
An Application of MongoDB to Enterprise System Manipulating Enormous Data

Tsukasa Kudo†, Yuki Ito†, and Yuki Serizawa†

†Faculty of Comprehensive Informatics, Shizuoka Institute of Science and Technology, Japan
kudo@cs.sist.ac.jp

Abstract - With the spread of the IoT, a variety of sensor
data have been widely used, such as the image data of surveil-
lance cameras and so on. And, such a system operations are
spreading, in which the image data is saved in the database di-
rectly. Here, the relational database management system has
a problem about the efficiency to manipulate the enormous
unstructured data such as images. So, it is spreading that
the system manipulating such a data is implemented by us-
ing the NoSQL databases such as the MongoDB with GridFS
interface. However, as for the enterprise system, since the
ACID properties of the transaction cannot be maintained in
MongoDB, there has been the problem about its application
to such a system. On the other hand, in our previous study,
we had implemented the transaction feature for MongoDB to
maintain all the ACID properties. Therefore, it is expected
that MongoDB can be applied to such a system by using this
transaction feature. That is, the advantage of MongoDB can
also be used in the enterprise systems. In this paper, we show
the application case of MongoDB to the production manage-
ment system, which is a kind of enterprise system; also, we
show the image management for the stocktaking as the case
of the efficiency improvement by using MongoDB.

Keywords: database, transaction processing, ACID prop-
erties, MongoDB, GridFS, production management system

1 INTRODUCTION

With the spread of the IoT, networking sensors are collect-
ing various types of data including the semi-structured and
unstructured data such as images, audio and videos（here-
inafter, “image and video”) [5], [8], [13]. Since these data
is stored into the database and shared, it has become neces-
sary that the database management systems adopt the feature
called 3V, that is, Volume (huge amount), Velocity (speed)
and Variety (wide diversity) [11]. Here, the relational database
management systems (RDBMS) was designed for handling
structured data, so it has limitations when it comes to man-
age the enormous and numerous unstructured data like files
[19]. Thus, the various database management systems called
NoSQL database, which is different from the conventional
RDBMS, have been proposed and put to practical use [20].
MongoDB is a kind of NoSQL database and equips GridFS
interface [1], by which various types of enormous data are
stored efficiently by dividing into units called chunk, and it
has been proposed and evaluated to apply to the above-
mentioned fields [19], [26].

By the way, our laboratory is supporting the introduction of
the production management system for the actual company.
At its factory, the products are manufactured by the order-
made, and their parts are replenished in lot unit only when

they are insufficient. However, since the type of parts are so
many in this factory, their accurate inventories often cannot
be grasped. As a result, it has become the factor causing the
shortage of the parts.

For this problem, we converted the idea from the inven-
tory management by counting the actual quantity. That is,
the human vision can grasp the approximate number of the
actual inventory efficiently. So, we conceived that if the nec-
essary inventory quantity is designated, the worker can find
that the inventory is insufficient by looking at the inventory
shelf. And, MongoDB can be applied to treat the image and
video data that is the evidence of his judgment. Here, in this
production management system, it is also necessary to man-
age the theoretical inventory, which is the quantity of the parts
inventory managed in the system. So, in the case of moving
10 parts from the parts shelf to the assembly field, 10 is sub-
tract from the formercollections(corresponding the table in
RDBMS) of the database; the same number is added to the
lattercollections. And, to maintain the consistency, these two
data operations must be performed as a single transaction.

However, as for MongoDB, the ACID properties are main-
tained only in the case of updating a single data. So, in the
case of updating the plural data, the data is updated one after
another, and finally they become to be updated. That is, there
is the anomaly in the midst of this updating, such as one data
has been updated and another has not been updated; and, it
can be queried by the other transactions. So, we could not
find the application case of GridFS interface of MongoDB to
the enterprise systems, though it provides the useful feature
for the enormous data manipulations.

On the other hand, as for this problem, we showed the
method of transaction feature for MongoDB for the central-
ized database environment [10]. By this method, all the ACID
properties, which is consist of the atomicity, isolation, consis-
tency, and durability, can be maintained throughout in each
transaction. Moreover, this production management system
can be built with the centralized database environment.

Therefore, we decided to apply MongoDB equipping this
transaction feature to this production management system,
and implemented its prototype. As a result, we confirmed
that MongoDB could be applied to the enterprise system by
using our transaction feature. Moreover, we confirmed the
image and video data management by using MongoDB could
improve the efficiency of inventory management works.

The remainder of this paper is organized as follows. Sec-
tion 2 shows our transaction feature and the problem of the
target production management system. And, we show the
application method of MongoDB to the enterprise system in
Section 3. Section 4 shows the implementation of this method
and its evaluation results. We discuss on the results in Section

ISSN1883-4566 ©2017 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.9, NO.3 (2017) 97-108 97



5, andSection 6 concludes this paper.

2 RELATED WORKS AND PROBLEMS

2.1 Transaction Feature for MongoDB

MongoDB is a document-oriented NoSQL database, and
its data is stored as adocumentof the JSON (JavaScript Ob-
ject Notation) format as shown in Fig. 1 [14], [25]. Itsdoc-
umentis composed of the fields, and{“ id”: Id1 } expresses
the field having the identifier “id ” and value “Id1”. Here,
“ id” indicatesthe ObjectID that corresponds to the primary
key of the relational databases. In Fig. 1, the other fields of
thedocumentare “name” and “address”. Here, field “name”
has a nested structure, which is composed of field “first” name
and “last” name. Since MongoDB has such a structure, it is
not necessary to define the scheme of the database before-
hand like RDBMS. That is, the fields of eachdocumentcan
be added or removed at any time. Incidentally, the set ofdocu-
mentscomposes thecollection, and each of them corresponds
respectively to the records and table in the relational database
although not strictly. Thus, eachcollectioncan havedocu-
mentsof various structures.

In addition, similar to SQL of the RDBMS, CRUD (Create,
Read, Update, Delete) data manipulation is provided. How-
ever, since its transaction feature is based on the eventual con-
sistency of the BASE properties [3], [18], the ACID properties
can be maintained as for only the singledocument. There-
fore, there is the problem that the ACID properties of trans-
actions cannot be maintained in the case of updating multiple
documentssimultaneously. Incidentally, the ACID properties
are defined as the following 4 properties: Atomicity means
the transaction updates completely or not at all; Consistency
means the consistency of database is maintained after it is up-
dated; Isolation means each transaction is executed without
effect on the other transactions executing concurrently; Dura-
bility means the update results survive the failure [7].

