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Abstract - To ensure quality in the process of software pro-
duction, various techniques for software testing have been
studied, but many conventional tests are known to take a lot of
resources. Therefore, formal methods are attracting attention
as a way of improving the quality of software. Model check-
ing is one example of a formal method that inspects logically
and exhaustively whether a given property is satisfied or not.
A counter-example is a trace information to help with the lo-
calization of bugs and can be generated by a model checker
when a given property does not hold. However, current model
checkers often cannot generate counter-examples expected by
users due mainly to their searching algorithms. We propose a
method which derives an expected counter-example by com-
bining model checking with a test automaton. The derivation
method first creates a test automaton which roughly repre-
sents the behavior of the expected counter-example and then
performs model checking on a parallel composition of the
original automaton with the test automaton. We have applied
the proposed method to a case study of water tanks of a chem-
ical plant and confirmed its usefulness.
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1 INTRODUCTION

With each coming year, advanced information societies need
more reliable software and new techniques to develop such
software. Software testing methods to ensure quality in the
process of software production have been studied for many
years. Conventional testing methods are, however, known to
take a lot of resources. Therefore, formal methods are attract-
ing attention as a way of improving the quality of software. A
formal method is a method which describes the requirements
and design of information systems (software and hardware)
using a mathematical based language and provides a mech-
anism to infer that the system satisfies the requirements of
users. This study uses model checking [2], which is one type
of formal method.

Model checking inspects logically and exhaustively whether
given properties are satisfied or not. It creates a model from
source codes or systems and derives logical expressions from
the requirements specification and inspection items to be en-
tered into a model checker using a formal language. One ap-
plication of model checking is “post-verifications” of a sys-
tem. The procedure of post-verification utilizes models of the
system when a fault has occurred [10]. It then determines the
cause of the fault using formal methods, in contrast to con-

ventional approaches which carry out cause isolation by log
analysis of a particular system of failure.

Modern society depends on post-verifications in many situ-
ations because system faults can sometimes give serious im-
pacts on human lives. As a specific example of a fault due
to a system malfunction, we can recall the system troubles
of a Japanese airline company that occurred as recently as
2016 [20]. When we perform post-verifications, a key ele-
ment is the use of counter-examples. In general, a counter-
example is regarded as “an example that refutes or disproves
a hypothesis, proposition, or theorem.”

When using counter-examples in post-verification, we treat
properties of the system which must be fulfilled as “hypothe-
ses, propositions, or theorems”. Thus, a counter-example be-
comes an example of not satisfying important properties, and
we can diagnose how a system fails by tracing it. Research
has been conducted on how to generate counter-examples that
are easy for humans to understand [8,9].

The generation of counter-examples, however, may not pro-
duce ones which a user expects due to the searching algo-
rithms used in a model checker. This trend is especially no-
ticeable in cases where counter-examples include loop struc-
tures. In order to solve the problem, this paper proposes a
method for creating test automata to guide the creation of
counter-examples for a model represented by time automata
[4] which are used in UPPAAL [5], an integrated tool for
modeling, validation, and verification of real-time systems.
To do this, our proposed method begins by creating a coarse
behavior series of counter-examples represented in test au-
tomata [16–19]. A parallel composition of the test automata
and the original automaton lead to counter-examples of the
original model. In addition, we applied our technique to the
diagnosis of a chemical plant system example and confirmed
the effectiveness of the method.

Section 2 defines the time automata and test automaton used
in our approach and Section 3 describes the proposed method
for constructing counter-examples using test automaton com-
ponents. Section 4 presents how we used our method to di-
agnose a system failure that occurred in the chemical plant
systems example of our work. A discussion of the results is
given in Section 5 and the summary and future work is given
in Section 6.
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2 PRELIMIN ARIES

2.1 Model Checking

Model checking [2, 3] of an automaton can be formulated
as follows.

Definition 2.1 (Model checking)
Input1: an automatonA
Input2: a temporal logic expressionp
Output:A |= p or A ̸|= p
Output(optional): IfA ̸|= p, then a counter-exampleCE

In general, computational tree logic (CTL) is used as a tem-
poral logic for a timed automaton [5].

Intuitively A |= p means that the behavior (all possible
runs) ofA satisfies the property expressed inp. AutomatonA
is also called a model. Thus, model checking is a process for
checking whether a logic expressionp holds under the model
represented inA.

Typical properties areAGq, EFq and so on.AGq andEFq
mean that “for any path,q always holds,” and “for some path,
q eventually holds,” respectively.AG andEF are called tem-
poral operators.

For a states, we can consider a property¬EFs, which
means that starting from the initial state, the automaton can-
not reach the states.

Figure 1 represents the model checking process.

