
 

 

Removing Ambiguous Message Exchanges in Designing Sequence Diagrams for  

Developing Asynchronous Communication Program 

Satoshi Harauchi*, Kozo Okano**, and Shinpei Ogata** 
  

*Advanced Technology R&D Center, Mitsubishi Electric Corporation, Japan 
**Electrical and Computer Engineering, Shinshu University, Japan 

*Harauchi.Satoshi@bc.MitsubishiElectric.co.jp 
**{okano, ogata}@cs.shinshu-u.ac.jp 

 
Abstract – Eliminating the reworking of designs is critical 

for developing software systems. Faults and errors in de-

signs must be extracted so that they do not impair subse-

quent implementation or test phases. When developing 

communication programs, faults might linger in the pro-

grams. Simply detecting them by reviewing them is difficult, 

especially when designing complicated and asynchronous 

communication programs. In this paper, we propose a meth-

od that detects faults when designing communication pro-

grams by focusing on sequence diagrams that represent 

message exchanges between lifelines to remove the ambigu-

ity about the order of the exchanges. Our method consists of 

the following procedures. It generates model descriptions 

and test expressions from sequence diagrams and executes 

model checking with them. Then it identifies the location of 

the information in the diagrams at which errors occur in 

model checking unless the model descriptions satisfy test 

expressions. Such notifications enable designers to eliminate 

inconsistency from their diagrams. This paper describes 

problems of developing sequence diagrams, our method that 

solves it, and its implementation with UML 2.0 as well as its 

evaluation. The evaluation result shows that our method is 

effective, even though its generation time depends on the 

complexity of the diagrams. 

 

Keywords: Communication programs, Sequence diagrams, 

Model checking, Promela, Linear Temporal Logic, UML 

 

1 INTRODUCTION 

Removing faults and errors from software systems is criti-

cal to develop software with high reliability. Faults can be 

found not only in software implementation but also in its 

design. Detecting and removing them is much more im-

portant in the design stage than in the implementation stage 

because removing errors from the design stage generally 

takes a greater cost and effort because a design must be re-

worked and modified. Hence, such errors must be extracted 

so that they do not remain in such subsequent phases as im-

plementations or tests. 

Detecting faults is also important for developing commu-

nication programs. As communication programs become 

bigger, their design becomes more complicated. Since de-

tecting them by reviewing their complicated designs is diffi-

cult, such designs must be supported to detect faults. 

In this paper, we propose a method to detect faults when 

designing communication programs. Our method focuses on 

the sequence diagrams that represent asynchronous ex-

changes of messages between lifelines. The diagrams are 

complicated when complex communications are being de-

signed. Complicated exchanges of messages frequently 

cause faults because ambiguity about the order of the ex-

changes remains in the diagrams. This ambiguity shows that 

the order for receiving messages could not be determined 

when several messages are asynchronously transmitted to a 

specific lifeline. Our method seeks to detect the ambiguity 

and remove the faults in the diagrams. 

Our method consists of the following procedures. First, it 

generates formal descriptions written in Promela [1] from 

sequence diagrams. Such components as lifelines and mes-

sages described in the diagrams correspond to the Promela 

elements. Combined fragments, which represent such con-

trol structures as alt and loop, are also translated into Prome-

la. Next, with Linear Temporal Logic (LTL), it generates 

test expressions that are obtained from every message for 

each lifeline. The generated expressions are used for ex-

haustively checking the order. Then the method executes 

model checking with formal descriptions and test expres-

sions. Failing to satisfy the expressions for the formal de-

scriptions suggests the existence of ambiguity related to the 

order of the messages. Our method finally identifies the po-

sition in the diagrams that cause an error in the model 

checking. Such identification helps designers correct the 

diagrams and remove the errors. Our method is reapplied 

from the top of the procedure after error removal, and the 

designers repeatedly apply it until no more errors occur. 

We implement the method as a tool with UML 2.0 and 

evaluate two aspects. The first aspect focuses on the number 

of identifications generated by the tool and the time spent on 

the procedures for various sequence diagrams. The second 

goes to the diagrams applied to a specific product. The eval-

uation result shows that the method provides ten candidates 

for modifying the diagrams and four out of ten candidates 

are required to correct it, based on interviews with the engi-

neers who worked on the above product. 

The remainder of our paper provides detailed analysis of 

our method. We describe the problems for developing se-

quence diagrams in Section 2, and our method overcomes 

them in Section 3. We then describe our method’s imple-

mentation and evaluation in Section 4. 

