
Design and Implementation of a Multimedia Control and Processing
Framework for IoT Application Development

Daijiro Komaki*, Shunsuke Yamaguchi*, Masako Shinohara*, Kenichi Horio*,
Masahiko Murakami*, and Kazuki Matsui*

* Fujitsu Laboratories Ltd., Japan
{komaki.daijiro, yamaguchi.shun, m-shinohara, horio, mul, kmatsui}@jp.fujitsu.com

Abstract - When creating Internet-of-Things (IoT) applica-
tions, it is difficult to deal with multimedia data captured
from cameras and microphones installed at field sites since
it requires a wide variety of knowledge of topics such as
codecs, protocols and image processing. To solve this prob-
lem, therefore, we propose a framework that makes it easy
to deal with multimedia stream data in IoT application de-
velopment. Our framework has three main features as fol-
lows: (1) Virtualization of multimedia input/output devices;
(2) Distributed execution of multimedia processing pipeline
between gateways and a cloud; and (3) Simple service de-
scription using a graphical flow editor. In this paper, we
present some prototype applications we created and discuss
the effectiveness of our framework from the perspective of
complexity, productivity and ease of trial and error.

Keywords: Internet-of-Things, Multimedia, Framework,
Web API

1 INTRODUCTION

We have entered the era of the Internet-of-Things (IoT),
where not only computers but also physical objects (i.e.,
things) such as vehicles and home appliances are connected
to the internet and interact with each other, or with systems,
services and people. When creating such IoT applications, it
is important to make devices such as sensors and actuators
already installed at field sites (e.g., classrooms, concert halls,
building entrances) available for various applications, rather
than to install devices at a field site for a specific purpose [2,
5].

In addition, not only sensory data (e.g., temperature and
acceleration) but also multimedia data (i.e., audio and video)
captured from devices such as cameras and microphones
installed at field sites are important for IoT application de-
velopment, since we can offer many beneficial applications
that utilize multimedia data as sensory data by using com-
puter vision technologies (e.g., detecting a suspicious per-
son at a building entrance), or that utilize sensory data as an
input to process multimedia data (e.g., adding effects to a
live video stream of a concert event according to the mood
of audiences there).

On the other hand, there are some multimedia frameworks
such as Kurento1 [4] and Skylink2 that make it easy to create
applications utilizing multimedia data. These frameworks
provide multimedia server programs and client libraries, and

1 Kurento: https://www.kurento.org/
2 Skylink: http://skylink.io/

developers can easily create their applications without wor-
rying about the differences in codecs and formats of au-
dio/video contents by using the provided libraries. For ex-
ample, developers can easily create applications equipped
with multimedia features (e.g., VoIP, augmented reality)
simply by connecting multimedia processing blocks as a
pipeline. However, even when using these frameworks,
problems remain when considering the characteristics of IoT
application development, as follows:

 Since there may be many different types of devices at
field sites, developers need to know the detailed speci-
fications (e.g., an interface to start/stop capturing me-
dia data, to establish a media session between a device
and a media server) in advance, and need to create ap-
plications according to the specifications.

 If all multimedia stream data generated at field sites are
continuously transferred to a media server, they con-
sume large amounts of network bandwidth.

To solve these problems, we designed and implemented a
framework to simplify the process of multimedia IoT appli-
cation development. Our framework has three main features
as follows:

Virtualization of Multimedia Input/Output Devices
Our framework provides a mechanism to virtualize mul-

timedia input/output devices (e.g., cameras and speakers) to
obscure the differences in heterogeneous device specifica-
tions. This mechanism means that developers no longer need
to consider the details of devices already installed at field
sites, and applications once created can be adapted for an-
other field site.

Distributed Execution of Multimedia Processing Pipeline
between Gateways and a Cloud

Our framework provides a mechanism to distributedly
process single multimedia stream data by coordinating mul-
tiple multimedia servers running independently on gateways
(installed at field sites) and on a cloud, respectively. This
mechanism enables developers to easily create multimedia
IoT applications that can save network bandwidth usage and
can serve immediate detection and response to field sites.

Simple Service Description using a Graphical Flow Edi-
tor

Our framework provides a web-based graphical flow edi-
tor tool to simply define a distributed multimedia processing

73International Journal of Informatics Society, VOL.9, NO.2 (2017) 73-84

ISSN1883-4566 ©2017 - Informatics Society and the authors. All rights reserved.

pipeline by connecting input/output device blocks and filter
blocks. This tool enables developers to easily use trial and
error by replacing and relocating each block.

In this paper, we present some of the prototype applica-
tions we created and discuss the effectiveness of our frame-
work from the perspective of complexity, productivity, and
ease of using trial and error.

2 RELATED WORK

2.1 Multimedia Frameworks

There are several frameworks that make it easy to create
applications that utilize multimedia stream data. GStream-
er 3 is an open-source framework for creating multimedia
applications that handle audio, video and any kind of data
flow in a modular way. The basic idea of GStreamer is to
link together various plug-in elements (e.g., sinks/sources,
encoders/decoders, filters) on provided pipeline architecture
to obtain a stream that meets the desired requirements. This
seems to be effective for developers who are not familiar
with multimedia processing or multimedia networking.
However, even when using GStreamer, developers are re-
quired to know which type of devices, which protocols, and
which codecs to use in advance, in order to define a pipeline.

Kurento Media Server is an open-source multimedia serv-
er based on GStreamer that supports WebRTC. Developers
can easily create web-based multimedia streaming applica-
tions (e.g., VoIP, video conference, augmented reality) us-
ing provided APIs. Since Kurento Media Server provides
the mechanism to absorb the differences in media codecs
and formats, even developers unfamiliar with multimedia
processing (e.g., web application developer) can create mul-
timedia streaming applications by linking media processing
modules (e.g., image processing, event detection) via the
provided web APIs. In addition, this framework provides a
way to implement a new media processing module using
OpenCV 4(Open-Source Computer Vison). Computer vision
experts can create their new modules independently from
the application development process.