For example, in the case of the bank account transfer from
account A to account B, the total amount of the both accounts
does not change. However, as shown in (a) of Fig. 2, since
the ACID properties are not maintained on the entire updating
in MongoDB, there is the problem of the anomaly. That is,
the halfway state during the updating is queried by the other
transactions: one data has been already updated; another data
has not been updated yet. In this case, when the account A
was updated, the anomaly that the sum of the query result
was reduced to 2,000 temporarily happened. Also, since the
rollback must be executed by the compensation transaction in
the case of failure [22], it has been shown that the isolation on
these documents cannot be maintained by this method [12].
That is, the isolation cannot be maintained in the both cases
of the commit and rollback. On the other hand, in the case
where the same procedure was performed in the RDBMS, this
halfway state can be concealed until the commit as shown in
(b) of Fig. 2.

Furthermore, as for SQL of the RDBMS, the isolation lev-
els of the transactions are defined. That is, corresponding with
the business requirement, the suitable isolation level can be
selected: in the case where it is needs the efficient execution,

Figure 1:An example of MongoDB document.

Figure 2:Problem of transaction processing in MongoDB

or the strict concurrency control [7]. So, we had implemented
and evaluated the method to perform each transaction with
the designated isolation level in MongoDB in the previous
study, as well as the RDBMS as shown in Table 1. As a re-
sult, we confirmed the following: the isolation levels of Table
1 were achieved, and the query transaction performance at
READ UNCOMMITTED is same as MongoDB [10].

We show the overview of this method below. First, it per-
forms the lock operation during the access to thedocumentas
well as the RDBMS as shown in Table 1. In Table 1, “2PL”
shows the two phase locking protocol [7]. Incidentally, in this
method, to prevent the cascade abort of the transaction, the
rigorous 2PL is adopted as well as the RDBMS. That is, the
lock is held until the commit or rollback.

Second, as shown in Fig. 3, thedocumentof theData col-
lection saves the business data into two fields, “Data before
update” and “Data after update”. While thedocumentis not
being updated, the business data is saved in the former; and,
there is not the field of the latter. On the contrary, while the
documentis being updated, the business data of two state is
saved: the state of before update is saved in the former; and,
the state of after update is saved in the latter. In addition, it
has the fields to save the information of the transactions lock-
ing it: for each of the shared lock and the exclusive lock. And,
in order to manage the transactions that are locking thedoc-
umentof Data collection, we implementedTP (transaction
processing management) collection. And, itsdocumentsaves
the corresponding transaction state: before or after the com-
mit. Also, it saves the isolation level of the transaction.

For the case of Fig. 2, we show the procedure to query the
documentof Data collectionwhile it is being updated with
the isolation level READ COMMITTED or REPEATABLE
READ. If the bank account transfer from the account A to ac-

Table 1: Locking protocol of each isolation level

Isolation level Exclusive lock Shared lock
READ UNCOMMITTED 2PL (none)
READ COMMITTED 2PL While query
REPEATABLE READ 2PL 2PL

T. Kudo et al. / An Application of MongoDB to Enterprise System Manipulating Enormous Data98



Figure 3: Transactionprocessing method for MongoDB

Figure 4: Comparative evaluation with findOne of MongoDB

count B shown in (a) of Fig. 2 is executed by this method,
then both of the data before and after update are retained.
And, the data before update is queried until the commit of
the transaction; the data after update is queried after the com-
mit. Therefore, in (a), both update results of the account A
and B are not queried until the commit; both update results
are queried only after the commit. That is, the query results
are similar to the RDBMS shown in (b). Thus, the halfway
state during the updating is concealed from the other transac-
tions, and the transaction processing maintaining the isolation
can be provided.

Similarly, other properties of the ACID propertied can be
also maintained by this method. Basically, as for the update
of individual document, the ACID properties are maintained
by the transaction feature of MongoDB itself. And, as for
the atomicity, the data before update is saved in “Data before
update” field. Therefore, when the failure occurs while up-
dating plural data, the rollback of all thedocumentscan be
performed by deleting their “Data after update” fields. As
a result, since the rollback can be performed without using
the compensation transactions, the isolation property can be
maintained. Incidentally, though the compensation transac-
tions is usually used for the rollback in MongoDB [22], it
cannot maintain the isolation. On the contrary, in the case
where this update completes normally, their commit can be
performed by changing “Data after update” to “Data before
update”. Then, the former is deleted. As for the consistency,
it also can be maintained by this rollback when the consis-
tency is not maintained during updating pluraldocuments.

As for the durability in the event of a crash, it is provided
by the original transaction feature of MongoDB, which uses
write ahead logging to an on-disk journal [16]. And, since
this method uses this transaction feature, the durability can be
maintained in this method, too.

On the other hand, the Velocity (speed) of the 3V feature,
that is, high efficiency for the query of the NoSQL databases
is generally required. So, we performed the comparative eval-
uation on the query processing between this method and Mon-
goDB. As for the former, the query transaction was performed
with the isolation level READ UNCOMMITTED, in which
the query was performed efficiently without the shared lock
as shown in Table 1. As for the latter, we used “findOne”
method, which was the standard query method of MongoDB.
As a result, we found that the performance of the both are
almost the same as shown in Fig. 4 [10].

Here, it has been shown that if all the transactions are per-
formed with any of the isolation level shown in Table 1, then
any transaction can be performed with the designated trans-
action level [7]. In other words, by using this method, the
usual query transactions can be performed efficiently with the
isolation level READ UNCOMMITTED as in the conven-
tional data manipulation of MongoDB; only the query and
update transactions, which need the strict data manipulations
as shown in Fig. 2, can be performed with the isolation level
READ COMMITTED or REPEATABLE READ.

2.2 Enormous Data Manipulation Feature in
Databases

As for the enormous data manipulation, the RDBMS has
some problem: there is the limitation of the data size, and it
must be read sequentially. We show this in detail as follows.

As for the relational databases, there had been the request
to treat the various type of enormous data including the image
and video. So, in SQL:1999, known as SQL3, the data type
LOB (LARGE OBJECT) have been defined. It is composed
of the data type CLOB (CHARACTER LARGE OBJECT)
and BLOB (BINARY LARGE OBJECT): the former treats
the character strings; the latter treats the binary data including
the image, video and so on [6]. However, it has been shown:
since RDBMS was designed for handling structured data, it
has limitation to manage the enormous unstructured data [26],
[19]. That is, the enormous unstructured data in binary-based
column increases the demand for hardware resources, and the
distributed systems to reduce this problem tend to be rigid
and hard to administrator. And, it has been shown that us-
ing RDBMS for managing the enormous unstructured data is
inefficient, because it is due to the architecture for the concur-
rency control by using locking, logging and so on [27], [28].