 

 

ISSN1883-4566 ©2017 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.9, NO.3 (2017) 129-138 129



 

 

2 PROBLEMS OF DEVELOPING SE-

QUENCE DIAGRAMS 

Figure 1 shows an example of sequence diagrams. Life-

lines A, B, and C asynchronously communicate with each 

other. The figure is used when designing communication 

specifications. The design is considered completed after 

reviewing the diagrams, and then the programs are imple-

mented based on the diagrams. 

However, after implementation, a fault might occur in 

Fig. 1, which shows the sequence diagrams if faults occur. 

“msg6” is sent from lifelines C to B after “msg3”. Lifeline B 

receives “msg6” before “msg5”. Nevertheless, “msg6” 

might reach lifeline B after “msg5,” contrary to the design 

intention. Lifeline B emits an error due to the specification 

violation.  

Removing faults requires time and effort. The time de-

pends on the causes. The fault shown in Fig. 2 cannot be 

detected in a unit test, but it can often be detected in integra-

tion tests. Accordingly, we must rework the design, imple-

mentation, and test. The time to repair faults increases in 

accordance with the number of faults and the diagram com-

plexity. 

The error in Fig. 1 was caused by the ambiguity of the se-

quence diagrams and indicates that the situation cannot be 

determined in which “msg6” reaches lifeline B. This paper 

describes how to remove such ambiguity in designing se-

quence diagrams. 

 

 

 
 

Figure 1: Example of sequence diagrams 

 

 
 

Figure 2: Sequence diagrams in case of a fault 

 

3 PROPOSED METHOD 

3.1 Outline 

Our method eliminates the ambiguity of the order of mes-

sages with semi-automatic modifications of sequence dia-

grams. Although automatic correction is possible, our pro-

cedure provides modification candidates, enables designers 

to select an appropriate candidate, and corrects the diagrams 

with the selected candidate.  

The input for the method is the diagrams written in XML. 

The output is the diagrams without ambiguity. The diagram 

specifications use UML 2.0 [1]. The diagrams allow the 

asynchronous representation of messages.  

Our proposed method consists of these four steps shown in 

Fig. 3: 

STEP 1: Generate formal descriptions; 

STEP 2: Generate test expressions; 

STEP 3: Perform model checking and generate candidates 

for modifying diagrams; 

STEP 4: Correct the diagrams. 

The contribution of this paper is STEP2 and STEP3. In 

STEP1 we use the existing method [2] which generates for-

mal descriptions. STEP2 provides test expressions used for 

model checking, and STEP3 indicates the existence of am-

biguity and candidates for removing such ambiguity. 

We describe the details of each step in the following sec-

tions. 

3.2 STEP 1 Generate Formal Descriptions 

This step generates formal descriptions from the input. An 

XML is obtained with astah* professional [3]. The formal 

descriptions are written in Promela [4] and used by the SPIN 

model checker. Lima’s method [2] generates the descrip-

tions. A lifeline and a message for each execution 

 

 
 

Figure 3: Overview of proposed method 

検査式検査式

・・・Candidate A

Formal 
descriptions

Model Checking

Modify

Test
Expressions

Sequence diagrams

Candidate B

Candidates

Sequence diagrams
（After modification）

STEP1 STEP2

STEP3

STEP4

S. Harauchi et al. / Removing Ambiguous Message Exchanges in Designing Sequence Diagrams for Developing Asynchronous Communication Program130



 

 

 Table 1: Correspondence between sequence diagrams and 

Promela 

 

 
 

Figure 4: Example of generating formal descriptions 

 

specification respectively correspond to a process and a 

channel with variables defined by Promela. The description 

in Promela is generated based on the correspondence shown 

in Table 1. 

Figure 4 shows an example of generating formal descrip-

tions. Figure 5 shows a detailed example of the generated 

descriptions shown in Fig. 4, whose upper part shows se-

quence diagrams and whose lower part shows a summary of 

the formal descriptions generated from the diagrams. Pro-

cess B_1, Process B_2, and Process B_3 are generated since 

lifeline B has three execution specifications. Each message 

is translated into two descriptions. For example, “msg1” 

generates one description by which B sends “msg1” to C 

and another one by which C receives “msg1” from B.  

The generation for each execution specification maintains 

the order of the messages within the execution specifications. 