Although it becomes easy to deal with multimedia stream
data by using such framework technologies, these frame-
works are not necessarily suitable for creating IoT applica-
tions (that make use of devices already installed at field
sites) since developers need to create their applications ac-
cording to device type, protocols, codecs and so on.

2.2 IoT Application Development Platforms

On the other hand, there are several cloud-based plat-
forms for creating and deploying IoT applications that uti-
lize multiple sensors and actuators installed at field sites. Kii
Cloud5, a Backend-as-a-Service for IoT application devel-
opment, provides the functionalities to virtualize devices on
the cloud. IoT application developers can create their IoT
applications by combining multiple virtualized device func-

3 GStreamer: https://gstreamer.freedesktop.org/
4 OpenCV: http://opencv.org/
5 IoT Cloud Platform Kii: https://en.kii.com/

tionalities by using provided APIs, so they need not be con-
cerned about the differences in detailed specifications such
as communication protocols.

IBM Bluemix6 also provides a way to create IoT applica-
tions using virtualized device functionalities on the cloud.
Bluemix provides a graphical flow editor (called Node-
RED7) to create interactive, near real-time IoT applications
by simply connecting things and services. Blackstock [3]
focused on the fact that many IoT scenarios require the co-
ordination of computing resources across networks: on serv-
ers, gateways, and devices, and extended Node-RED in or-
der to create distributed IoT applications that can be por-
tioned between servers and gateways. MyThings 8 (provided
by Yahoo! Japan) enables users to create IoT applications
that link various devices to various web services by simple
IF-THEN rules.

Owing to such platforms, it becomes easy to create IoT
applications that connect multiple devices and services to
each other. However, if developers attempt to create an IoT
application that deals with multimedia streams generated
from field sites, they have to use multimedia frameworks
such as those mentioned above.

There have been a few efforts to simplify the creation of
IoT applications that can handle both sensory data and mul-
timedia data in combination. ThingStore [1] provides the
mechanisms to virtualize any type of device as a thing that
generates Boolean data (i.e., Boolean value represents
whether a certain event occurs or not). Owing to this ab-
straction, application developers can deal with media input
devices as sensor devices and can simply create IoT applica-
tions that coordinate both sensory and multimedia stream
data. However, since ThingStore abstracts multimedia
stream data as Boolean data, it is not suitable for dealing
with end-to-end multimedia stream data transferred from a
device to another device.

2.3 Kurento Media Server

In this section, we focus on Kurento Media Server, which
is the basis of our framework implementation. Kurento Me-
dia Server is an open-source software media server that
makes it simple to create web applications equipped with
multimedia features (e.g., VoIP, video conference, augment-
ed reality). Kurento Media Server provides endpoint mod-
ules (i.e., elements to input or output the multimedia stream)
and filter modules (i.e., elements affecting the media stream
or detecting events from the media stream) shown in Table 1.
Application developers are simply required to take the mod-
ules needed for an application and to connect them, without
worrying about differences in codecs and formats of au-
dio/video data. Figure 1 shows an application example: the
video stream captured by the web browser is sent to the me-
dia server, then FaceOverlayFilter detects faces from
frames of the video stream and puts a specified image on top
of them, and finally the face-overlaid video stream is sent

6 IBM Bluemix:
https://www.ibm.com/developerworks/cloud/bluemix/
7 Node-RED: http://nodered.org/
8 myThings: http://mythings.yahoo.co.jp/

74 D. Komaki et al. / Design and Implementation of a Multimedia Control and Processing Framework for IoT Application Development

back to the web browser, while recording it on the media
server.

Kurento Media Server provides Java and JavaScript client
libraries. Developers can use the functionalities Kurento
Media Server offers on their applications. Figure 2 shows
the required procedures to construct the pipeline shown in
Fig. 1. Firstly, a web browser-side script creates a Session
Description Protocol9 (SDP) offer and sends it to the web
application server. Then, a server-side script creates the
pipeline by using the provided client library, makes
WebRtcEndpoint process the SDP offer in order to get an
SDP answer, and sends the SDP answer back to the client.
Finally, the client processes the received SDP answer to
establish a WebRTC session with the WebRTCEndpoint on
the media server. When the client starts sending the video
stream, the processed video stream data is sent back to the
client. Our framework also uses the provided client library
to control Kurento Media Server in the same manner as de-
scribed.

The filters and endpoints that Kurento Media Server pro-
vides have their own methods for clients to change inner
parameters. Moreover, events raised by filters are subscriba-
ble by client-side scripts. For example, in Fig. 3, an applica-
tion can change the image path to overlay and can subscribe
an event that a barcode is detected in a frame of video
stream. Our framework makes use of such features of Ku-
rento Media Server and implemented some additional func-
tionalities from the perspective of the IoT scenario.

3 DESIGN OF THE FRAMEWORK FOR
IOT APPLICATION DEVELOPMENT

3.1 Target

We aim to make it easier to deal with not only sensory da-
ta but also multimedia stream data among devices in such
cloud-based IoT application development platforms. Our
framework focuses on IoT applications where sensory
stream data and multimedia stream data affect each other
interactively. Typical scenario cases we assume as multi-
media IoT applications are as follows.

[Case 1] Capture live video stream from a certain camera at
a field site and transfer it to a screen installed at the same
place.