In addition, for example, MySQL (MySQL 5.7) also sup-
ports the BLOB type, and the data up to 4GB can be stored.
However, as for the BLOB type, some restrictions have been
shown [17]. For example, VARBINARY type is recommended
in the case of the small size of data (up to 64KB); the column
of BLOB type should be separated to another table for the
sake of query processing. And, the data size transferred be-
tween the server and client, or among the servers, is limited
up to 1GB. So, in the case of using the replication feature, the
data size must be up to 1GB; in the case of storing the data of
more than 1GB to the database, the data must be divided and
stored sequentially. Furthermore, even in the case of querying
a portion of the enormous BLOB type data, it is necessary to
read sequentially from the beginning.

International Journal of Informatics Society, VOL.9, NO.3 (2017) 97-108 99



Figure 5:Composition of MRP system

Besides this, several methods are provided to save the un-
structured enormous data such as images and videos. For ex-
ample, Sears et al. showed that the file system has the clear
advantage in the case where the data amount was so large
[21]. However, in the case where the business system is con-
structed by the file system, it is pointed out that there are prob-
lems: they lack the efficient mechanism for data integration,
security, backup and recovery, and so on; the configuration of
application software becomes complicated [26], [23].

On the other hand, as for MongoDB, GridFS interface was
prescribed, which is the convention to store the enormous
data, and the official drivers support this [14]. In this con-
vention, the enormousdocumentis divided into chunks as a
separateddocument. By using the GridFS, the data which size
exceeds the file system of the OS can be manipulated, and the
replication is also supported. In addition, as for even the bi-
nary data, a portion of the data can be queried. Because of
this advantage, MongoDB has been proposed and evaluated
in several systems dealing with enormous unstructured data
such as images and videos: medical images for health care
system, documents for e-learning system and so on [26], [19].

2.3 Target Production Management Business

Our laboratory has been supporting the production man-
agement system of a manufacturing company: the implemen-
tation, introduction and support of the system operations. Pre-
viously, we had introduced the MRP (Material Requirement
Planning) system to automate the calculation of the quantity
and cost of the parts, which is necessary to assemble the or-
dered products. We show the over view of the MRP system
in Fig. 5. In this case, 2 parts Y is used for product A; 3
for Product B. So, in the case of order 1, which is composed
of 10 products A and 20 products B, 80 parts Y is necessary.
The cost of the parts, which calculated by this system, is used
as the master data of the system in conjunction with the order
company by EDI (Electronic Data Interchange) [9].

Now, we have been asked to introduce the inventory man-
agement system. The inventory control is the important func-
tion of the production management, and it aims to maintain
the inventory quantity at the proper levels. In other words, the
inventory levels of all the parts should be controlled such that
the following can be achieved: the quantities of each parts are
always more than the safety inventory, by which some prob-
lems can be dealt with to prevent the parts shortage; on the
other hand, there should not be too much excess inventory,
which causes the increase of the production cost. Here, this
company manufactures the products by the order made, and
the parts are replenished in lot unit only when they are short.

We show the inventory and flow of partsi in the factory

Figure 6:Product manufacturing process

in Fig. 6. Unused parts are kept in “Parts shelf”, then they
are delivered to “Assembly field” by “Parts delivery” to man-
ufacture the products. And the finished products are shipped
for each order. Here,Ii is the inventory quantity, which is
indicated by the dashed box. And,Si is the safety inven-
tory quantity included in it. Similarly,Ai1 is the already
assigned inventory quantity to the other ordered products in
“Parts shelf”;Ai2 is the one in “Assembly field”, that is, the
parts are in process. When the factory receives the new order,
the necessary parts quantityRi is calculated by the MRP sys-
tem. Then, insufficient quantityPi is replenished in lot unit.
Pi and the assigned total quantityAi are expressed as follows.

Pi = Ri − Ii +Ai + Si (1)

Ai = Ai1 +Ai2 (2)

For example, in the case of Fig. 5, as for partsY , if RY is 80,
IY is 50,AY is 30 andSY is 10, then the production quantity
PY becomes 70. In the factory, replenishment is done in lot
units as above-mentioned. So, there is often surplus, andPi =
0 in this case.

Here, it is necessary to grasp the accurate inventory quan-
tity to determinePi. However, it is not easy in the actual
factory. The types of the parts are several hundreds, and the
parts shelf are dispersed in various places of the factory to
adapt to the individual work process. Figure 7 shows the parts
shelf examples as for the long parts and small parts. The long
parts have to be counted from a particular direction. And, the
small parts are stored in containers. So, it is necessary to take
out them in order to count the exact quantities. In this way, it
takes time to move among the parts shelf and to investigate the
quantities. Actually, it was estimated to take a few man-days
for the stocktaking of all the parts. Moreover, the parts are
always moving from the parts shelves to the assembly fields,
so the actual inventory quantities of parts shelves are always
changing, too.

Incidentally, in the field of the production management in
the large companies, the large scale production management
system is introduced, such as the SAP [4], and the produc-
tion information is managed as the integrated system includ-
ing the inventory, accounting, order and so on. Also, the in-
ventory quantity is sometimes measured by using the RFID
(radio frequency identifier) tags in the various field to reduce
the inventory investigation workload [2].

However, the target factory is the small or medium-sized
company like most companies in Japan, of which proportion
is said 99.7% [24], and it is pointed out that the introduction of
such a management system is so less than the large company.

T. Kudo et al. / An Application of MongoDB to Enterprise System Manipulating Enormous Data100



Figure 7: Partsshelf in target factory

As for this cause, two factors can be pointed out from the view
point of their production scale. First, it is difficult to obtain
the effect commensurate with the system investment such as
the RFID and so on. Second, it is difficult to reserve the full-
time personnel for the system operations, grasping the field
data and entering it into the system. However, with the de-
velopment of the e-commerce and supply chain management
(SCM), it is becoming necessary to introduce the EDI with the
large companies. Therefore, it is also becoming necessary to
introduce the production management system to manage the
data for the EDI. And, the inexpensive packages of the pro-
duction management systems are distributed. However, they
need to enter accurate inventory quantities.

As a result, to grasp the actual inventory efficiently and to
determine the part production quantityPi became the require-
ment of the target inventory management system. And, there
are also following supplemental requirements. First, from the
viewpoint of the cost performance, the target system must
be implemented without using expensive equipments and de-
vices. Second, the system operations must be performed with-
out increasing the workload of personnel.

3 APPLICATION METHOD OF
MONGODB

3.1 Novel Method to Grasp Actual Inventory

For the problem mentioned in Section 2.3, we changed our
idea about the judge method of parts sufficiency from count-
ing the actual inventory. And, we proposed a method to judge
whether the necessary quantity is satisfied or not by the hu-

Figure 8: Change ofquantity of parts inventory and delivery

man vision based on the following facts. Firstly, as for the
parts delivery or the product shipment, the quantity of each
necessary parts can be grasped easily by using the MRP sys-
tem. That is, it can be calculated automatically by the order
ID and necessary quantity of each product, and these data is
received via EDI as the electronic data and can be used ef-
ficiently. Secondly, the human vision can grasp the approxi-
mate number of parts efficiently in the various situations.