Furthermore, the generated descriptions represent the ambi-

guity of the order of the asynchronous messages. Lima’s 

method does not generate descriptions for each execution 

specification. 

Combined fragments, which represent control structures 

such as alt and loop, are converted into Promela as well. We 

select four fragments, “alt”, “par”, “loop,” and “break,” be-

cause they are used frequently. The conversion into Promela 

is shown in Table 2. Description for combined fragment 

“par” corresponds to the diagrams shown in the right part of 

Fig. 6. 

 

 

1 /* Auto Generated Promela File */ 

2 /* Message Declaration */ 

3 mtype = {msg1, msg2, msg3, msg4, msg5}; 

4 /* Channel Declaration */ 

5 chan to_A = [20] of {mtype}; 

6 chan to_B = [20] of {mtype}; 

7 chan to_C = [20] of {mtype}; 

8 /* Variable for send and receive */ 

9 bool send = false; 

10 bool receive = false; 

11 mtype msg; 

12 /* Process Declaration */ 

13 active proctype A_1(){ 

14 

15 

d_step{ to_A?msg2; send=false; receive=true; 

msg=msg2;} 

16 

17 

d_step{ send=true; receive=false; msg=msg3; 

to_B!msg3;} 

18 

19 

d_step{ send=true; receive=false; msg=msg5; 

to_C!msg5;} } 

20 active proctype B_1(){ 

21 

22 

d_step{ send=true; receive=false; msg=msg1; 

to_C!msg1;} 

23 

24 

d_step{ send=true; receive=false; msg=msg2; 

to_A!msg2;} } 

25 active proctype B_2(){ 

26 … 
Figure 5: Detailed example of formal descriptions 

 

Table 2: Description in Promela for control structures 

Control 

Structures 
Description in Promela 

alt, break if 

:: (condition 1) -> instruction 1 

:: (condition 2) -> instruction 2 

… 

:: (condition n) -> instruction n 

fi 

loop do 

:: (condition 1) -> instruction 1 

:: (condition 2) -> instruction 2 

… 

:: (condition n) -> instruction n 

od 

par proctype A() { 

run sub_A() 

AB_msg4?msg4; BSubB?token;} 

proctype B() { 

run sub_B() 

AB_msg4?msg4; BSubB?token;} 

proctype sub_A() {  

atomic{ AB_msg3!msg3; ASubA!token;};} 

proctype sub_B(){ 

atomic{ AB_msg3!msg3; ASubA!token;};} 

Sequence diagrams

proctypeA_1() {
receive msg2 from B;
send msg3 to B;
send msg5 to C;

}

Formal descriptions

proctypeB_1() {
send msg1 to C;
send msg2 to A;

}
proctypeB_2() {
receive msg3 from A;

}
proctypeB_3() {
receive msg4 from C;

}

proctypeC_1() {
receive msg1 from B;
send msg4 to B;

}
proctypeC_2() {
receive msg5 from A;

}

Sequence 

diagrams 

Element of 

Promela 

Description in  

Promela 

lifeline process proctype {…} 

message 

(label) 
message mtype={m1,…,mn} 

message 

(arrow) 
channel 

chan chan=[1] of {mtype}; 

… 

chan chann=[1] of {mtype}; 

send 

event 
send chan!m 

receive 

event 
receive chan?m 

International Journal of Informatics Society, VOL.9, NO.3 (2017) 129-138 131



 

 

3.3 STEP 2 Generate Test Expressions 

This step generates test expressions from the input, writ-

ten in Linear Temporal Logic (LTL) expressions, which 

enable the representation of the system states by the changes 

of time. Time operators are available in addition to the con-

ventional logical operators shown in Table 3. The expres-

sions are used to check whether the diagrams have ambigui-

ty about the order of the messages. Each expression is gen-

erated from two messages that are connected. 

Figure 4 shows an example. Lifeline B in the sequence 

diagrams has four message exchanges. The item to be 

checked is extracted from two adjacent messages, such as 

“msg2” and “msg1.” Since the items in the lifeline are ob-

tained by all of the adjacent messages in relation to lifeline 

B, they are described as follows: 

 

(a) Whether “msg2” was sent before “msg1” was sent; 

(b) Whether “msg3” was received before “msg2” was 

sent; 

(c) Whether “msg4” was received before “msg3” was re-

ceived; 

 

The method generates the following expressions below 

from (a) to (c): 

(a’)  (send “msg2”) before (send “msg1”); 

(b’)  (receive “msg3”) before (send “msg2”); 

(c’)  (receive “msg4”) before (receive “msg3”). 

