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Abstract - Autonomous driving systems and advanced driver
assistance systems (ADAS) have been developed to improve
driving safety. These systems are becoming increasingly com-
plicated, and the computing power they require continues to

increase. Software platforms, such as Automotive Grade Linux,

are being developed to handle the complexity of autonomous
driving, and graphical processing units (GPUs) are being used
in these systems for tasks such as recognition of driving en-
vironments, deep learning, and localization. However, to the
best of our knowledge, the real-time performance of Linux
combined with a GPU for ADAS has not yet been reported.

In this study, we developed lane keeping and collision avoid-
ance systems to evaluate the real-time performance of Linux
and a GPU. The experimental results show that the real-time
performance of the system could be improved using widely
available versions of Linux without software customization.
Also, although the GPU execution speed was sufficiently high,
camera image capture was relatively slow and created a bot-
tleneck in the system.

Keywords: Autonomous driving, Advanced driver assis-
tance systems, Linux, Real-time performance, GPU

1 INTRODUCTION

In recent years, autonomous driving systems and advanced
driver assistance systems (ADAS) have been developed to im-
prove driving safety [1], [2]. In fact, the first cars equipped
with autonomous driving level 3, as defined by the Society
of Automotive Engineers [3], is scheduled to be released in
2018 [4]; this level allows the vehicle to assume control of
safety-critical functions. In both autonomous driving systems
and ADAS, a large number of sensors, such as cameras, radar,
light detection sensors, and ultrasonic sensors, are used to rec-
ognize various aspects of the driving environment [5]. The
driving system must be capable of simultaneously process-
ing a large amount of information from these sensors in real
time in order to operate at highway speeds and respond to the
environment on any roadway. For this reason, two challenges
are common to these systems: complexity of the software and
demand for computing power.

Regarding software complexity, standard software platforms
are already being developed. For instance, Automotive Grade

Linux [6] is being developed by many automakers and suppli-
ers for in-vehicle infotainment systems. The abundant device
drivers, application programming interfaces, and libraries with-
in Linux are expected to reduce the development cycle and
cost of new systems. Furthermore, there have been efforts to
improve the real-time performance of Linux using RTLinux
[7], which is a Linux kernel augmented by a dedicated patch.
Here, real-time is defined as a time constraint for processing
by a specified deadline, and it is the most important property
required for in-vehicle systems.

To increase the computational speed of ADAS hardware,
GPUs are increasingly being adopted. GPUs are necessary for
various autonomous driving system tasks, such as recognition
of vehicles and pedestrians using advanced image processing,
deep learning, and localization. The development of semicon-
ductor technology has dramatically accelerated the advance-
ment of GPUs and given them a massively parallel architec-
ture. In particular, GPUs seem to be essential for improving
the recognition performance of ADAS using deep learning.

However, to the best of our knowledge, evaluation of the
real-time performance of Linux and GPUs for autonomous
driving systems has not yet been reported, despite its impor-
tance. In our study, two autonomous driving platforms were
considered [8]. One platform was for evaluation of the real-
time performance of an autonomous system using Linux, and
the other platform was used to evaluate the performance of
Linux with a GPU. We examined the factors affecting the
real-time performance of systems developed on these plat-
forms. In addition, the real-time processing capabilities of
the embedded GPU were verified for the second platform. By
evaluating these platforms, we aim to obtain guidelines for
implementing software for autonomous driving systems and
ADAS. Another objective is to evaluate the potential of em-
bedded GPUs and understand processing bottlenecks.

This paper is organized as follows. Section 2 describes
the two platforms based on the general architecture for au-
tonomous driving systems, describes the elements compris-
ing these platforms, and explains the systems used for evalu-
ation. Section 3 discusses experiments conducted to evaluate
the platform using Linux and a real-time operating system
(RTOS) and determine its real-time performance. In Section
4, we present experiments using a platform based on Linux,
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Figure 1: Minimum architecture for autonomous driving system

the RTOS, and a GPU. Experimental considerations are dis-
cussed in Section 5, and Section 6 provides conclusions.

2 PLATFORMS FOR AUTONOMOUS
DRIVING

In this section, the evaluation platforms for autonomous
driving are explained.

2.1 Minimum Architecture for Autonomous
Driving

Autonomous driving systems and ADAS normally contain
a number of different sensors, most commonly onboard cam-
eras, which are indispensable for recognizing lanes, pedes-
trians, and signs. Use of open-source libraries enables reduc-
tion of cost and development cycle, and for image processing,
function libraries such as OpenCV [9] are available for Linux.
Therefore, we decided to use Linux for image processing in
both platforms.