[Case 2] Obtain text segment data from live audio stream
captured from a certain microphone by speech recognition,
overlay the text on live stream video captured from a certain
camera, and project the text-overlaid video stream on a
nearby screen.

[Case 3] Count the number of people from live video stream
captured by a certain camera, and detect an event accord-
ing to the change of that number.

9 RFC 4566 - SDP: Session Description Protocol:
http://tools.ietf.org/html/rfc4566.html

[Case 4] Record live stream video captured from a certain
camera installed at a field site only when the temperature
there is higher than a threshold value.

3.2 Functional Requirements

In order to make it easy to create such above multimedia
IoT applications, we extract the requirements of functionali-
ties that the framework should provide as follows:

(1) Virtualization of Multimedia Input/Output Devic-

es
Considering the above scenarios, it is desirable to deploy

an IoT application once created to many various field sites
rather than to create an IoT application for a specific field
site. However, there may be different types of devices (e.g.,
IP camera that supports RTSP, USB camera) at field sites
and they may communicate using different protocols (e.g.,
WebRTC, RTP, HTTP). Such heterogeneity does not be-
come a problem when creating conventional web applica-
tions since developers already know which type of device to
use (i.e., devices are virtualized on the HTML5 layer on the
browser side). However, from the perspective of IoT scenar-
ios, it is assumed that many IoT applications utilize the same
devices already installed at field sites together. Therefore,
the framework should obscure such device heterogeneity so
that developers do not need to consider it.

(2) Distributed Execution of Multimedia Processing

Pipeline between Gateways and the Cloud
Since multimedia stream data is far larger than sensory

data, it consumes a large amount of network bandwidth if
transferring all multimedia stream data generated at field
sites to the cloud. Considering the case where the results of
event detection from video stream data captured from a field
site are fed back to the same field site (Case 2), or the case
where an IoT application needs only metadata extracted
from multimedia streams (Case 3), Processing multimedia
stream data on a computational resource near the field site is

Table 1: Modules provided by Kurento Media Serer
Endpoints (Inputs/Outputs)

WebRtcEndpoint Send and receive WebRTC media
flow

RtpEndpoint Send and receive RTP media flow
PlayerEndpoint Read media from a file or URL
RecorderEndpoint Store media flow to a file or URL

Filters (Processing/Detecting…)
FaceOverlayFilter Recognize face areas and overlay

picture on that area.
ZBarFilter Detect barcode and QR code
GStreamerFilter Use filters of GStreamer

WebRTC
Endpoint

FaceOverlay
Filter

Recorder
EndpointWeb

Broweser

Figure 1: Example of connecting endpoints and filters

75International Journal of Informatics Society, VOL.9, NO.2 (2017) 73-84

effective in saving network bandwidth usage and responding
to the field site quickly.

To realize this, it is effective to process a single multime-
dia stream distributedly between a gateway (installed at the
field site) and a cloud. However, in order to do that, it re-
quires laborious procedures such as opening ports for send-
ing/receiving multimedia stream on multiple media servers
and establishing a media session between them. Therefore,
the framework should enable the processing of single mul-
timedia stream distributedly without considering media ses-
sion establishment.

(3) Cooperation with External System
We assume not only the case where the framework con-

trol and process end-to-end multimedia stream are sent from
one device to another (Case 1 and 2) but also the case where
the framework detects an event using time series metadata
extracted from a multimedia stream (Case 3) and the case
where the framework controls the media stream according to
the changes in sensory data (e.g., temperature) (Case 4). To
do that, the framework should provide a way to easily coop-
erate with an existing IoT platform that provides the func-
tionalities of time series data analysis or complex event pro-
cessing.

(4) Simple Description of Media Processing Pipeline
By using media framework technologies such as Kurento

Media Server, developers can easily create multimedia web
applications by connecting multiple endpoints and filters as
a pipeline, and can easily use trial and error by replacing or
reconnecting each block. The framework should inherit this
feature to simply implement a media processing pipeline,
while satisfying the above three requirements ((1)-(3)).

4 IMPLEMENTATION OF THE FRAME-
WORK

4.1 Architecture

In order to meet the above requirements, we designed the
architecture of our framework (Fig. 4). Here, we define the
term media service as a set of an entity to process multime-
dia stream data running on media servers, and an IoT appli-
cation as an entity to use media service(s) by using the APIs
that our framework provides. Our framework uses multiple
media servers running independently on the gateway(s) and
the cloud, respectively, and deploys corresponding modules
to cooperate with multiple media servers. The framework
forms star topology, where the cloud-side module aggre-
gates all gateway-side modules. Noted that we adopted Ku-
rento Media Server as the media server, but other media
servers are adaptable to realize such architecture. In the fol-
lowing, we describe the behavior of each component.

[Request Receiver]
This component receives the requests from the clients

(e.g., registration of devices, gateway, media services, and
operation of media services) via web APIs (shown in Table
2). The person who installs the devices uses the web APIs
on the gateway side, while media service developer and IoT
application developer use those on the cloud side.

[Media Service Manager]
This component manages the media service descriptions

written in JavaScript Object Notation (JSON) format. Since
media services to be executed on the gateway side are de-
ployed at the time of execution, media service descriptions
are centrally managed on the cloud side.