2.2 Timed Automaton

A timed automaton uses clocks to refer to time. The clocks
can be regarded as precise analog clocks. Every clock is au-
tonomous and will increase its value at the same uniform rate,
independently from the behavior of the timed automaton. A
timed automaton cannot control the behavior of the clocks ex-
cept for a reset; it can neither put clocks forward, backward
nor stop them. It can only reset some of the clocks. The reset
clocks make their values 0 and immediately begin increasing
their values again.

Definition 2.2 (Clock setC) By C we denote a finite set of
clocks. Byxi (0 ≤ i ≤ |C| − 1) we denote an element (each
clock) inC.

When there is no confusion we can use literals (without an
index)x, y, z, etc. to denote clocks.

Figure 1:Model checking process.

Each clock has a time value represented as a non-negative
real and the notion of “clock evaluation” is needed.

Definition 2.3 (Clock evaluation) Clock evaluationν(∈ R|C|
≥0 )

for a clock setC is a |C|-dimensional vector overR≥0.
The i-th elementνi of ν corresponds to the time value of

clockxi.

The term “evaluation” is originally defined in [15] as a
mapping from clocks to reals. In this work, we defineν sim-
ply as a real vector.

In the following definitions we introduce two operations for
expressing: 1) clock evaluation value changes according to its
elapsed time, and 2) a reset by a timed automaton on some of
its clocks when a transition fires.

Definition 2.4 (Operations on clock evaluation)For a real
valued, ν + d = (ν0 + d, ν1 + d, . . . , ν|C|−1 + d).

For a set of clocksr(⊆ C),
r(ν) = (r(ν0), r(ν1), . . . , r(ν|C|−1)), where

r(νi) =

{
0 : xi ∈ r,
νi : otherwise .

(1)

The first operation+d means that every clock increases its
value uniformly and at the same rate. The second operation
r(·) allows us to specify a subset of clocksr whose values are
to be reset to 0.

Next we define clock constraints onC, which are used as
guards and invariants of a timed automaton.

Definition 2.5 (Differential inequalities onC) The syntax of
a differential inequalityin on a clock setC is given as follows:

in ::= xi − xj ∼ a

| xi ∼ a,

wherexi andxj ∈ C, a is a literal of an integer constant,
and∼∈ {≤,≥, <,>}.

Differential inequalitiesxi ∼ a andxi − xj ∼ a are true
iff νi ∼ a andνi − νj ∼ a are true, respectively.

Definition 2.6 (Clock constraints onC) The syntax of a clock
constraintcc on a clock setC is given as follows:

cc ::= true | in | cc ∧ cc,

wherein is a differential inequality onC.
cci ∧ ccj is true iff both cci andccj are true.
By c(C), we denote the whole set of clock constraints on a

clock setC.

Since a clock constraintf can be regarded as a function

f : C → {true, false},

we introduce the notation off(ν) which evaluates to true or
false by evaluating each clockxi asνi.

Now we can formulate a timed automaton. The semantics
of a timed automaton will be defined later through a labelled
transition system.
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Definition 2.7 (Timed automaton) A timed automatonA is
a six-tuple(A,L, l0, C, I, T ), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;
C: a clock set;
I : L → c(C): a mapping from a location to a clock con-
straint, called a location invariant, or simply an invariant;
and
T ⊂ L × A × c(C) × 2C × L is a set of transitions, where
c(C) is a set of clock constraints; and2C is a super set of sets
of clocks.

Elements of the first and lastL stand for the locations which
the transition is starting from and going to, respectively. An
element ofA is an action associated with the transition. A
clock constraint inc(C) of the transition is called a guard.
An element in2C is called a set of clocks to be reset.

For conciseness, we denote a transition(l1, a, g, r, l2) ∈ T

by l1
a,g,r→ l2.

Example 1 Figure 2 is a depiction of a timed automaton,
AL = ({press}, {off, dim, bright}, off, {x}, ∅, T ), whereT =

{off press,true,{x}→ dim,

dim
press,x≤10,∅→ bright,

dim
press,x>10,∅→ off,

bright
press,true,∅→ off} .

Note that guards with valuetrueand empty clock resets are
omitted in Fig. 2.

Example 1 shows a timed automaton representing the be-
havior of a mug-light with two brightness modes. Here, we
outline the behavior of this time automaton. The initial state
is location “off” and the value of clockx is 0. If the “press”
action fires, then the state is changed to location “dim”, which
means that the mag-light is dim. With this transition, the value
of clock x is reset to 0. A timed automaton can stay in a lo-
cation as long as its invariant is satisfied, but this example has
no location invariants. The automaton can stay at location
“dim” any length of time. If the value of clockx is greater
than 10 units of time, the “press” action will change the loca-
tion to location “off,” which means the mug-light is switched
off. If the value of clockx is less than or equal to 10 units
of time, the “press” action will change the location to loca-
tion “bright” which means press actions done in succession

Figure 2: An example of a timed automaton representing a
mag-light.

before the clock reaches 10 units of time makes the mug-light
bright. At location “bright” the “press” action will change the
location to location “off,” regardless of the value of clockx.