 

The method then translates the above three items into the 

following test expressions: 

(a’’)  ¬ (send “msg2”) ∪(send “msg1”); 

(b’’)  ¬ (receive “msg3”) ∪ (send “msg2”); 

(c’’)  ¬ (receive “msg4”) ∪ (receive “msg3”). 

 

The method generates test expressions for lifeline A and C 

in the same way. Two test expression are generated since 

they have three message exchanges. Consequently, the 

method generates seven test expressions in all from dia-

grams shown in Fig. 4. 

 

Table 3: Time operators in LTL 

 

 
Figure 6: Example of diagrams with “alt” and “par” 

 

 
Figure 7: Example of modification 

 

 
Figure 8: Procedure of generating candidates 

 

Combined fragments are translated into expressions as 

well. The translation is slightly different from above. For 

example, “alt” or “par” in Fig. 6 has separators that are di-

vided into operands. “msg1” and “msg2” do not need to be 

generated since both are executed exclusively. On the other 

hand, generating expressions for “par” is difficult because 

“msg3” and “msg4” are executed in parallel. Hence, “alt” or 

“par” combined fragments are ignored. Only “loop” com-

bined fragment is dealt with for generating expressions. 

3.4 STEP 3 Perform Model Checking and 

Generate Candidates for Modifying Diagrams 

This step executes model checking with formal descrip-

tions and test expressions. Then our method provides candi-

dates that indicate how to modify the diagrams. Failing to 

satisfy the expressions suggests the presence of ambiguity. 

The failure result gives a pair of two messages described in 

the test expressions. The candidate shows diagrams with a 

message inserted between the pair of two messages.  

Figure 7 shows an example of the modification candidate. 

The diagrams shown in Fig. 4 turn out to be ambiguous for 

the following item. 

(c) Whether “msg4” was received before “msg3” was re-

ceived 

Therefore, lifeline A is added to the transmission of “msg6” 

after sending “msg3,” and lifeline C is added to the recep-

tion of “msg6” before sending “msg4.” 

Figure 8 shows the procedure that generates candidates for 

all of the test expressions. First, our method selects a test 

expression among all of the expressions and executes model 

checking with formal descriptions and the selected  by the 

Formal descriptions

Model Checking

Test expression ①

No Candidate
Candidates

Extract Candidates

Formal
descriptions

Test
expression②

Model Checking

Modified Formal
descriptions

Test
expression②

Model Checking

Character Symbol Description 

Xφ ∘φ φ will be true in the next state. 

Gφ □φ φ will always be true after this step. 

Fφ ◇φ φ will be true sometime after this step. 

ψUφ ψ∪φ 
φ will be true sometime after this step 

and ψ will be true until that time. 

S. Harauchi et al. / Removing Ambiguous Message Exchanges in Designing Sequence Diagrams for Developing Asynchronous Communication Program132



 

 

SPIN model checker. The execution moves to the following 

processes depending on the checking result. 

If no ambiguity exists The method executes model check-

ing with the same formal descriptions and another test ex-

pression. 

If ambiguity exists The method generates a modification 

candidate from the test expression. The candidate is present-

ed to a designer, and diagrams are corrected if he decides to 

apply it. The method then executes model checking with the 

corrected formal descriptions and another test expression. 

The procedure is repeatedly applied and only terminates 

when model checking is executed for all of the test expres-

sions. 

3.5 STEP 4 Correcting the Diagrams 

This step corrects the XML with the selected candidate 

from Section 3.4. The candidate has the information for ad-

ditional messages, such as the name and the insertion place. 

The method corrects the definition of the messages and the 

information related to the lifelines. This step’s procedure is 

completed if all the candidates indicated by the designers are 

reflected in the diagrams. If all the test expressions pass the 

model checking after the diagrams are corrected, no exist-

ence of ambiguity about the order of messages is proven for 

the specified diagrams. 

4  EVALUATION 

We implement our proposed method as a tool with Java 

and shell scripts to evaluate its performance and the follow-

ing two aspects: 

Aspect 1: Number of modification candidates generated 

and the time spent on the method’s execution 

Aspect 2: Candidate evaluation 

Aspect 1 focuses on various kinds of sequence diagrams, 

and Aspect 2 focuses on the diagrams applied to a product. 