[Media Service Interpreter]

Kurento Client Library

Application Logic

Kurento Media Server

Web Browser

Web Server

(3)create pipeline

(2)Send SDP offer

(4)Process SDP offer &
generate SDP answer

(1)Generate SDP offer

(5)Respond
SDP Answer

(6)Process SDP
answer

WebRTC API

(7)Establish
WebRTC session

WebRTC
Endpoint

FaceOverlay
Filter

Recorder
Endpoint

Figure 2: Procedure to establish media session

Application

WebRTC
Endpoint

FaceOverlay
Filter WebRTC

Endpoint

ZBarFilter

Application

filter.setImage(uri); filter.on(“CodeFound”, function(event){
console.log(event);

});

Operate Subscribe Events

Figure 3: Interaction between application and filters

Gateway
Manager

Request Receiver

Media Service
Interpreter

Cloud-side

Media
Repository

Output DevicesInput Devices

Media Streaming

Web API

in
B

out

Media Server

A

out

in out

Media Server

Media Service
Executor

Media Stream

Media Service
Manager

Device Manager

Request Receiver

Gateway-side
Web API

Media Service
Executor

Media Stream

IoT Application

IoT Application
Developer Media Service

Developer

Administrator of
the Field Site

Media Service
Description

Media
Service

 Figure 4: Architecture of our framework

76 D. Komaki et al. / Design and Implementation of a Multimedia Control and Processing Framework for IoT Application Development

This component converts media service descriptions into
executable ones for the Media Service Executor; this com-
ponent divides media service description into cloud-side and
gateway-side media services.

[Media Service Executor]
Based on converted media service descriptions (described

above), this component initializes and controls media pro-
cessing modules on the corresponding media server. In addi-
tion, this component establishes media sessions between
devices and gateways and between gateways and the cloud.
The cloud-side Media Service Executor cooperates with
the Gateway Manager in order to deploy a media service to
the specified gateway and establish the session between me-
dia services, while the gateway-side one cooperates with the
Device Manager in order to establish a media session be-
tween the device and the endpoint on the gateway-side me-
dia server.

[Gateway Manager]
This component manages the relationships between ID of

each gateway (i.e., keyword to specify a field site) and their
URLs and provides an interface to control gateways. When
receiving the requests from Media Service Executor, this
component forwards it to the specified gateway-side module.

[Device Manager]
This component manages the relationships between ID of

each devices and connection information (e.g., URL, socket
ID in the case of using HTTP, WebSocket, respectively) and
provides an interface to negotiate SDP and to start/stop and
sending/receiving multimedia stream data.

 In the following, we describe the procedure to create a
multimedia IoT application using our framework functional-
ities. The main players in this scenario are Field Site Admin-
istrator, Media Service Developer, and IoT Application De-
veloper. These players may be either the different persons
respectively or the same person.

(1) Registration of the Gateway
The Field Site Administrator edits the configuration file

in the gateway module to define the field site ID. When
starting up the gateway-side module, a request for register-
ing this gateway is automatically sent to the cloud.

(2) Registration of the Devices
The Field Site Administrator registers devices to the

gateway-side module via using gateway-side APIs by speci-
fying the device ID and device type. Device IDs needs to be
identifiable only in the same field site since they are man-
aged by each gateway.

(3) Registration of the Media Service
The Media Service Developer writes the media service

description (such as shown in Fig. 5) and registers it to the
cloud-side module using cloud-side APIs.

(4) Execution of the Media Service
The IoT Application Developer connects his/her applica-

tion to the specified media service using server-side APIs to
operate media services.

4.2 Details of Functionalities

In this section, we describe the detailed behaviors of the
functionalities of each component above.

Interpretation/Execution of Media Services

The Media Service Developers describe their services in
JSON format (shown in Fig. 5). This example shows a me-
dia service where the video stream captured from a specified
camera at a specified field site is processed to put a specified
image on the face area on the gateway side and sent to cloud
side to be recorded. Here, type is used to specify the type of
filter/endpoint, place is used to specify the execution place
(i.e., gateway or cloud), front_id is used to specify the field

Table 2: Web APIs
URI Method parameters

/service GET Get a list of registered media service descriptions
id
service

/service/:id GET Get the media service description specified by id id
id
params

/pipeline GET Get a list of executed media service instances
/pipeline POST Create media service instance service:
/pipeline/:id GET Get the media service instance specified by ID id

id
method

/gw GET Get a list of registered gateways
key
uri

/device GET Get a list of registered devices
key
uri

77International Journal of Informatics Society, VOL.9, NO.2 (2017) 73-84

site where the media service is applied, and in/out is used to
specify the relationship between elements.

The Media Service Interpreter divides the received me-
dia service description and creates a GwEndpoint that in-
cludes a partial media service description that should be
executed on the gateway side (shown in Fig. 6). Based on
this converted media service description, the Media Service
Executor initializes filters and endpoints on the media serv-
er and connects them.

In addition, the media service description can accept varia-
ble definition. For example, in Fig. 5, front_id (i.e., the ID
that specifies where the device is installed) is defined as a
variable (“$0”) so that it can be set when this media service
is executed.

Virtualization of Media Devices

As an endpoint of multimedia stream data via a network,
Kurento Media Server has three different types of endpoints:
RTSPEndpoint, WebRTCEndpoint and RTPEndpoint. When
using a camera that supports RTSP, it is required to simply
specify the resource URL to establish a media session be-
tween the device and a media server, while it is necessary to

manually negotiate SDP when using a camera that supports
WebRTC or RTP. Moreover, since each device may provide
its own interface to operate (start, stop), developers need to
take care of how to establish a session and how to operate
devices that vary according to device type.

Therefore, the framework provides a set of classes, each
of which implements required procedures to establish a ses-
sion according to the corresponding device type (Fig. 7).
Field Site Administrators are required to specify the device
type when registering a new device. Owing to this, Media
Service Developers do not need to be concerned about such
differences in devices. A media session is automatically
established when executing the media service.