Figure 1 shows the minimum architecture for an autonomous
driving system, which consists of three parts, an onboard cam-
era, an image processing system, and a vehicle control sys-
tem. On the basis of this architecture, two platforms were
developed for this study. The features of these two platforms
are given in Table 1.

Both platforms A and B use Linux and an RTOS, but only
Platform B is equipped with a GPU. In Platform A, relatively
lightweight processing is performed, whereas in Platform B,
advanced image processing requiring substantial computing
power is performed.

2.2 RoboCar®1/10 for AP

RoboCar®)1/10 for automotive platform (AP) (hereafter
“RoboCar”) [10], shown in Fig. 2, is a 1:10 scale miniature
version of an actual car. It has a Renesas V850 central pro-
cessing unit (CPU) with a TOPPERS/ATK2 OS [11] RTOS,
which was developed for automotive systems. In this study,
RoboCar provided the base platform, and its CPU was used
for the vehicle control system. The basic configuration of
RoboCar is given in Tab. 2.

2.3 Platform A Using Linux

This section introduces the platform using Linux. The ar-
chitecture developed for Platform A is shown in Fig. 3.

A Raspberry Pi 2 Model B was adopted as the image pro-
cessing system. This system consists of a small single-board
computer that runs a Linux-based OS and has a quad-core
Arm Cortex-A7 processor and 1 GB of memory (DDR-SDR-

Figure 2: RoboCar(®)1/10 for AP
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Figure 3: Architecture of Platform A

AM). The Raspberry Pi and Robocar were connected via a
controller area network (CAN). A monocular camera (iBUF-
FALO BSW- 20KM11) with a resolution of 640 x 480 and a
maximum frame rate of 30 frames per second (fps) was con-
nected to the image processing system with a universal serial
bus (USB). Figure 4 is a photograph of Platform A.

2.4 Platform B Using Linux with GPU

This section introduces the platform equipped with a GPU
running Linux. The architecture of this platform is shown in
Fig. 5.

In this platform, an NVIDIA Jetson TX1 module [12] was
used for image processing to execute more demanding stere-
ographic image processing. The Jetson TX1 is a card-sized
board with an NVIDIA Tegra X1 chip running at 10 W. The
chip has 256 CUDA cores for the GPU and a quad-core Arm
Cortex-AS57 CPU with a 2-MB L2 cache and a 4-GB random
access memory (LPDDR4). The Jetson TX1 OS is Linux for
Tegra (L4T) R23.2 provided by NVIDIA. Figure 6 shows the
Jetson TX1 module, and Fig. 7 is a photograph of Platform
B.

Figure 4: Platform A: RoboCar with monocular camera and
Raspberry Pi



International Journal of Informatics Society, VOL.10, NO.1 (2018) 31-40

33

Table 1: Features of the two platforms

System Platform A Platform B
Sensors iBUFFALO BSW20KM11 Stereolabs ZED
monocular camera stereo camera
Image processing Raspberry Pi 2 Model B NVIDIA Jetson TX1
CPU: 4x Arm Cortex-A7  CPU: 4x Arm Cortex-A57
GPU: none GPU: 256 x CUDA core
Vehicle control ZMP RoboCar®)1/10 for AP

Table 2: Basic configuration of RoboCar

Dimensions 429x195%212 mm
Weight 1.8 kg
Internal sensors Gyro
Accelerometer

5x Rotary encoder

External sensors

8% Infrared range-finding sensor

Battery 7.2-V NiMH battery
CPU Renesas V850
0OS TOPPERS/ATK?2
Image processing Vehicle control
system system
Collision .
. Cruise control
avoidance
Linux for Tegra TOPPERS/ATK2
Sensors (Linux OS) (Real-time OS)
Stereo
camera R Jetson TX1 <> | RoboCar 1/10

USB

CAN

Figure 5: Architecture of Platform B
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Figure 6: NVIDIA Jetson TX1 (with centimeter scale)

Figure 7: Platform B: RoboCar with stereo camera and Jetson TX1
GPU

Table 3: Key features of ZED Stereo Camera

Dimensions 175x30x33 mm
Lens Field of view 110°
F-number 2.0
Depth Depth range 0.5 20m
Stereo baseline 120 mm
Resolution HD1080 1920x 1080 / 30Hz
HD720 1280720/ 60 Hz
WVGA 672x376/ 100Hz

In this setup, the Jetson TX1 module and RoboCar were
connected via CAN using an Auvidea J120 carrier board [13].
A USB 3.0 Stereolabs ZED stereo camera was connected to
the Jetson TX1 board; this camera obtains images useful for
both image processing tasks evaluated in this study. Key fea-
tures of ZED stereo camera are shown in Fig. 3.