The following are the computer specifications used for the 

evaluation: 

OS: Windows 7 Professional 

CPU: Intel Xeon E5607 2.27GHz×2 

Memory: 16 GB 

SPIN: Version 6.3.2 

The size of the state vector for the SPIN model checker 

was defined as 1024 bytes. 

4.1 Evaluation Method 

4.1.1 Aspect 1 

We collected the sequence diagrams described as exam-

ples in existing researches [5]-[9] and applications [10], [11] 

related to sequence diagrams and produced another se-

quence diagrams with additional lifelines and messages for 

specific diagrams of the collected examples. Figure 9 shows 

the sequence diagrams [9]-1 produced by [9]. The square 

region in black dotted lines indicates the diagrams [9]. We 

increased the number of lifelines and messages by extending 

the original diagrams and applied our tool to them. We 

enumerated the lifelines, the messages, and the modification 

candidates and measured the time spent on their execution. 

The measurement was executed, assuming that the design-

ers adopted all of the candidates identified by the tool. 

4.1.2 Aspect 2 

We applied our tool to the diagrams used for the product. 

The diagrams were rewritten with astah* professional [3]. 

This aspect checks the ability to detect the faults shown in 

Fig. 2. We confirmed that the candidates generated by the 

tool are appropriate to be corrected. 

4.2 Evaluation Results 

4.2.1 Aspect 1 

We applied the tool to eleven sequence diagrams. The 

evaluation result is shown in Table 4. The eleven diagrams 

consisted of seven diagrams collected from the references 

and four where the number of lifelines in reference [9] is 

increased (described as [9]-1, 2, 3, 4). Columns 1 to 3 show 

the information in the diagrams and columns 4 to 7 show the 

result applied to the tool. Columns 1, 2, and 3 respectively 

indicate the source of the diagrams, the number of lifelines 

in them, and the number of messages. Column 4 describes 

the number of candidates generated by the tool. Columns 5 

to 7 show the execution time applied to the tool and meas-

ured for each step. Column 5 indicates the sum of the time 

spent on STEPs 1 and 2 since both are executed in parallel 

with identical input. 

No significant differences can be seen in the time spent on 

STEPs 1 and 2. However, the time of [9]-1, 2, 3 and 4 is 

large. A large number of lifelines and messages increases 

the total amount of time. The time spent on STEP 3 be-

comes large as the number of lifelines or messages in the 

diagrams increases. The more candidates, the more time will 

be spent on STEP 4, although no major differences can be 

observed in the time. 

The time spent on STEP 3 in [9]-4 is much smaller than in 

[9]-3, although the number of lifelines and messages are 

very large, because the model checking in that case could 

not be executed due to insufficient memory. Hence, the 

number of candidates became zero. 

We also applied our tool to three more sequence diagrams 

with combined fragments. The evaluation result is shown in 

Table 5. The diagrams were extracted from the references. 

Columns 1 to 6 in Table 5 are the same as in Table 4. Col-

umn 7 describes the number of fragments in the diagrams. 

The result shows that the time spent on STEPs 1 and 2 was 

different between the presence and the absence of the com-

bined fragments. This difference reflects the time difference 

to generate formal descriptions, not test expressions. 

 

 

 

 

International Journal of Informatics Society, VOL.9, NO.3 (2017) 129-138 133



 

 

 
Figure 9: Sequence diagrams [9]-1 produced by [9] for evaluating Aspect 1 

 

Table 4: Evaluation results for Aspect 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Lifelines Messages Modification 

candidates 

Time spent on execution(seconds) 

STEP 1,2 STEP 3 STEP 4 

[5] 7 11 3 0.44 20.21 0.43 

[6] 4 12 2 0.42 25.19 0.41 

[7] 3 8 0 0.39 15.55 0.41 

[8] 3 4 0 0.37 5.96 0.40 

[10] 5 6 1 0.42 8.95 0.41 

[11] 6 24 0 0.49 56.15 0.42 

[9] 7 22 6 0.46 52.08 0.48 

[9]-1 12 44 9 0.58 124.77 0.45 

[9]-2 22 88 18 0.98 9136.59 0.52 

[9]-3 32 132 24 0.97 14054.17 0.56 

[9]-4 37 154 0 1.20 744.73 0.56 

S. Harauchi et al. / Removing Ambiguous Message Exchanges in Designing Sequence Diagrams for Developing Asynchronous Communication Program134