Figure 8 shows the change of the theoretical inventory of
a parts, which is the necessary quantities and corresponds to
equation (1). Incidentally, the product shipments are omitted
for the sake of simplicity in this figure. In this case, the parts
are prepared in the parts shelf prior to assembly start 3 days,
and the safety inventory quantity is 5. For example, 10 parts
are prepared (15 including the safety inventory; “Ai1 + Si”)
on second, and they are moved to the assembly field on fifth
(“A i2”). Similarly, the parts are prepared 4 on fourth; 7 on
sixth, and they are delivered on seventh and ninth respectively.
So, on second,Ri is 4; Ii is 15;Ai1 is 10;Si is 5. Then, the
production quantityPi is 4 on fourth.

However, in the actual field, since there are manufacturing
loss and the process delay, they do not always equal to the ac-
tual inventory. Therefore, as above-mentioned, to perform the
inventory control, the actual inventory must be grasped, too.
And, only the judgement that there is the necessary quantity
of parts in the parts shelf on the designated date is performed
in our proposed method, so it can be done efficiently. For
example, assuming that Fig. 8 shows the transition of parts
stocked in the rightmost container of Fig. 7 (b), and it is suf-
ficient if more than 15 parts are present on the second day.
If we see in Fig. 7 (b), then we find it is easy to judge it by
the human vision, even if we do not know the exact inventory
quantity. Therefore, by this method, the inventory manager
can perform his business efficiently in the office by using the
image and video, and he needs no field work. And, in the
case where some actual parts inventory may be insufficient,
the parts replenishment in lot unit is ordered by the manager.

We show the composition of the proposal system in Fig.
9. The worker takes out the parts from the parts shelf, then
take the image and video of this shelf by his hand-held cam-
era. And, he enters it into the database with the parts data:
the order ID and product ID. Then, the system calculates the
both theoretical inventory as shown in Fig. 8: the one was
remained in the parts shelf; the other was delivered to the as-

International Journal of Informatics Society, VOL.9, NO.3 (2017) 97-108 101



Figure 9:Composition of proposal system

sembly field. In this operation, for example, as shown on the
fifth day of Fig. 8, the delivered quantity (here, 10) is reduced
from thedocument(Ai1 + Si) of the parts shelf and the same
quantity is added to thedocument(Ai2) of the assembly field.
And, the total quantity (Ii) that is the sum of the both must
not change during this operation.

Here, in order to manage the actual inventory by this method,
it is necessary to grasp the exact theoretical inventory shown
in Fig. 8. And, since the parts are stocked separately in both
the parts shelf and the assembly field, the theoretical inventory
is managed by each correspondingdocument. This indicates
that the updating of these twocollectionsmust be processed
as a transaction maintaining the ACID properties.

3.2 Requirements for Database Application

As shown in Section 3.1, the database of the proposal sys-
tem must satisfy the requirements in two sides. The one is
the enormous data manipulation to grasp the actual inventory,
which is provided by MongoDB as shown in Section 2.2; the
other is the transaction management to calculate the theoreti-
cal inventory, which is provided by the RDBMS for the usual
enterprise system.

That is, the database of the proposal system has to treat
not only the character and numerical data of the inventory
information, but also the image and video data in the factory.
So, if this system was implemented by using the RDBMS,
the significant restrictions occurs on the data manipulation as
shown in Section 2.2.

For this reason, we used MongoDB for the database of this
system. On the other hand, if this system was implemented
by using MongoDB, the following restrictions are considered:
the ACID properties is not maintained as the whole trans-
action; the join operation to connect pluralcollectionseach
other is not supported.

In summary, the requirements for the application of Mon-
goDB to the proposal system is as the following. The first
requirement is that its transaction can manipulate the plural
collectionswith maintaining the ACID properties. The sec-
ond requirement is itscollectionscan be connected each other
using only the reference among them. That is, it is composed
without the feature not provided in MongoDB: the join oper-
ation and so on. The third requirement is that its transaction

Figure 10:Inventory management model for MongoDB

can efficiently manipulate the enormous data such as images
and videos. That is, its manipulation time of such a data must
be shorter than the time of MySQL.

3.3 Inventory Management Model for
MongoDB

As for the first requirement, it could be satisfied by the
transaction feature of MongoDB which was the result of our
previous study shown in Section 2.1; as for the second re-
quirement, we composed the system with a fewcollections,
and made them to be correlated by the same key field or Ob-
jectID. Based on these policy, we constructed the transaction
model of the inventory management shown in Fig. 10.

In the following, we show only the necessary data fields
extracted from the actual data fields for the sake of simpli-
fication. In Fig. 10, “Parts inventory”collection (below,
Parts inventory) saves each parts quantity in the parts shelf;
“Parts Delivery” collection (below, Parts delivery) saves
the delivered parts quantities, and it has the following fields
{order ID, product ID, parts ID, necessaryquantity,shortage
quantity,imageID}; “Image”collection(below,Image) saves
{imagename, imagedata}of theparts shelf. Here, imageID
is the ObjectID of theImage. As for Parts delivery at
the planning time,{order ID, product ID, parts ID, shortage
quantity} is saved, and the value of{necessaryquantity} is
also setto {shortagequantity}.
Delivery is the transaction which executes the delivery

processing of the parts from the parts shelf to the assembly
field. And, in Fig. 10, there are transactionsDelivery(A)
andDelivery(B). They correspond to the product A and B
in Fig. 5 respectively. That is, they reduce the parts quantity
from Parts inventory on the basis of the necessary amount
for product A or B, and save the image and video after parts
delivery intoImage. Also, they update{shortagequantity}
of Parts delivery according to the delivery of parts. Here,
in order to process as a transaction, it performs the delivery
processing by each product unit of each order. For example,
in the case of product A in Fig. 5, 60 parts X and 20 parts Y
is delivered. Then, if any parts is insufficient for its delivery,
then no delivery is executed. That is, theshortage quantity
value is calculated by the following equation.

shortage quantity =

{
0 (All parts supplied)

at plan (otherwise)

TransactionInventory count calculates the total quantity of
parts X, Y, Z in twocollections:Parts inventory andParts
delivery. This process is executed as a single transaction for
each parts.