Cooperation between Gateways and Cloud

To execute a media service distributedly on gateways and
a cloud, it is necessary to establish a media session between
divided partial media services. Therefore, the framework
automatically inserts an SDPEndpoint (i.e., either RTPEnd-
point or WebRTCEndpoint) at the end of the gateway-side
media service description. The framework also creates an
SDPEndpoint on the cloud-side media server and establishes
a media session between gateway-side and cloud-side
SDPEndpoints (as shown in Fig. 8). Thereafter, when the
cloud-side module receives the request to operate a media
service, it propagates this request to the corresponding
gateway-side module.

Management of Events

The framework enables developers to describe event sub-
scription between two filters in a media service description.
As shown in Fig. 9, three attributes are required to define an
event subscription: target (to specify which filter or end-
point publishes the event), event (to specify which type of

[
{

id: 0,
//type of device
type: “DeviceEndpoint”,
//specify the device id to use
key:“camera001”,
//specify a place to execute media service
place: “gw”,
//specify the field site id ($0 is variable)
front_id: “$0”,
out:[0]

},
{

id: 1,
type: "FaceOverlayFilter",
//filter’s own property (specify image url to overlay)
img: “http://XXXX/hat.jpg”,
place: "gw",
in:[0],
out:[1]

},
{

id: 2,
type: "RecorderEndpoint",
place: "cloud",
in:[1]

}
]

Figure 5: Example of media service description

DeviceEndpoint
key:“camera001”
palce:”gw”
front_id: “$0”

FaceOverlayFilter
img: “http://XXX”
palce:”gw”

RecorderEndpoint
palce:”cloud”

GwEndpoint
front_id: “$0”
service:

DeviceEndpoint
key:“camera001”

FaceOverlayFilter
img: “http://XXX”

RecorderEndpoint

Figure 6: Transformation of media service description

Kurento Media Server

SDPEndpoint I/FDevice I/F

DeviceEndpoint

SDP
Endpoint

UriEndpoint I/F

DeviceEndpoint

UriEndpoint

[URI] rtsp://~~~~~~~

Kurento Media Server

(1)Generate SDP Offer
(3)Process SDP Answer

(2) Process SDP Offer &
Generate SDP Answer

Figure 7: Obscuring the initialization procedure
that varies according to device type

Kurento Media Server

SDPEndpoint I/FGW I/F

GwEndpoint

SDP
Endpoint

SDPEndpoint I/F…

… SDP
Endpoint

(1) Create Pipeline

(2)Insert SDPEndpoint
(3)Generate SDP Offer
(5)Process SDP Answer (4)Process SDP Offer &

Generate SDP Answer

Figure 8: Session establishment between gateway
and cloud

78 D. Komaki et al. / Design and Implementation of a Multimedia Control and Processing Framework for IoT Application Development

event to subscribe), and callback (to describe the callback
function that is evaluated when the specified event occurs).
In the callback function, variable this is bound as the sub-
scriber element itself.

Additionally, as shown in Fig. 10, the framework pro-
vides two endpoints in order to cooperate with external sys-
tems: InputHttpEndpoint publishes the event when a speci-
fied URL is called by an external system and Out-
putHttpEndpoint subscribes inner events and calls the exter-
nal URL (specified in advance) when a specified event oc-
curs. By using these endpoints, developers can easily create
a media service that can process media stream data accord-
ing to environmental changes or can store time series of
metadata extracted from media stream data into external
databases.

Graphical Editor for Media Service Description

Developers are able to create media service by following
JSON format as shown in Fig. 5 without coding complicat-
ed logic. Furthermore, we implemented a web-based graph-
ical flow editor for easily creating media service descrip-
tions (Fig. 11-13). In the following, we describe how to use
this client.

Figure 11 shows an example of the screen for creating and
editing the media service, which is implemented using a
SVG-based JavaScript library, JointJS10. When a user se-
lects an item from the left-side list, a new node appears on
the center area. The user can make a link from an input port
of a node to an output port of another node by dragging and
dropping. When a selected item requires some properties
(e.g., image URL path for FaceOverlayFilter), input forms

10 JointJs: http://www.jointjs.com/

corresponding to each property appear on the right side of
the screen. Event subscription can be defined in this area.

Figure 12 shows the screen for executing specified media
service. The user can select which field sites to apply the
specified media service to. Figure 13 shows a list of execut-
ed media services and the user can operate (i.e., start, stop,
pause, release) each media service.

5 PROTOTYPE APPLICATIONS

In order to verify the effectiveness of our framework, we
created three prototype IoT applications. In this section, we
explain these IoT applications and discuss the features of
each application.

[Prototype 1] Supporting Lectures in the Class-
room

In the lectures at universities, teachers often use the pro-
jector to present their documents on the screen display. In
such lectures, a teacher may use a stick or laser pointer to
specify the focus area of the screen display. However, stu-
dents may not clearly see the specified area in a large class-
room. Therefore, we implemented an application that sup-
ports such lectures. We implemented it by connecting Trap-
ezoidCorrectorFilter (which transforms a trapezoid-shaped
area to square), FingerDetectorFilter (which detects the
coordinates of fingertips and raises an event), and ScalerFil-
ter (which expands the area around a specified point) as
shown in Fig. 14.

There are three devices registered to the framework in the
classroom: a camera (which captures video stream data in-
cluding screen display area for detecting fingertips), a screen
capturer (which captures video stream data from the teach-
er’s PC screen), and a display screen (which displays the
video stream process by ScalerFilter). Using this combina-
tion, the area of the screen the teacher points is scaled so
that students can look at the focused area clearly. Since this
media service is executed on the gateway-side, immediate
response (i.e., followability of finger motion) can be ex-
pected compared with executing on the cloud-side.

[Prototype 2] Monitoring Suspicious Person

Suspicious person monitoring services using networked
cameras are now widely used in various areas. However,
when operating such monitoring services on the cloud, it
consumes a large amount of network bandwidth and storage.
Therefore, we created an IoT application that transfers a
video stream data to the cloud while detecting a moving
object and records it on the cloud.