The following is another example to explain the evaluation
of a guard and an invariant.

Example 2 Let C and I(l2) (a location invariant forl2) be
{x, y} andy > 6, respectively.

Consider a transitionl1
a,x>0∧y≥3,{y}→ l2.

For a clock evaluationν = (8.2, 5.1), the values ofr(ν),
g(ν), and I(l2)(r(ν)) are (8.2, 0), true, andfalse, respec-
tively, derived as follows:
r(ν) = r(8.2, 5.1) = (8.2, 0)
g(ν) = g(8.2, 5.1) = 8.2 > 0 ∧ 5.1 ≥ 3 =true
I(l2)(r(ν)) = I(l2)(8.2, 0) = 0 > 6= false.

The dynamic behavior of a timed automaton can be ex-
pressed via a set of locations and a set of clock evaluations.
Changes of one state to another can be the result of firing of
an action or an elapse of time.

In order to define the semantics of a timed automaton, we
first define a labelled transition system.

Definition 2.8 (Labelled transition system) For a timed au-
tomatonA , a labelled transition system (LTS) is a three-
tuple (S, s0, T ), whereS is a finite set of states,s0 ∈ S
is an initial state, andT is a set of transitions, whereT ⊂
S × (A ∪ R≥0)× S.

Here, the first and last elements inS stand for states in
which the transition is starting from and going to, respec-
tively, andA is a finite set of actions.

A transition(s, α, s′) of LTS is denoted bys
α⇒ s′ .

We can define a run of an LTS as follows.

Definition 2.9 (A Run of an LTS) A run of a LTS(S, s0, T )
is defined as follows.
s0

α⇒ s′ is a run of(S, s0, T ), if s0
α⇒ s′ ∈ T .

Let σi be a run of(S, s0, T ), ending with statesi. Then
si

α⇒ sj ∈ T , impliesσi
α⇒ sj is also a run of(S, s0, T ).

The following define the semantics of a timed automaton.

Definition 2.10 (Semantics of a timed automaton)For a given
timed automatonA = (A,L, l0, C, I, T ), its corresponding
LTS(S, s0, T ) can be formalized as follows.

S = L× R|C|
≥0 .

s0 = (l0,0), where0 is a |C|-dimensional vector each of
whose elements is 0.

Definition 2.11 (Semantics of transition of a timed automaton)
For a transitionl1

a,g,r→ l2, its corresponding transition of LTS
can be defined as follows.

g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

Thefirst part is called an action transition, and the second
is called a delay transition.
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The firstrule can be interpreted as follows. If the current
clock evaluation satisfies the guard, and after some of the
clocks in r are reset, and the new evaluationr(ν) also sat-
isfies the invariant of locationl2, then (l1, ν)

a⇒ (l2, r(ν))
can be fired.

The second rule is interpreted as follows. For some reald,
and anyd′ such thatd′ ≤ d, the obtained clock evaluation
ν + d′ satisfies the invariant of locationl1 and the control can
stay in locationl1, but d units of time will have elapsed. In
other words, the control can stay inl1 until d units of time
have elapsed.

Note that an action transition does not consume time, but a
delay transition will consume time while staying in the same
location.

Definition 2.12 (Run of a timed automaton) For a timed au-
tomatonA , a runσ is a finite or infinite run of its correspond-
ing LTS.
σ = (l0, ν0)

α1⇒ (l1, ν1)
α2⇒ (l2, ν2)

α3⇒, . . . ,
whereα ∈ A ∪ R≥0.

In general, for a timed automaton, we only consider runs
in which delay transitions and action transitions alternately
occur.

2.3 Test Automaton

In this paper, the test automaton described in [16–19] is
used as guideline for deriving a desired counter-example by
tracing transitions of interest in the original model.

Figure 3 represents the general usage of a test automaton.
Normally, model checking uses a logical temporal expression
to specify a property to check. However, complex specifi-
cations might not be able to be expressed using logical tem-
poral expressions. A test automaton, in general, has more
expressive power than a logical temporal expression and can
represent a variety of complex behavior. A test automaton is
typically used in a parallel composition with the original au-
tomaton in order to check a complex property. This is a use-
ful technique, however, it is usually difficult to automatically
generate a test automaton fitting the designer’s need.

The test automatonTAid used in this paper is just a timed
automaton. We create a desirable test automaton from test
automaton components using several operators in a process
described in Section 3.2. This method creates a single test
automatonTAid for the original modelM with human input
and guidance. Then, it automatically generates the desired
counter-example by performing model checking on a parallel
composition ofM andTAid.