Three of this camera’s image resolutions were used in this
study: wide video graphics array (WVGA) (672 x 376), HD7-
20 (1,280 x 720), and HD1080 (1,920 x 1,080).

2.5 CUDA

The Compute Unified Device Architecture (CUDA) is a
parallel programming language and model developed by
NVIDIA [14], [15] that is available in the Jetson TX1 mod-
ule. CUDA is supported by OpenCV, a library for computer
vision functions that was used to develop the image process-
ing program for both platforms.

In CUDA, the TX1 CPU is treated as the host and its GPU
as the device. The term “kernel” refers to functions that run
on the device, and a kernel consists of numerous “threads.”
All threads run the same code, and in image processing, one
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Figure 9: Example of white line recognition

thread corresponds to one pixel. First, a program executed on
the host side is activated. Next, the device loads the kernel
program, and the host passes the generated data to the device
and “kicks” it (to instruct the host to start the kernel). The
device executes the kernel and asynchronously returns the ob-
tained result to the host. The processing on the GPU side can
be synchronized, but in this study, unless otherwise noted,
processing on the GPU side was executed asynchronously.

2.6 Lane Keeping System

Lane keeping [16] is a basic driving support system, and its
configuration is simple. A lane keeping system consisting of
white line recognition and steering control was implemented
in Platform A to verify the real-time performance of Linux.
Figure 8 is a flow diagram of the lane keeping system, and
Fig. 9 shows an example of white line recognition.

The camera image is used by the image processing system
to recognize white lines. Then, the image processing sys-
tem uses the recognition result to calculate the steering angle
required to run along the white line and transmits it to the
vehicle control system.

In this study, the target time for white line recognition was
set to 30 ms, which is generally regarded as real-time perfor-
mance.

2.7 Collision Avoidance System

Collision avoidance systems are being adopted by many
manufacturers. The sensors used in collision avoidance sys-
tems include millimeter-wave and infrared radar sensors and
monocular and stereo cameras. We adopted collision avoid-
ance as the task for evaluating Platform B using the GPU be-
cause collision avoidance requires more computing power, in

(a) Stereo image

(b) Depth map

Figure 11: Example of obstacle recognition with a stereo camera

comparison to that needed for lane keeping. Figure 10 is a
flow diagram of the collision avoidance system.

In this system, the GPU generates a depth map from the
stereo image and calculates the driving speed, which is trans-
mitted to the vehicle control system via the CAN. When an
obstacle is recognized in the depth map, the vehicle is stopped
to avoid collision. An example of obstacle recognition is
shown in Fig. 11, where the depth map expresses nearer as
brighter.

It is said that “assuming car speed of 80 Km/Hr, the stop-
ping distance reduces from 55m to 45m as frame-rate goes
from 10fps to 15fps (for systems as of today) to 30 fps (for
system in future).” [17]. In this study, the target time of col-
lision avoidance system was set to 33 ms which is calculated
from 30 fps.

3 PLATFORM A: REAL-TIME
PERFORMANCE WITH LINUX

In this section, we report the evaluation of the real-time
performance of Linux used for lane keeping with Platform A.

3.1 Lane Keeping System on Platform A

The iBUFFALO BSW20KM11 monocular camera used for
sensing in Platform A was attached to the top of the RoboCar
and output VGA (640 x 480) images at 30 fps. One cycle of
image processing and response is shown in Fig. 12.

In the experiments, Platform A navigated a round course
created using a tile mat and white tape. The lane keeping
processing time was measured for each cycle, which started
with image capture and ended with transmission of steering
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Figure 12: Process flow in lane keeping system on Platform A

instructions via CAN. The clock rate of the Raspberry Pi was
set to 900 MHz.

3.2 Processor Affinity for CPU Selection

Processor affinity is a property used to specify which CPU
executes each process. In Linux, the OS normally automat-
ically assigns an execution processor based on this property
and the priority of the process. If the process can be executed
by another processor, the execution may sometimes be reas-
signed, which delays the process while the cache is copied.