We realized this by connecting MotionDetectorFilter
(which detects moving objects using background subtrac-
tion) and SwitchFilter (which can be switched to drop or
pass-through received buffer) as shown in Fig. 15. Since
video stream data is transferred to the cloud only when mov-
ing objects are detected on the gateway side, network band-
width and cloud storage can be saved.

[Prototype 3] Preventing Workers from Heatstroke

In summer, outdoor manual laborers are exposed to a risk
of heatstroke due to both high temperatures and high-

id=0
Device

Endpoint

id=1
Filter A

id=2
Filter B

id=3
Device

Endpoint

{
//subscribe event of the filter that id is 1
target: 1,

//event name to subscribe
event: “EventName”,
//evaluate when targeted event happens
callback: “this.set(event.data);”

}
Figure 9: Event description between elements

DeviceEndpoint Filter A

InputHttpEndpoint

OutputHttpEndpoint

Subscribe an Event

Subscribe an Event

HTTP

HTTP

Call specified URL when
subscribing event occurs

Publish an Event when
specified URL is called

Figure 10: Input/output endpoint to external systems

79International Journal of Informatics Society, VOL.9, NO.2 (2017) 73-84

humidity. To prevent this, there is a rule on restricting con-
tinuous work according to the heat index called WBGT11;
however, it is difficult for the field overseer to know the
WBGT of the corresponding field site and the health condi-
tions of all workers at all time. Therefore, we implemented a
monitoring application which records video stream data that
captures a specified field site when WBGT is above a
threshold and reports to the field overseer when a worker
stops moving.

 Here, we adopted an existing IoT platform that can detect
events according to the changes in time series data. The
WBGT value, calculated from temperature and humidity
using sensors installed at the field, is continuously registered
to the IoT platform. Whenever the WBGT value goes above
a specified threshold, the IoT platform calls the web API
defined by InputHttpEndpoint. This cooperation makes it
possible to control media service (e.g., start recording video
stream data, start detecting moving objects from video
stream data) according to the changes in sensory data (e.g.,
WBGT). At the same time, our framework notifies the result
of moving object detection to the IoT platform using Out-
putHttpEndpoint, and the IoT platform can send warnings to
the overseer and workers according to the result. In-
putHttpEndpoint and OutputHttpEndpoint make it easy to
create multimedia IoT applications that cooperate with exist-
ing IoT platforms.

11 National Weather Service Weather Forecast Office:
http://www.srh.noaa.gov/tsa/?n=wbgt

6 EVALUATION

We evaluated the effectiveness of our framework based
on the above prototype applications from the perspectives as
follows:

6.1 Complexity

To process single multimedia stream data cooperatively
using multiple media servers, developers are required to
establish a media session using RTP or WebRTC in addition
to implementing originally required media processing. In
addition, developers are required to take care of which end-
point to use and how to establish a media session, which
varies with the device type installed at the field site. Our
framework spares developers from such complexity, so IoT
application developers can be dedicated to connecting de-
vices at field sites with media processing modules.

6.2 Productivity

Table 3 shows the comparison of the number of program
lines between cases using our framework and not. These
numbers are counted without brackets. Although this com-
parison may not be fair since there is a difference between
using or not using our framework (i.e., declarative descrip-
tion using JSON and procedural description using JavaS-
cript), we confirmed that our framework works effectively
since developers are not required to write logic to establish
the media session both between the gateway and the cloud

Figure 11: Media service description screen

Figure 13: List of executed media services

Figure 12: Media service execution screen

80 D. Komaki et al. / Design and Implementation of a Multimedia Control and Processing Framework for IoT Application Development

and between the media server and the device in the case of
Prototype 1 and Prototype 2 (24% and 38% reduction, re-
spectively).

On the other hand, considering the case of Prototype 3,
i.e., the case where media processing pipeline topology
changes according to an event, we defined a single static
media service description that includes SwitchFilter in the
case of using our framework, while we implemented this
switching as IoT application-side logic in the case not using
our framework. As a result, the number of lines not using
our frameworks is fewer in spite of writing logic to establish
a session with the gateway and the device. Therefore, the
current media service description format is not suitable for
describing a dynamically changing pipeline. We need to
consider an effective way to describe event-driven media
services as a future work.

6.3 Ease of Trial and Error

It is important to repeatedly use trial and error for creating
IoT applications. However, in multimedia application, logic
to handle multimedia input and output are tightly-coupled
with multimedia processing logic itself. As a result, when
application developers modify their application, they are
required to rewrite programming logic itself. For example,
in order to change the behavior of Prototype 1 to put a circle
on the fingertips, developers are required only to replace
ScalerFilter with another (i.e., a filter to put marker) and do
not need to deploy the application again by using our
framework.

6.4 Division of Labor

Considering the case of creating IoT applications such as
Prototype 1 using only Kurento Media Server, the applica-

tion may not be adaptable to other classrooms, since the
installed device type may differ from classroom to class-
room. On the other hand, by using our framework, an IoT
application once created can be adapted for any other class-
room only if each device is registered in the same name ow-
ing to our framework’s device virtualization mechanism.
This makes it possible to create IoT applications inde-
pendently from device installation.

In addition, not only cameras, microphones and screens,
but also any software modules implemented to meet the
specification of a virtualized device interface can be regis-
tered as a device. Developers can equally treat both cameras
and screen capturer modules on our framework.