T. Kudo et al. / An Application of MongoDB to Enterprise System Manipulating Enormous Data102



Figure 11: Access methodfor the enormous data

The concrete requirements to MongoDB in order to imple-
ment this model are as follows. First, the concurrency control
of the transactions on twocollectionsshould be performed.
That is,Parts inventory andParts delivery are updated
simultaneously, and queried. Concretely, while the transac-
tionDelivery is updating thesecollections, Inventory count
is querying thesecollectionsto calculate the total quantity of
the parts as shown in Fig. 8. Here, both ofDelivery and
Inventory count should be executed as a single transaction
respectively. That is, if the latter queries the anomaly state
of the parts such that onecollectionhas already updated and
anothercollectionhas not updated yet, the incorrect inventory
quantity is calculated.

3.4 Transaction Processing Method for
Enormous Data

As for the third requirement, the images and videos are ma-
nipulated to confirm the inventory shelf. In particular, the im-
age and video size becomes very large in the following cases
where the long time video data is necessary: the status of the
parts shelf shown in (a) of Fig. 7 must be confirmed from var-
ious side; various kinds of parts are delivered simultaneously
from the parts shelf shown in (b). Therefore, the elapsed time
of transaction to manipulate the enormous image and video
becomes so long. As a results, since the lock is used in our
transaction feature, the extreme latency is expected in the case
where the plural transactions executed concurrently.

For this problem, we used an optimistic locking utilizing
the ObjectID ofImage for the implementation of this method
as shown in Fig. 11, in order to reduce the lock time to save
the enormous data. Here, the ObjectID is the identifier of the
documentin MongoDB as shown in Section 2.1. So, it can be
used instead of the time stamp, and it is used as the link that
specifies the referencedocumentin MongoDB. Therefore, its
procedure is as follows. Firstly, at (1) in Fig. 11,{imageID}
of thedocumentin Parts deliverythat is the ObjectIDA and
B is queried, by which the correspondingdocumentsof Im-
ageare referred. Next, at (2), the new image or imageX and
Y are added toImage, then the transaction to updateParts de-
livery is begun. So, the target documents ofParts deliveryare

locked, and above-mentioned ObjectIDs are queried again: if
these ObjectIDs have not been changed, these ObjectIDs are
changed toX andY and its commit is performed; if the Ob-
jectIDs are changed, that is, thesedocumentsof image have
been changed by the other transactions, its rollback is per-
formed. Then, the post process in (3) is performed: in the
case of the former, the images and videos having ObjectIDA
andB are deleted; in the case of the latter, the images and
videos having ObjectIDX andY are deleted.

By this method, above-mentioned enormous data manipu-
lation can be separated from the lock period of the transac-
tion, and the lock is performed only while the transaction to
manipulateParts delivery. As a result, the lock period can be
shortened, and the manipulation of several images and videos
can also be performed as a single transaction. By the way,
though only the case of update is shown in Fig. 11, the case of
addition and deletion of images and videos can be performed
similarly: as for the former, firstly the images and videos are
added, then the transaction to updateParts deliveryis per-
formed; as for the latter, firstly the transaction is performed,
then the images and videos are deleted.

4 IMPLEMENTATIONS AND
EVALUATIONS

4.1 Implementation of Inventory
Management Model

We implemented the prototype of the inventory manage-
ment model shown in Fig. 10 on a stand-alone PC. Its imple-
mentation environment is as follows: CPU is i7-6700 (3.41
GHz); memory is 16GB; disk is SSD memory of 512GB; OS
is Windows 10. We adopted MongoDB (Ver. 3.3.6) for the
database; Java (Ver. 1.8.073) for programming; MongoDB
Java driver (Ver. 2.14.2) to access MongoDB from Java pro-
gram. The above-mentioned three transaction programs are
performed simultaneously using Thread class of Java, and
the transaction feature shown in Section 2.1 was used for
their concurrency control, which had been implemented by
our previous study. And, we used GridFS class of MongoDB
Java driver to store the image and video data to MongoDB
[15].

Also, we implemented MongoDB update transaction by the
following two methods to evaluate the deterioration of con-
flicts associated with saving the image and video data. The
first method is shown in (2) of Fig. 12, and the image and
video data is saved to MongoDB as a part of the transac-
tion, that is, it does not use the method for the enormous data
shown in Section 3.4.

Its procedure is as following. Firstly, to confirm whether
there is sufficient stock in the inventory shelf, the transaction
Delivery queryParts inventory query it by using the ex-
clusive lock. So, the conflict between other transactions may
occur henceforth. Then, it update{shortagequantity} of the
correspondingdocumentin Parts delivery to 0. Next, it re-
duces{storagequantity} of Parts inventory, and save the
image and video data toImage. Finally, it executes the com-
mit. Incidentally, we excluded the case of shortage of inven-
tory in this experiment. In addition, we set the delay between

International Journal of Informatics Society, VOL.9, NO.3 (2017) 97-108 103



Figure 12:Program structure and experiment

the above-mentioned access of the twocollectionsin order
to confirm the occurrence of the conflicts. Also, in the case
where the conflict occurs, the transaction performs the retry
after a certain waiting time.

The second method is shown in (1) of Fig. 12 which is
mentioned in Section 3.4. And, it is similar to the first method,
except that it saves the image and video data before updating
the documentin Parts inventory andParts delivery. In
other words, since the image and video data is saved prior to
the start of the transaction, anydocumentis not locked by this
image and video data manipulation.

Then, as for the query transactionInventory count, we
also implemented it by the following two methods, in order
to evaluate the difference between the execution as the single
transaction and as the multiple transactions (“separated trans-
action” in Fig. 12 (b)). Here, the latter corresponds to the
MongoDB’s method such as “findOne”.

In the first method, in order to prevent thecollectionsto be
updated by other transactions during its query, it queries each
collectionby using the shared lock. And, based on the query
results, it calculates the sum of the parts. In this way, after it
completes the processing, it executes the commit. Then, after
waiting for a certain time, the next transaction is started to
query another parts.

The second method is similar to the first method, except
that it executes the commit after queryingParts inventory;
then it queriesParts delivery. That is, it separates the query
processes into two transactions. We show these two methods
in (a) and (b) in Fig. 12 respectively.

4.2 Experiments and Evaluations

We conducted the experiments by the implementation pro-
gram of the inventory management model, and evaluated the
methods. The setting and procedure of the experiments are
as follows. We set the sufficient inventory quantity of each
parts as the initial value ofParts inventory. Also, we saved
enough order data intoParts delivery.

Then, we started the three transactions in Fig. 10 at the
same time: two update and one query transactions. As for the
update transactions, we set 100 msec for the delay time be-
tween update the twocollections. We also set 100 msec for
the delay of next transaction start. As for the query transac-
tion, we also set 250 msec for the delay of next transaction
start. And, for both transactions, we set 50 msec for the delay
before the retry when the conflict occurs. In the experiment,
we executed each update transaction 12 times, and the query
transaction 14 times. We used the same image data for every

Query numbernumber

Figure 13:Result of experiment 1

Figure 14:Result of experiment 2

transaction in order to simplify the evaluation. And, its size is
3.3MB.