In this study, the affinity was set to execute the lane keep-
ing program on core 2 of the Raspberry Pi using the taskset
command in Linux. The execution times with and without
the specification of the execution processor were measured
for 10,000 frames. The results are shown in Fig. 13.

As shown in Fig. 13a, when the execution processor was
not specified, lane keeping was typically executed within 60
ms, although it sometimes increased to approximately 70 ms.
We investigated the cause and found that the occasional delay
was caused by neither dynamic clock changes, a temperature
rise, nor the software algorithm. With these factors ruled out,
we concluded that the delay was caused by the reassignment
of the execution processor. As shown in Fig. 13b, this delay
is suppressed when the execution processor is specified.

The average execution time and worst-case execution time
(WCET) are given in Tab. 4. The average execution time
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Figure 13: Execution time with and without specification of the ex-
ecution processor

Table 4: Average execution time and WCET with and without spec-
ification of execution processor

Execution time
Average
WCET

Not specified Specified
59.4 ms 53.1 ms
78.1 ms 61.3 ms

and the WCET were both lower when the execution processor
was specified than when it was not specified, demonstrating
that the WCET can be improved by specifying the execution
processor.

During normal processing in a Linux OS, a timer interrupt
occurs at regular intervals. When the interrupt occurs, the
scheduler examines the process state and determines the pri-
ority of the processes to be executed. Because the priority
of a process that is using a CPU for a long time decreases
with time, the timer interrupt enables the execution of other
waiting processes. With this mechanism, Linux maintains the
even execution of processes.

When lane keeping was executed without options, the pri-
ority for this process is the same as that for other processes.
Therefore, lane keeping execution may occasionally be post-
poned by the scheduler. In addition, if the execution time of
one cycle of the process is long, the scheduler is activated
during the execution, and other higher-priority processes are
executed. Then, the original process is delayed until it be-
comes executable again. This is thought to be the reason for
the occasional execution delay when no processor is specified
in Linux.

3.3 Real-time Process and RTLinux

Next, we enhanced Linux for real-time performance and
evaluated the results. RTLinux was developed to improve the
real-time performance of Linux. In the real-time process, the
execution of the processor is given higher priority.

RTLinux is obtained by augmenting the Linux kernel by
applying the RT-Preempt patch [18] provided by the Linux
community. Various other patches exist for this purpose, in-
cluding Xenomai and real-time application interface [19], but
these were not used in this study.

RTLinux was implemented on Platform A, the lane keeping
experiment was repeated, and the normal and real-time exe-
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Table 5: Kernel and process conditions for each real-time (RT) case

Application a b c d
Kernel Normal Normal RT RT
Process Normal RT Normal RT
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Figure 14: Histograms of lane keeping execution times for four real-
time cases

cution times were compared. When using RTLinux, the time
required for the camera to capture the image was abnormally
long. This was likely because the device driver was updated
when the RT- Preempt patch was applied. Therefore, the time
required for image capture was not included in the execution
time. Experiments were conducted for four cases with each
possible combination of real-time or normal kernels and real-
time or normal processes. The conditions for the four cases
are given in Tab. 5.

Histograms of the lane keeping execution times obtained
for all four cases are shown in Fig. 14, and the corresponding
average execution times and WCETs are given in Tab. 6.

When the program was executed as a normal process on
RTL- inux, the execution time was unstable in comparison
with the normal process executed on the normal Linux ker-
nel. However, when it was executed as a real-time process on
RTLinux, the execution time was stable, and the delay was
greatly suppressed because the delay for dispatching the pro-
cess is decreased by RTLinux.

Applying the RT-Preempt patch reduced the time to start
the scheduler. The real-time performance of the lane keep-
ing program deteriorated in the kernel with the RT-Preempt
patch applied without options. When the process was exe-
cuted as a normal process, the execution state is thought to
switch more frequently. When the process was executed as a

Table 6: Average execution times and WCETsS for four lane keeping
real-time cases

Execution time a b C d
Average 26.8ms 20.5ms 20.5ms 20.3 ms
WCET 405ms 21.5ms 522ms 21.7ms
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Figure 15: Histograms of lane keeping execution time for four real-
time cases with CPU load

Table 7: Average execution times and WCETs for four lane keeping
real-time cases with CPU load

Execution time a b c d
Average 259ms 204ms 274ms 19.1 ms
WCET 674ms 214ms 573 ms 20.6ms

real-time process on RTLinux, it was preferentially executed
by one of the cores, even if the execution core was not speci-
fied. The real-time performance was also improved in normal
Linux by executing it as a real-time process.