 

 

Table 5: Evaluation result for Aspect 1 with combined fragments 

 

 

 
 

Figure 10: Example of diagrams used for Aspect 2 

 
 

 

Figure 11: Example of diagrams used for Aspect 2 

 

Table 6: Evaluation result for Aspect 2 

 Lifelines Messages Modification 

candidates 

Time spent on execution (seconds) 

STEP 1,2 STEP 3 STEP 4 

Figure 10 4 7 5 0.40 14.04 0.62 

Figure 11 4 6 5 0.41 12.15 0.52 

 

 
 

Figure 12: A modification candidate 1 

 

 
 

Figure 13: A modification candidate 2 

 

 

 

 
Figure 14: A modification candidate 3 

 

 
 

Figure 15: A modification candidate 4 

 Lifelines Messages Modification 

candidates 

Time spent on execution(seconds) Combined 

fragments STEP 1,2 STEP 3 

[12] 4 7 3 1.40 1.3 0 

[13] 3 10 4 5.60 16.3 2 (loop, alt) 

[6] 4 9 1 5.20 16.0 2 (loop, par) 

International Journal of Informatics Society, VOL.9, NO.3 (2017) 129-138 135



 

 

 

 
 

Figure 16: A modification candidate 5 

 

Table 7: Removed ambiguity for each candidate 

Candidate Ambiguity 

Figure 12 “msg7” might reach lifeline D after “msg6” 
Figure 13 “msg7” might reach lifeline D before “msg4” 

Figure 14 “msg5” might reach lifeline B before “msg4” 

Figure 15 “msg5” might reach lifeline B before “msg3” 
Figure 16 “msg6” might reach lifeline C before “msg7” 

4.2.2 Aspect 2 

Some of the diagrams used for the product were supplied 

by factories for evaluating Aspect 2. We selected two dia-

grams from the supplied diagrams and applied the tool to 

them where ambiguity about the order of the messages 

might exist. The applied diagrams are shown in Fig. 10 and 

Fig. 11. The application result is shown in Table 6 whose 

columns are the same as in Table 4. 

Next we describe all of the candidates obtained by our tool 

for Fig. 10. The candidates are shown from Fig. 12 to 

Fig. 16. For instance, Fig. 12 indicates the modification that 

inserts “msg8”. The candidate is generated from the ambigu-

ity that “msg7” might reach lifeline D after “msg6”. 

Table 7 shows the removed ambiguity for all of the candi-

dates. The result shows that our proposed method can detect 

the ambiguity and generate the candidates for each ambigui-

ty for the sequence diagrams used for the products. 

We requested the engineers who developed the product to 

check the ten candidates including from Fig. 12 to Fig. 16. 

We confirm their validity by selecting one appropriate an-

swer from the following three options: 

(1) This modification must be done. 

(2) This modification does not need to be done. 

(3) This modification should not be done.  

 

Option (1) was selected for four candidates including 

Fig. 12. (2) was selected for five candidates and (3) for one 

candidate. 

The answers show that the method detect necessary candi-

dates, but several candidates are of no use. Unnecessary 

candidates are caused by constraints for modifying sequence 

diagrams. Figure 10 and Fig. 11 has the lifeline which corre-

sponds to the equipment procured externally. It is impossi-

ble to modify sequence diagrams related to such equipment. 

Hence, the engineers selected answer (2) or (3). We should 

consider the constraint in order to exclude unnecessary can-

didates when applying to the design for products. 

4.3 Evaluation Validity 

In Aspect 1 we collected the sequence diagrams from ex-

isting researches and tools and evaluated the number of 

modification candidates and the time spent on the execution 

by applying the tool to the diagrams. In this paper we only 

applied the tool to eleven sequence diagrams. Since the 

number of lifelines and messages written in the diagrams is 

limited, we might obtain a different result when applying the 

tool to large-scaled diagrams. 

In Aspect 2 we confirmed the possibility of detecting 

faults and generated modification candidates from diagrams 

with ambiguity developed for the product. We only used 

two diagrams for our evaluations. We must obtain a large 

variety of diagrams for various products and evaluate them 

to acquire more general results. 

5 RELATED WORKS 

Lima et al. proposed a method that generates Promela 

from sequence diagrams and detects faults with model 

checking [2]. This method shows representation written in 

Promela for almost all of the diagrams described in UML 

2.0. They implement this method as an eclipse plugin and 

confirm fault detection by giving appropriate test expres-

sions. 