For the evaluations about the first requirement, we con-
ducted the following experiment 1 and 2. In experiment 1,
we conducted the comparative evaluation between the meth-
ods (a) and (b) in (1) of Fig. 12, and Fig. 13 shows its results.
Here, “Parts quantity” shows sum of the following quantities
queried byInventory counttransaction: one was the quantity
in Parts deliverywhich was as of after the delivery; the other
was inParts inventorywhich was as of before the delivery.
And, Fig. 13 shows the query results at 4 check point when
the quantity inParts inventoryof the both graph was equal.
Here, the total parts quantity of the both must be always con-
stant. And, as for (a), the query result of the total is always
constant. However, as for (b), the query result is increased de-
pending on the query timing. That is, since the query process
was separated into two transactions, the anomaly occurred by
querying the halfway state. As a result, it was confirmed that
the isolation of the transactions is maintained also in this ap-
plication field, by our transaction feature.

Figure 14 shows the results of experiment 2, in which we
conducted the comparative evaluation between the methods
(1) and (2), in (a) of Fig. 12: as for (1), the image data was
saved before the transaction start as shown in Fig. 11, so the
time period of transaction was shortened; as for (2), the im-
age data was saved inside the transaction. Incidentally, this
experiment was conducted in the case where image data was
added. Here, this experiment was performed three times for
each case, and Fig. 14 shows the average of these results.

T. Kudo et al. / An Application of MongoDB to Enterprise System Manipulating Enormous Data104



Figure 15: Videomanipulation statement of MySQL

Figure 16: Videomanipulation command of MongoDB

Prior to this experiment, we measure the individual elapsed
time ofDelivery andInventory count transaction. In this
case, only one transaction is executed at the same time, and
there is no conflict. We show this result in (0) of Fig. 14.

In Fig. 14, the line graph shows the change of the elapsed
time for each transaction; the bar graph shows the number
of the conflicts occurred for exclusive lock and shared lock
respectively. (1) of Fig. 14 shows the experimental result
of the method of (1) in Fig. 12. As the result in this case,
the number of each conflict was about 10; the increase of
elapsed time from (0) was about 10%. On the other hand,
as shown in (2), in the case where the image data is stored
as a part of the transaction, the number of the exclusive and
shared conflict was about 70 and 30 respectively; the elapsed
time of Delivery transaction became 1.7 times longer than
(0); Inventory count transaction became 2.7 times longer.
Therefore, as for the enormous data such as image and video
data, the conflicts could be reduced by the method shown in
Fig. 11.

4.3 Comparison Evaluations of Image and
Video Data Access Performance

For the evaluations of access performance of image and
video, we conducted the following experiment. That is, it is
the performance comparison about the enormous video data
between MySQL and MongoDB. Here, as shown in Section
2.2, though there are some restrictions as for MySQL, it can
save the video as the binary data. Therefore, this experiment
was performed using video data up to 1 GB, which is within
the restriction of MySQL. We used BLOB type in MySQL,
and GridFS interface of MongoDB.

The videos were shot by the digital camera, and its data
size was about 121 MB per minute. In this evaluations, we
used the data of 1, 2, 4 and 8 minutes. And, as for each data
we measured the following elapsed time, respectively: firstly,
we saved the data into the database, then queried the data.
We performed these data manipulations outside of the trans-
action processing as shown in Fig. 11. As for MySQL, we
performed the SQL statement by the MySQL monitor, and

Figure 17: Evaluationresult of performance comparison

Table 2: Comparison of man-hours per year

No Classification CapEx * OpEx Total
(1) No systematization 1,200 1,200
(2) Inventory planning 72 60 132
(3) Image management 72 4 76

*: Man-hours per yearwhen the life cycle is 3 years.

grasped their elapsed times by the displayed execution time
on the monitor. We show the statements in Fig. 15: we
added the data into the database by the “insert” statement,
then loaded the data into the file by the “select into dumpfile”
statement. Here, the folder name is simplified. And, as for
MongoDB, we performed the batch file as shown in Fig. 16:
we added the data into the database by the “put” command,
then query the data by the “get” command; their elapsed times
were grasped by displaying the system time using the “echo”
command.

We show the experimental result in Fig. 17. It shows the
average time of three executions as for each processing. The
elapsed time increased in proportion to the amount of data in
all the cases. In Fig. 17, the elapsed time of additional case in
MySQL is shown by the right axis of the graph. It was about
25 times the additional case in MongoDB: in the case where
the additional data size was 964 MB, the time in MySQL was
more than 200 seconds; whereas the time in MongoDB was 8
seconds. In addition, the query time in MySQL was substan-
tially the same as the additional time in MongoDB; the query
time of MongoDB was about half of it.

4.4 Evaluations of Cost Performance of
Proposal System

We evaluate the cost performance to introduce and operate
the proposal inventory management system shown in Fig. 9.
Currently, as the first step, it is planned in the target factory to
gradually introduce an inventory management system for 100
common parts which are most frequently used. We show this
systemization plan in Table 2, and we are advancing the sys-
temization of inventory planning shown at (2) now. We show
the detail of each systemization classification as the follow-
ing.

(1) No systematization:This is the current situation, that is,
no inventory management system has been introduced. In

International Journal of Informatics Society, VOL.9, NO.3 (2017) 97-108 105



this case,in order to prevent the parts shortage, it is es-
sentially necessary to perform the stocktaking every day.

(2) Inventory planning: This is the systemization of the
function to calculate the transition of the necessary inven-
tory quantity due to the order information received via the
EDI. That is, the theoretical inventory shown in Fig. 8 is
calculated automatically. So, since it is necessary to per-
form the stocktaking only to grasp the difference between
the actual inventory and theoretical inventory, it becomes
enough to perform once per month.

(3) Image and video management:In addition to (2), the
proposal inventory management of this study is system-
atized to improve the stocktaking efficiency, which uti-
lizes the image and video of parts shelves. Incidentally,
in actual operation, we are planning to take the images
and videos at the time of delivery of inventory. However,
we evaluate it as the monthly stocktaking for the sake of
comparative evaluation with (2).

For each of these systemization, we calculated the annual
man-hour from the following two perspectives: the one is cap-
ital expenditure (hereinafter, “CapEx”)，which contributes to
the fixed infrastructure of the company and they are depreci-
ated over time; the other is the operational expenditures (here-
inafter, “OpEx”), which do not contribute to the infrastructure
itself and consequently are not subject to depreciation [29].
Here, the former is the man-hour to develop and introduce
the system, and we assume that the system is depreciated in
3 years. That is, we assume the life cycle of the system is 3
years, so the man hours of CapEx shown in Table 2 are the
results divided by 3. And, each man-hour of Table 2 was cal-
culated as follows.