3.4 Real-time Process and RT Linux with
CPU Load

In the experiments discussed so far, only a single user pro-
cess was executed. However, in an actual system, multiple
processes are executed simultaneously. Therefore, the delay
in executing processes was examined while applying a back-
ground processing load. For the same four cases listed in Tab.
5, a CPU load was applied using the stress command and pro-
cessing was performed for 10,000 periods. Histograms of the
lane keeping execution times are shown in Fig. 15 for the four
real-time cases with CPU load, and the corresponding average
execution times and WCETS are given in Tab. 7.

According to Figs. 15a and 15c, the fluctuation of the exe-
cution cycle was larger in both kernels when the process was
executed as a normal process. As shown in Tab. 7, the aver-
age execution time for the lane keeping program executed as
anormal process in the normal Linux kernel (case a) was 25.9
ms, and the WCET was 67.4 ms. In this case, the variation in
the execution cycle was not evenly distributed but was con-
centrated in two ranges: 2226 ms and 42-44 ms. In contrast,
when executed as a real-time process in the normal Linux ker-
nel (case b), the average execution time and WCET were 20.4
ms and 21.4 ms, respectively. Thus, executing the program as
a real-time process stabilized the execution time.

When a CPU load was applied and the program was exe-
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cuted as a normal process, the execution cycle greatly fluctu-
ated in both kernels. However, when it was run as a real-time
process with an applied CPU load, the execution time was
stabilized for both kernels. The execution time was stabilized
by assigning the process a high priority; however, since an
actual system contains multiple high-priority processes, it is
a matter which process is prioritized.

4 PLATFORM B: REAL-TIME
PERFORMANCE USING GPU WITH
LINUX

This section discusses the evaluation of the real-time per-
formance with Platform B using Linux and a GPU.

4.1 Lane Keeping System on Platform B

Image processing for the lane keeping program was imple-
mented on the Jetson TX1 module in place of the Raspberry
Pi; however, lane keeping was found to be too lightweight to
use the GPU processor. The execution time for the lane keep-
ing program was 5.4 ms (excluding image capture time) when
using the TX1 CPU, and the time increased to 8.1 ms when
using the TX1 GPU. Data transfer between the CPU and GPU
occupied 1.7 ms.

Because lane keeping is a lightweight process and the over-
head of the data transfer is larger than the execution time re-
duction achieved by using the GPU, the TX1 CPU executed
the lane keeping task on Platform B.

4.2 Collision Avoidance System on Platform B

A stereo camera was adopted for the collision avoidance
system because it is the sensor that is best able to both de-
tect the lane and identify obstacles. The collision avoidance
system configuration using the stereo camera and Jetson TX1
module is shown in Fig. 16.

When capturing WVGA image, the image data is captured
by processor of image processing system. The depth map
(672x376 x1 Bytes) is generated and used on GPU to calcu-
late the drive speed of RoboCar. Finally, drive speed is send
to vehicle control system via CAN.

In this experiment, the RoboCar was located on a miniature
straight course. By bringing an obstacle closer, we confirmed
that the collision avoidance system was working. The im-
age processing time for collision avoidance was measured for
each cycle, which began with image capture and ended with
transmission of instructions via the CAN. The Jetson TX1
clock rate of was 1.9 GHz. The experiment was performed
with three different resolutions.

4.3 Dependence on Image Resolution

Simple pedestrian detection has already been put to prac-
tical use, but high-resolution images will be necessary to im-
prove the detection distance and estimation of pedestrian move-
ment direction. When 8-mega-pixel images are used, it is pos-
sible to detect pedestrians at distances of up to 200 m [17].

Figure 17 shows the processing speeds for obstacle recog-
nition experiments conducted using stereo images at three
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Figure 16: Process flow in collision avoidance system on
Platform B

Table 8: Resolution-dependent stereo image sizes and processing

speeds for WVGA
Resolution Image size Processing speed
WVGA 1.0x 1.0x
HD720 3.7x 2.2%
HD1080 8.3x 4.0x

resolutions. The processing speeds for WVGA, HD720, and
HD1080 were 68, 31, and 17 fps, respectively. Table 8 gives
the processing speeds for the three resolutions relative to that
of WVGA.