Miyamoto et al. proposed a method that converts the spec-

ifications of software written in state diagrams and deploy-

ment diagrams in Promela representation [14]. The input for 

both diagrams is XML produced by astah* professional. 

Their method generates Promela by translating instances in 

the deployment diagrams into processes and translating the 

transitions in state diagrams into processing that executes 

each process. Converting the patterns of the above specifica-

tions in UML into LTL expressions enables the execution of 

SPIN model checking without describing complicated ex-

pressions. 

Nagata et al. proposed a method that generates communi-

cation programs from the specifications of communication 

protocols described with sequence diagrams [15]. Their 

method, which defines the protocols with the diagrams and a 

format that represents the content of the messages, generates 

programs from the above definitions. The generation derives 

exception handling from fault tree diagrams and appends it 

to the programs in normal processing. The method reduces 

the overlooking of exception handling required for the oc-

currence of exceptions for communication programs. 

Tiwari et al. proposed a method that generates test cases 

with activity diagrams that describe software specifications 

[16]. Their method obtains the conditions under which a 

system terminates normally from diagrams that represent the 

processing flow. Their method acquires fault tree diagrams 

by reversing the conditions and generates test cases where 

the system terminates both normally and abnormally. 

Kaleeswaran et al. proposed a method that detects faults 

from programs and test suites and shows candidates for cor-

recting the faults [17]. Their method modifies programs 

S. Harauchi et al. / Removing Ambiguous Message Exchanges in Designing Sequence Diagrams for Developing Asynchronous Communication Program136



 

 

based on points specified by toolset Zoltar [18] which auto-

matically localizes faults. Since the modification is then 

executed by selecting the candidates, it enables semi-

automatic corrections. 

6 CONCLUSION 

This paper proposed a method that detects faults when de-

signing sequence diagrams that describe the asynchronous 

exchanges of messages. Our method transforms formal de-

scriptions written in Promela and test expressions written in 

Linear Temporal Logic (LTL) from sequence diagrams and 

executes model checking for all of the expressions with the 

descriptions. When an error occurs in an execution, it pro-

vides information in diagrams, enabling designers to remove 

the faults and protect consistency. 

We implemented and evaluated our method with two as-

pects. In the first aspect, we measured the amount of infor-

mation and the time spent on our method’s execution. In the 

second one, we applied our method to the diagrams used by 

a product. The application generated ten pieces of infor-

mation and evaluated their validity. According to interviews 

with engineers, about 40% of the information is effective for 

correcting the diagrams. Future work will apply our method 

to various developments of diagrams and increase the num-

ber and the kinds of candidates. 

REFERENCES 

[1] “UML2.0,” http://www.omg.org/spec/UML/2.0/, re-

trieved on September 13, 2016. 

[2] V. Lima, C. Talhi, D. Mouheb, M. Debbabi, L. Wang, 

and M. Pourzandi, “Formal Verification and Validation 

of UML 2.0 Sequence Diagrams using Source and 

Destination of Messages,” Electronic Notes in Theoret-

ical Computer Science, vol. 254, pp. 143-160 (2009). 

[3] “astah* professional,” http://astah.net/editions/ profes-

sional, retrieved on September 13, 2016. 

[4] G. J. Holzmann, “The model checker SPIN,” IEEE 

Transactions on Software Engineering, vol. 23, no. 5, 

pp. 279-295 (1997). 

[5] P. Baker, P. Bristow, C. Jervis, D. King, R. Thomson, 

B. Mitchell, and S. Burton, “Detecting and Resolving 

Semantic Pathologies in UML Sequence Diagrams,”  

Proceedings of the 10th European Software Engineer-

ing Conference held jointly with 13th ACM SIGSOFT 

International Symposium on Foundations of Software 

Engineering, pp. 50-59 (2005). 

[6] S. Bernardi, S. Donatelli, and J. Merseguer, “From 

UML Sequence Diagrams and Statecharts to Analyza-

ble Petri Net models,” Proceedings of the 3rd Interna-

tional Workshop on Software and Performance, pp. 35-

45 (2002). 

[7] D. Harel and S. Maoz, “Assert and Negate Revisited: 

Modal Semantics for UML Sequence Diagrams,” 

Software & Systems Modeling, vol. 7, no. 2, pp. 237-

252 (2008). 