(a) CapEx: This is the man-hour to develop and introduce
the system, and we calculated it based on the MRP sys-
tem that has been already introduced. In (2) and (3), the
man-hour for the development including the function ad-
dition and improvement after the trial use is 160 man-
hours; the man-hour for introduction is mainly the data
entry work, it was calculated 54 man-hours due to the ra-
tio of the number of types of the target parts based on the
introduction man-hour of the MRP system. We divided
these total 214 man-hours by 3 years, which is the life
cycle of the system, to calculate the annual man-hour.

(b) OpEx: This is the annual man-hour for the stocktaking.
As for (1), we used the estimated stocktaking time of all
parts obtained by the preliminary investigation. And, due
to the ratio of the target parts, we calculated it as 5 man-
hours for one time, then multiplied by the number of an-
nual stocktaking regarding it as the daily work. As for
(2), we calculated it as of monthly stocktaking, so it is
1/20 of (1). As for (3), we used 12 man-seconds per one
type of parts, which was obtained by the experiment, and
calculated in the same way as (2).

(c) Total: This is the total of (a) and (b).

Now, since OpEx is too large to perform as the daily regular
work as shown in (1) of Table 2, it cannot be performed. On
the other hand, by the systemization of the inventory plan-
ning, OpEx it is expected to be 1/20 as monthly work. So,
the stocktaking is expected to be able to perform as the regu-
lar work. And, we estimate that the total man-hour including
the system development and introduction can be reduced by
about 90% per year. Furthermore, by adding the systemiza-
tion of the image and video management (3), the man-hour
of the stocktaking can be reduced, and we estimate the total
man-hour can be reduced by 45% from (2).

Incidentally, the man-hour of the system development and
introduction is smaller comparing to the usual commercial
system. In addition, since this system can be composed on
the existing PC by using only the free or existing software,
the capital investment is not needed. This reason is because
this system is introduced as a prototype system and we do not
regard the operability such as the user interface. Instead, our
students assist the system operation at the factory if necessary,
and this is included the man-hour in Table 2. Incidentally, the
work performed as research is not included in this man-hour,
such as the method study and evaluation, technical investiga-
tion.

Then, this company evaluates the effectiveness of the sys-
tem, and decides the introduction of the commercial system
or using this system. For example, in the case of the preced-
ing MRP system, they introduced a commercial system for
the part related to EDI; they are using our prototype system to
calculate the material cost for their estimations. The reason is
because the former is related to the business connection with
the other companies, and the high quality and operability are
necessary; the latter needs to change the calculation flexibly
according to various estimation conditions.

5 DISCUSSIONS

With the spread of the IoT, various types of enormous data
are used widely. And, to store these data efficiently, GridFS
interface of MongoDB is provided. So, it is expected that
the enterprise system also can be more useful by using such
a feature. However, as for this, there were the problems to
be satisfied the following requirements as shown in Section
3.2: first, the transaction must maintain the ACID properties;
second, the data manipulation must be executed without us-
ing the join operation; third, the enormous image and video
manipulation must be performed as a transaction. So, there
has been no its application case to the enterprise systems.

On the other hand, the inventory management work of our
assisting factory was expected to be more efficiently by using
the image and video data for the stocktaking. So, we con-
ceived to apply GridFS interface of MongoDB to its produc-
tion management system. And, through this application, we
confirmed that the above-mentioned feature can be applied to
the inventory management system. Concretely, we satisfied
the requirement as following: first, we used the transaction
feature which we had developed as the previous study; sec-
ond, we connectedcollectionsby the reference using ObjectId
or same key field; third, we composed the optimistic locking
feature by utilizing the sourcedocumentlinked to the image

T. Kudo et al. / An Application of MongoDB to Enterprise System Manipulating Enormous Data106



and videodocument.
As aresult, we confirmed MongoDB could be applied even

to the enterprise system through the experiments, that is, it
satisfied the above-mentioned requirements. First, as shown
in Fig. 13, the anomaly of the transaction to update the plural
data could be avoided by our transaction feature. Second, the
collections could be composed to refer each other including
the inventory datacollectionand the image and videocollec-
tion, as shown in Fig. 11. That is, the reference using Ob-
jectID and so on could be used instead of the join operation.
Third, as shown in Fig. 14, the enormous image and video
manipulation could be performed as a transaction by the opti-
mistic locking shown in Fig. 11. In addition, its performance
is better than MySQL as shown in Fig. 17.

Now, with the development of the IoT, the databases, which
can handle the wide diversity of data, is expected to spread
to the enterprise systems. Along with this, it is expected
that many devices access the NoSQL database concurrently
like this system, too. Therefore, we consider that the needs
of transaction feature for the NoSQL databases would grow
more. And, by this feature, we consider that the application
field of the databases can be expanded to the field where the
problems has occurred by using not only the RDBMS but also
the conventional MongoDB.

Next, as for the efficiency by using the image and video
data, we showed the case study of the stocktaking in the in-
ventory management. As shown in OpEx of Table 2 (2) and
(3), it is estimated that its man-hour can be drastically re-
duced. This reason is because the stocktaking work could
be changed from counting the actual parts to judging that the
actual inventory was sufficient by the flexible human vision.

And, there was the requirements to introduce this system
into the target company, that is, the small and medium-sized
company: the workload of the personnel should not increase;
the system could be implemented at a low cost. As a result,
as shown in Section 4.4, we could satisfy these requirement,
though it was a prototype. Therefore, we consider that the
system that utilizes the various type of data such as images
and videos is useful for such companies. Furthermore, we
consider it is useful for the other various fields.

6 CONCLUSIONS

Currently, various type of data can be used by the spread of
the IoT and the development of the NoSQL database. How-
ever, to apply the NoSQL database to the enterprise systems,
there were some problems such as the transaction feature.
In this paper, we showed the application case of MongoDB
which is a kind of NoSQL database to the production man-
agement system. We implemented the function mainly for
the stocktaking as the prototype system, and we are advanc-
ing to introduce this system to the target factory. As a result,
we confirmed MongoDB could be applied to the enterprise
system by equipping the transaction feature maintaining the
ACID properties; the function of NoSQL database such as
the manipulation of the enormous data is useful even in the
enterprise systems.

The feature challenge will focus on the improvement of
the efficiency of actual production management system op-

erations such as the numerical, image and video data entry
at the field. In addition, we will confirm that this transaction
feature can be implemented in the distributed database envi-
ronment; the enormous data manipulation can be performed
more efficiently in this environment.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Num-
ber 15K00161.