Although the image sizes at resolutions of HD720 and HD-
1080 were, respectively, 3.7 and 8.3 times that of WVGA, the
processing speeds were only 2.2 and 4.0 times that of WVGA,
respectively. This shows that the processing parallelization in
the GPU was utilized. However, most of this execution time
was spent on capturing the camera image. Figure 18 shows
the breakdown of the synchronously measured execution time
of the collision avoidance system.

In the case of WVGA, the CPU execution time for one
frame was approximately 15 ms, and approximately 10 ms
of that time was spent on image capture. The GPU com-
pleted processing in 8 ms, and this processing time did not
increase much at higher resolutions. Thus, processing in the
TX1 CPU, particularly with regard to the capture of camera
images, is a performance bottleneck.
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4.4 Processor Affinity for CPU Selection

Experiments were also conducted to determine the proces-
sor affinity for Platform B. The recognition process was fixed
to core 2 of the Jetson TX1 board, and the program was run
as both with and without processor specification. The elapsed
time per processing cycle was measured since processing on
GPU performed asynchronously. The resulting elapsed time
histograms are shown in Fig. 19.

The elapsed times were concentrated near 16 and 20 ms for
both the normal and real-time processes. In addition, when
the collision avoidance program was executed as a real-time
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process, the elapsed time increased to nearly 60 ms in approx-
imately 0.02% of the frames. This is because the program
used in the experiment consisted of several subprocesses and
sometimes other subprocesses were prioritized, causing exe-
cution to be postponed.

4.5 Camera Interfaces

In the experiments so far, cameras were connected via USB,
and these cameras were the bottleneck in the system. There-
fore in this section, we compared the USB camera interface
and camera serial interface (CSI) [20].CSI is a camera/processor
interface that is commonly used in embedded systems.

We measured and compared the time for capturing ZED
stereo camera images between the USB and CSI camera inter-
faces with the Raspberry Pi 2. Figure 20 shows the execution
time for capturing HD720 images for each interface.

Average execution times using the CSI and USB interfaces
were 0.2 s and 0.17 s, respectively. Thus, in this experiment,
use of the CSI interface did not speed up image capture.

S CONSIDERATIONS

The experimental results obtained in this study show that
the real-time performance of autonomous driving software
programs implemented in Linux can be improved by spec-
ifying the execution core without optimizing the programs.
Executing programs as real-time processes was also effective
in both the normal Linux and RTLinux kernels. Furthermore,
by applying the RT patch to the Linux kernel, it was possible
to stabilize the execution time.

By executing the top-priority process as a real-time pro-
cess, real-time performance can be secured even in Linux,
which is a general-purpose OS. Therefore, it is expected that
the wealth of software assets developed in Linux can be used,
which leads to a reduction of development cycle time and
cost.

It was verified that these methods are effective when exe-
cuting one process, but an actual system will likely host mul-
tiple high-priority processes. Therefore, it is necessary to de-
sign the priorities of processes and system calls and verify the
system performance with sufficient test vectors.
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With regard to the GPU hardware used for image process-
ing system in these experiments, the operation executed on
the GPU side was sufficiently fast and the real-time perfor-
mance was considered to be satisfactory. As GPU technology
continues to develop, the image resolution and frame rate ob-
tained using a GPU are expected to improve. However, the
transfer time between the CPU and GPU on the TX-1 board
and the image capture process remain as bottlenecks. Without
an improved high-speed transfer channel and a high-speed in-
terface with the camera, it is difficult to take advantage of the
GPU’s potential.

For comparatively lightweight computations, such as white
line recognition, processing can be performed using only a
CPU as in Platform A. The GPU usage method adopted for
Platform B makes it possible to perform basic arithmetic op-
erations with only the CPU.

6 CONCLUSION

In this study, we developed two platforms for autonomous
driving and evaluated the real-time performance of image pro-
cessing for lane keeping and collision avoidance systems us-
ing Linux. We found that allowing Linux to assign the proces-
sor decreased the real-time performance of both systems. Us-
ing the Linux taskset command to assign execution to a spe-
cific processor avoided the delay caused by the cache copying
required for reassignment. We also found that executing the
process as a real-time process on RTLinux can stabilize the
execution time even when other processes are running. Addi-
tionally, we found that an embedded GPU provided process
execution at sufficiently high speeds, but the overall speed
was constrained by the speed of camera image capture, which
was a major performance bottleneck in the system.

Future work will include considering a more complex sys-
tem, such as a robot operating system, to verify the perfor-
mance of a practical autonomous driving system using the
advanced features evaluated here.
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