May 5,
2017).

[17] S. P. Singh, “Production and Operation Management,”
Vikas Publishing House Pvt Ltd (2014).

[18] M.P. Stevic, P., B. Milosavljevic, and B.R. Perisic,
“Enhancing the management of unstructured data in e-
learning systems using MongoDB,” Program, Vol. 49,
No. 1, pp. 91–114 (2015).

(Received October 20, 2017)
(Revised December 26, 2017)

Tsukasa Kudo received the B.S. and M.E. from
Hokkaido University in 1978 and 1980, and the
Dr.Eng. from Shizuoka University in 2008. In
1980, he joined Mitsubishi Electric Corp. He was
a researcher of parallel computer architecture and
engineer of business information systems. Since
2010, he is a professor of Shizuoka Institute of
Science and Technology. Now, his research in-
terests include database application and software
engineering. He is a member of IEIEC and IPSJ.

Yuki Furukawa is currently working toward a B.I.
degree at Shizuoka Institute of Science and Tech-
nology. Her research interests include production
management system and comparative evaluations
between MySQL and MongoDB.

International Journal of Informatics Society, VOL.10, NO.2 (2018) 63-73 73