6.5 Cooperation with External Systems

Our framework can deal with not only the case where a
media stream data captured from a device is processed, rec-
orded and transferred to another device, but also the case
where an external system affects multimedia stream data
using InputHttpEndpoint and notifies the external system
when an event occurs using OutputHttpEndpoint. In the case
of Prototype 3, we adopted an existing IoT platform, but we
are not limited to such IoT platforms. For example, cooper-
ating with the existing complex event processing system
enables more advanced event detection by using both senso-
ry stream data stream and multimedia stream data.

In other words, our framework can be used as an exten-
sion to make it easy to deal with media stream data on an
existing IoT platform rather than a substitute. Currently, our
framework supports cooperation using only HTTP requests,
but we plan to implement endpoint modules for protocols
other than HTTP (e.g., MQTT, WebSocket) to make it easi-
er to create IoT applications that deal with both multimedia
and sensory data streams.

Start recording when
WGBT is higher than
threshold value

InputHttpEndpoint

InputDevice
Endpoint

MotionDetector
Filter

SwitchFilter RecorderEndpoint

SwitchFilter

InputHttpEndpoint OutputHttpEndpoint

Gateway-side Cloud-side

Store result data to
external IoT platform

Start motion detection
when WGBT is higher
than threshold value

Figure 16: [Prototype 3] Media service description
for heatstroke prevention

Table 3: Comparison of the number of program lines
Used Not used

Prototype 1 38 50
Prototype 2 26 42
Prototype 3 50 48

Gateway-side
InputDevice

Endpoint

ScalerFilter
InputDevice

Endpoint

TrapezoidCorrector
Filter

FingerDetector
Filter

OutputDevice
Endpoint

Figure 14: [Prototype 1] Media service description
for lecture support

Gateway-side Cloud-side

InputDevice
Endpoint

MotionDetector
Filter SwitchFilter RecorderEndpoint

Figure 15: [Prototype 2] Media service description
for suspicious person monitoring

81International Journal of Informatics Society, VOL.9, NO.2 (2017) 73-84

6.6 Performance

Our proposed framework can process single multimedia
stream data by coordinating multiple multimedia servers
running on gateways (installed at field sites) and the cloud,
respectively. In typical IoT scenario, low-cost and not high-
performance gateway devices are often used for each field
site since it is necessary to distribute gateway devices to a
large number of filed sites. In this section, we rather focus
on gateway side where computational resources are restrict-
ed. We conducted a performance evaluation to confirm that
our framework can work sufficiently when using a general
gateway device used for IoT. Table 4 shows the specifica-
tion of the gateway used for the following evaluation.

First, we discuss how many services our framework can
handle when changing the quality of multimedia data and
type of multimedia processing. Performance evaluations
were conducted in the configuration shown in Fig. 17. A
multimedia processing filter was deployed between
WebRTC input and output endpoints on the gateway, while
two Web browsers (Google Chrome) were used for captur-
ing and showing video stream data using a USB camera on
another machine. In this evaluation, two different quality of
video streams were used; high quality (resolution: 640px x
480px, framerate: 30fps) and low quality (resolution: 320px
x 240px, framerate: 10fps). Table 5 shows the result of
CPU and memory usage rates when ScalerFilter, FingerDe-
tectorFilter, and MotionDetectorFilter were used as a mul-
timedia processing filter in the above configuration, respec-
tively.

Compared with the case not using filters, CPU and
memory usage rates increased when using filters, and these
increased rates varied depending on the type of multimedia
processing and video quality (11.9% - 84.30%). Our frame-
work can handle 8-9 services simultaneously when using
light-weight processing filters to low–quality video stream,
while only one service when using heavy-weight processing
filters to high-quality video stream.

Next, we discuss the overhead of our framework. As de-
scribed in the section 4, our framework consists of two lay-
ers; multimedia processing layer and control layer (Fig. 18).
Multimedia processing layer (written in C++) processes
incoming multimedia stream data, while control layer (writ-
ten in JavaScript (node.js)) receives requests from clients,
manages registered devices, and coordinates multimedia
servers and so on. We evaluated the overhead of control
layer. The results were 0.2% of CPU usage rate and 4.6% of
memory usage rate regardless of the type of multimedia
processing filters and video quality. This result shows our
extension have little effect on CPU usage at the time of exe-
cution.

Moreover, as shown in Fig. 18, our framework can handle
event publishing and subscribing among multiple filters. In
the example of Fig. 18, control layer subscribes an event of
FingerDetectorFilter (a coordinate of a fingertip) and set the
parameter (a coordinate to expand around that point) of
ScalerFilter. Table 6 shows the result of CPU and memory
usage rates of control layer using different framerate video
streams (10fps and 30fps).

 The result shows that passing event data among filters had
a little effect on CPU usage, and this rate was proportional
to the framerate of the video stream, while memory usage
rate was almost constant regardless of event subscription.
From the result, we confirmed that the load of event publish-
ing and subscribing was far smaller than that of multimedia
processing.

From the above results, we confirmed that our framework
worked sufficiently despite using a general gateway device
for IoT when the quality of video stream was not so high or
multimedia processing was not so heavy. Our framework
can handle 8-9 services simultaneously when using light-
weight processing filters to low–quality video stream. Be-
sides, while our framework extends an existing multimedia
server program to manage virtualized devices, to coordi-
nates multiple multimedia servers and so on, processing
overhead of this extension was sufficiently small.