REFERENCES

[1] K. Banker, “MongoDB in Action,” Manning Pubns Co.
(2011).

[2] M. Bertolini, et al., “Reducing out of stock, shrinkage
and overstock through RFID in the fresh food supply
chain: Evidence from an Italian retail pilot,” Interna-
tional Journal of RF Technologies, Vol. 4, No. 2, pp.
107–125 (2013).

[3] R. Cattell, “Scalable SQL and NoSQL data stores,”
ACM SIGMOD Record, Vol. 39, No. 4, pp. 12–27
(2011).

[4] I.J. Chen, “Planning for ERP systems: analysis and
future trend,” Business process management journal,
Vol. 7, No. 5, pp. 374–386 (2001).

[5] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,”
Mobile Networks and Applications, Vol. 19, No. 2, pp.
171–209 (2014).

[6] A. Eisenberg, and J. Melton, “SQL:1999, formerly
known as SQL3,” ACM Sigmod record, Vol. 28, Issue 1,
pp. 131–138 (1999).

[7] J. Gray, and A. Reuter, “Transaction Processing: Con-
cept and Techniques,” San Francisco: Morgan Kauf-
mann (1992).

[8] S. Hiremath, G. Yang, and K. Mankodiya, “Wearable
Internet of Things: Concept, architectural components
and promises for person-centered healthcare,” EAI 4th
International Conference on Wireless Mobile Commu-
nication and Healthcare (2014).

[9] C.L. Iacovou, I. Benbasat, and A.S. Dexter, “Electronic
data interchange and small organizations: adoption and
impact of technology,” MIS quarterly, Vol. 19, No. 4,
pp. 465–485 (1995).

[10] T. Kudo, M. Ishino, K. Saotome, and N. Kataoka, “A
Proposal of Transaction Processing Method for Mon-
goDB,” Procedia Computer Science, Vol 96, pp. 801–
810 (2016).

[11] D. Laney, “3D Data Management: Controlling Data
Volume, Velocity and Variety,” META Group (2012),
http://blogs.gartner.com/doug-laney/files/2012/01/ad94
9-3D-Data-Management-Controlling-Data-Volume-Ve
locity-and-Variety.pdf (reffered May 5, 2017).

[12] H. Garcia-Molina, and K. Salem, “SAGAS,” Proc. of
the 1987 ACM SIGMOD Int. Conf. on Management of
data, pp. 249–259 (1987).

[13] K. Hong-yan, “Design and realization of internet of
things based on embedded system used in intelligent
campus,” International Journal of Advancements in

International Journal of Informatics Society, VOL.9, NO.3 (2017) 97-108 107



Computing Technology, Vol. 3, No. 11, pp. 291–298
(2011).

[14] MongoDB Inc., “The MongoDB 3.4 Manual,” http://do
cs.mongodb.org/manual/ (reffered May 5, 2017).

[15] MongoDB Inc., “MongoDB API Documentation for
Java,” http://api.mongodb.org/java/ (reffered May 5,
2017).

[16] MongoDB Inc., “Write Operation Performance,” https:
//docs.mongodb.com/v3.4/core/write-performance/
(reffered May 5, 2017).

[17] Oracle Corp., “MySQL 5.7 Reference Manual,”
http://dev.mysql.com/doc/refman/5.7/en/ (reffered May
5, 2017).

[18] J. Pokorny, “NoSQL databases: a step to database scala-
bility in web environment,” International Journal of Web
Information Systems, Vol. 9, No. 1, pp. 69–82 (2013).

[19] D.R. Rebecca, and I. E. Shanthi, “A NoSQL Solution to
efficient storage and retrieval of Medical Images,” Inter-
national Journal of Scientific & Engineering Research,
Vol. 7, No. 2, pp. 545–549 (2016).

[20] E. Redmond, and J.R. Wilson, “Seven Databases in
Seven Weeks: A guide to Modern Databases and the
NoSQL Movement,” Pragmatic Bookshelf (2012).

[21] R. Sears, C. Van Ingen, and J. Gray, “To blob or not
to blob: Large object storage in a database or a filesys-
tem?,” arXiv preprint cs/0701168 (2007).

[22] K. Seguin, “The Little MongoDB Book” (2011),
http://openmymind.net/mongodb.pdf (reffered May 5,
2017).

[23] L.A.B. Silva, et al., “Medical imaging archiving: A
comparison between several NoSQL solutions,” Int.
Conf. on Biomedical and Health Informatics, pp. 65–68
(2014).

[24] The Small and Medium Enterprise Agency, “2015
White Paper on Small and Medium Enterprises in Japan
and White Paper on Small Enterprises in Japan (out-
line),” (2015), http://www.chusho.meti.go.jp/pamflet/
hakusyo/H27/download/2015hakushogaiyoueng.pdf
(refferedMay 5, 2017).

[25] S.S. Sriparasa, “JavaScript and JESON Essentials,”
Packt Pub. Ltd. (2013).

[26] M.P. Stevíc, B. Milosavljevíc, and B. R. Perišić, “En-
hancing the management of unstructured data in e-
learning systems using MongoDB,” Program, Vol. 49,
No. 1, pp. 91–114 (2015).

[27] M. Stonebraker, and C. Ugur, “One size fits all”: an idea
whose time has come and gone,” Proc. of 21st Int. Conf.
on Data Engineering, pp. 2–11 (2005).

[28] M. Stonebraker, et al., “The end of an architectural
era:(it’s time for a complete rewrite),” Proc. of 33rd Int.
conf. on Very large data bases. VLDB Endowment, pp.
1150-1160 (2007).

[29] S. Verbrugge, et al., “Modeling operational expenditures
for telecom operators,” Proc. of Conf. on Optical Net-
work Design and Modeling, pp. 455–466 (2005).

(Received October 9, 2016)
(Revised May 9, 2017)

TsukasaKudo received the M.E. from Hokkaido
University in 1980 and the Dr.Eng. in industrial
science and engineering from Shizuoka Univer-
sity, Japan in 2008. In 1980, he joined Mitsubishi
Electric Corp. He was a researcher of parallel
computer architecture, an engineer of application
packaged software and business information sys-
tems. Since 2010, he is a professor of Shizuoka
Institute of Science and Technology. Now, his re-
search interests include database application and
software engineering. He is a member of IEIEC

and Information Processing Society of Japan.

Yuki Ito is currently working toward a B.I. degree
at Shizuoka Institute of Science and Technology.
His research interests include IoT, web system and
SEO.

Yuki Serizawais currently working toward a B.I.
degree at Shizuoka Institute of Science and Tech-
nology. His research interests include database
application and production management system.

T. Kudo et al. / An Application of MongoDB to Enterprise System Manipulating Enormous Data108