[8] H. Shen, R. Krishnan, R. Slavin, and J. Niu, “Sequence 

Diagram Aided Privacy Policy Specification,” IEEE 

Transactions on Dependable and Secure Computing, 

pp. 381-393 (2014). 

[9] B. Mitchell, “Characterizing Communication Channel 

Deadlocks in Sequence Diagrams,” IEEE Transactions 

on Software Engineering, vol. 34, no. 3, pp. 305-320  

(2008). 

[10] “Lucidchart,” https://www.lucidchart.com/, retrieved 

on September 13, 2016. 

[11] “tracemodeler,” http://www.tracemodeler.com/, re-

trieved on September 13, 2016. 

[12] H. Shen, R. Krishnan, R. Slavin, and J. Niu, “Se-

quence Diagram Aided Privacy Policy Specification,” 

IEEE Transactions on Dependable and Secure Compu-

ting, no. 99 (2014). 

[13] D. Harel and S. Maoz, “Assert and Negate Revisited: 

Modal Semantics for UML Sequence Diagrams,” 

Software & Systems Modeling, vol. 7, no. 2, pp. 237-

252 (2008). 

[14] N. Miyamoto and K. Wasaki, “Automatic Conversion 

from the Specification on UML Description to PRO-

MELA Model for SPIN Model Checker,” Forum on 

Information Technology, vol. 9, no. 1, pp. 311-314  

(2010). 

[15] T. Nagata, S. Harauchi, M. Kitamura, T. Yamaji, and 

Y. Ueno, “A Method to Create Network Communica-

tion Programs by Deriving Exception Handling from 

Fault Tree Diagram,” Forum on Information Technol-

ogy, vol. 11, pp. 45-48 (2012). 

[16] S. Tiwari and A. Gupta, “An Approach to Generate 

Safety Validation Test Cases from UML Activity Dia-

gram,” Proceedings of the 20th Asia-Pacific Software 

Engineering Conference, pp. 189-198 (2013). 

[17] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso, 

“MintHint: Automated Synthesis of Repair Hints,”  

Proceedings of the 36th International Conference on 

Software Engineering, pp. 266-276 (2014). 

[18] T. Janssen, R. Abreu, and A. J. C. van Gemund, 

“Zoltar: A Toolset for Automatic Fault Localization,”  

Proceedings of the 2009 IEEE/ACM International 

Conference on Automated Software Engineering, pp. 

662-664 (2009). 

 

(Received October 7, 2016) 

(Reviced May 3, 2017) 

 

 

Satoshi Harauchi received  BE and ME 

degrees in Information Sciences from 

Kyoto University in 1996 and 1998, 

respectively. Since 1998, he has been at 

the Advanced technology R&D center 

of Mitsubishi Electric Corporation and 

is currently interested in software engi-

neering for social infrastructure system. 

He is a member of IEICE and JSASS. 

 

International Journal of Informatics Society, VOL.9, NO.3 (2017) 129-138 137

http://www.omg.org/spec/UML/2.0/
http://astah.net/editions/%20professional
http://astah.net/editions/%20professional
https://www.lucidchart.com/
http://www.tracemodeler.com/


 

 

Kozo Okano received BE, ME, and 

PhD degrees in Information and Com-

puter Sciences from Osaka University in 

1990, 1992, and 1995, respectively. 

From 2002 to 2015, he was an associate 

professor at the Graduate School of In-

formation Science and Technology of 

Osaka University. In 2002 and 2003, he 

was a visiting researcher at the Department of Computer 

Science of the University of Kent in Canterbury and a visit-

ing lecturer at the School of Computer Science of the Uni-

versity of Birmingham, respectively. Since 2015, he has 

been an associate professor at the Department of Computer 

Science and Engineering, Shinshu University. His current 

research interests include formal methods for software and 

information system design. He is a member of IEEE, IEICE, 

and IPSJ. 

 

Shinpei Ogata is an assistant professor 

of the Graduate School of Science and 

Technology in Shinshu University, Ja-

pan. He received a PhD from Shibaura 

Institute of Technology, Japan in 2012. 

His current research interests include 

model-driven engineering for infor-

mation system development. He is a 

member of IEEE, ACM, IEICE, and 

IPSJ. 

 

S. Harauchi et al. / Removing Ambiguous Message Exchanges in Designing Sequence Diagrams for Developing Asynchronous Communication Program138