On the other hand, however, our framework can handle at
most one service simultaneously when using heavy-weight
processing filters to high-quality video stream. If we need to
use more high-quality video stream, this gateway device
cannot process sufficiently. In order to provide a stable ser-
vice, as a future work, we need to develop a mechanism to
dynamically determine whether each multimedia processing
filter should be run on the cloud or the gateway according to
the performance of the gateway device and processing load
of multimedia processing filters, and a mechanism to lively
migrate a multimedia processing filter from the gateway to

Table 4: Specification of the gateway
OS Ubuntu 14.04 LTS 64 bit
CPU Intel Atom E3826 @ 1.46 GHz x 2
Memory 1.8GB

WebRTC
Endpoint

WebRTC
EndpointFilter

Web Browser
(Chrome)

Web Browser
(Chrome)

Gateway

USB camera

WebRTC WebRTC

Figure 17: Configuration of evaluation environment

WebRTC
Endpoint

WebRTC
Endpoint

FingerDetector
Filter

Scaler
Filter

Multimedia Processing layer (C++)

Control layer (node.js) Event Manager

Publish event Set parameters

Publish event Subscribe event

Figure 18: Proposed framework consists of two layers;
multimedia processing (C++) and control (node.js) layer

82 D. Komaki et al. / Design and Implementation of a Multimedia Control and Processing Framework for IoT Application Development

the cloud if the processing load of the gateway becomes
large.

7 SUMMARY

We designed and implemented a framework that makes it
easy to deal with multimedia data such as audio and video
generated from devices installed at field sites. The features
of our framework are as follows:
 Virtualization of multimedia input/output devices
 Distributed execution of media service between

gateways and a cloud
 Simple media service description using a graphical

flow editor.
In this paper, we presented the three prototype applica-

tions we created and discussed the effectiveness of our
framework from the perspective of complexity, productivity,
and ease of trial and error.

As future work, we need to improve the media service de-
scription format and create endpoints other than HTTP. We
plan to offer our framework to workshops and hackathons to
verify the effectiveness of our framework from both qualita-
tive and quantitative perspectives.

REFERENCES

[1] K. Akpinar, K. A. Hua, and K. Li., “ThingStore: A
Platform of Internet-of-Things Application Develop-
ment and Deployment,” ACM International Confer-
ence on Distributed Event-Based Systems (ACM
DEBS 2015), pp.162-173, 2015.

[2] S. Alam , M. Chowdhury , and J. Noll., “SenaaS: An
Event-Driven Sensor Virtualization Approach for In-
ternet of Things Cloud,” IEEE International Confer-
ence on Networked Embedded Systems for Enterprise
Applications (IEEE NESEA 2010), pp. 1-6, 2010.

[3] M. Blackstock, and R. Lea., “Toward a Distributed Da-
ta Flow Platform for the Web of Things (Distributed
Node-RED),” International Workshop on Web of
Things (WoT 2014), pp.34-39, 2014.

[4] L. Fernandez, M. P. Diaz, R. B. Mejias, and F. J.
López, "Kurento: A Media Server Technology for
Convergent WWW/Mobile Real-Time Multimedia
Communications Supporting WebRTC," IEEE Interna-
tional Symposium and Workshops on World of Wire-
less, Mobile and Multimedia Networks (IEEE
WoWMoM 2013), pp. 1-6, 2013.

[5] D. Munjin, and J. H. Morin, "Toward Internet of
Things Application Markets," IEEE International Con-
ference on Green Computing and Communication
(IEEE GreenCom, 2012), pp. 156-162, 2012.

(Received October 8, 2016)
(Revised February 9 , 2017)

Daijiro Komaki received his B.E.,
M.E., and Ph.D. degrees from Osaka
University, Japan in 2008, 2009, and
2012, respectively. He joined Fujitsu
Laboratories Ltd. in 2012. His cur-
rent research interests include mul-
timedia processing framework and
multimedia networking system.

Shunsuke Yamaguchi received his
B.E. degree from The University of
Electro-Communications, Japan in
2005, and Master of Information
Science and Technology degree
from The University of Tokyo,
Japan in 2007. He joined Fujitsu
Laboratories Ltd. in 2007. His
current research interests include

multimedia processing framework and multimedia
networking system.

Masako Shinohara received the
B.E., M.E., and Ph.D. degrees from
Osaka University, Japan in 2004,
2006, and 2009. She joined Fujitsu
Laboratories Ltd. in 2009. Her re-
search interests include human-
centric computing for smartly sup-
porting user’s behavior, and multi-
media networking system for real

time communication.

Kenichi Horio received the B.E and
M.E. degree from The University of
Tokyo, Japan in 1999 and 2001,
respectively. He currently works for
Fujitsu Laboratories Ltd. His re-
search interests include mobile
communications and multimedia
communications.

Table 5: CPU and memory usage rates
Low Quality

(320 x 240, 10fps)
High Quality

(640 x 480, 30fps)
CPU Memory CPU Memory

None 7.4% 3.2 % 12.1% 3.3%
ScalerFilter 19.3% 5.9% 72.3% 7.1%
FingerDe-
tector Filter 26.1% 6.4% 63.5% 7.5%

MotionDe-
tector Filter 47.4% 6.8% 96.4% 9.0%

Table 6: CPU and memory usage rates
of control layer

10fps 30fps
CPU Memory CPU Memory
1.7% 5.1% 3.0% 5.1%

83International Journal of Informatics Society, VOL.9, NO.2 (2017) 73-84

Masahiko Murakami received the
B.E. and M.E. degrees in electrical
engineering from Kyoto University,
Japan, in 1990 and 1992. He joined
Fujitsu Laboratories Ltd. in 1992.
He is currently researching about
human-centric connections for
providing user-friendly timely ser-
vices tailored for individuals, includ-

ing multimedia networking system.

Kazuki Matsui received his B.E.
and M.E. dgrees from Keio
University, Japan in 1990, 1992,
respectively. He joined Fujitsu
Laboratories Ltd. in 1992. His
current research interests include
Virtual Reality Computing System.

84 D. Komaki et al. / Design and Implementation of a Multimedia Control and Processing Framework for IoT Application Development