3 PROPOSED METHOD

3.1 Motivation Example

We use an example of a chemical plant system (described in
more detail in Section 4) as our target for evaluation. Figure
4 shows the counter-example generated by UPPAAL when
we perform model checking for the chemical plant system.
Note that the model was obtained from a description of the
chemical plant system which has some bugs in its design.

Figure 3:General usage of a test automaton.

Figure 4:A counter-example generated in model checking of
a chemical plant system.

We use the following expression as a property to check.

(In.C2 ∧ (T2 out == 0))−− > T1.Out1 (2)

This expression uses the “lead to” operation−− > and the
expression is equivalent to

AG((In.C2 ∧ (T2 out == 0))implyAF T1.Out1) (3)

which means that “when the proposition
In.C2 ∧ (T2 out == 0) is satisfied, the state in which

propositionT1.Out1 is true will surely be reached at some
time.”

When this property does not hold, we expect the model
checker to generate a counter-example with more detailed in-
formation which can be used in subsequent failure diagnosis.
In particular, for this example we expect to see as a counter-
example the path which cannot reach the stateT1.Out1 start-
ing from stateIn.C2 ∧ (T2 out == 0).

However, the counter-examples actually generated specify
only an initial state, which are clearly insufficient for use in
fault diagnosis.

In order to solve the above problem, we propose a method
using test automata in Section 3.2.
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3.2 Method for Generating Test Automata

Our proposed method obtains a useful counter-example by
performing model checking on a parallel composition of the
original model which represents the behavior of the target
system and a test automaton which represents the expected
behavior of a counter-example that a user expects to see.

The method begins by creating a rough sketch of a counter-
example that users expect as a test automaton. The test au-
tomaton is generated by synthesizing “test automaton com-
ponents”. Then, by using a parallel composition of the origi-
nal model and the synthesized test automaton, we obtain the
desired counter-examples in the following steps.

Let M be an original automaton (or automata) to be veri-
fied.

1. A user with some domain specific knowledge of the de-
sired system considers an outline of the counter-example
to be obtained. The necessary counter-examples are
predicted from the system documents and faults report
documents.

2. A single test automatonT is composed by synthesizing
test automaton components. Weaving of test automaton
components is done by using rename and fusion opera-
tors.

3. Model checking is performed on a parallel composition
of M andT with propertyP which states “M||T will
not reach the final state”. IfP does not hold, a counter-
example is obtained.

In creating the parallel composition, the original modelM
should be changed as little as possible. However, in order
for it to communicate with the test automaton, the following
modifications may be required. Note that these modifications
can be performed automatically.

If M has a transition with some eventa!, a?, or some vari-
ablex which is also used in the test automata, then the fol-
lowing modifications are performed.

1. If M has a transition with eventa! (a?), then add a
transition which has a synchronization signals! to a test
automaton. Figure 5 shows the modification. Here the
location “C” denotes a committed location which is a
location where the automaton does not stay. Thus, the
events! is performed immediately after the eventa!

2. If M has a transition with a variable updatex = expr
andx is also used in a test automaton, then add a tran-
sition which has a synchronization signals! to the test
automaton. Figure 6 shows the modification. Also vari-
ablex should be declared as a global variable.

3.3 Test Automaton Components and
Operators for Weaving

Figure 7 shows the general form of a test automaton com-
ponent

TAid(Lin, a, guard, update, reset, Lout, Is, It)

Figure 5: Modification ofevent a!.

Figure 6: Modification ofa transition with update variable.

whereLin andLout are the entering location and exiting lo-
cations, respectively;a, guard, update, reset, Is, andIt are
an event, a guard, an update, a clock set to reset, invariants for
entering and exiting locations, respectively.

In this work, we propose three typical patterns of test au-
tomaton components shown in Fig. 8. LetT be the transition
of interest in the original model. We consider two types of ac-
tions given to the test automaton when tracing the transition
of the original model. The first type communicates with tran-
sition T and the second communicates with transitions other
thanT . When transitionT fires, the instance of the com-
ponent of the test automaton simply fires the corresponding
transition. This is the first test automaton component. When
a other transition other thanT fires, we consider the following
two scenarios. If the original model can return to a specified
state via a transition other thanT , i.e., if the original model
has a loop, the test automaton must have a transition to the
corresponding state. Therefore, a new component is needed.
If the original model cannot return to the specified state, i.e.,
when the original model does not have a loop, the test automa-
ton must have a transition to an error state. If a test automa-
ton reaches an error state, the task of obtaining an appropriate
counter-example fails. These three patterns are used as the
components of the test automaton.

First we explain the simple component. Figure 8 (i) is a test
automaton component to receive signala and can be written
as

TA1(Lin, a, true, ∅, ∅, Lout, ∅, ∅).

Using the (i) type test automaton components, we can com-
pose a test automaton which can receive consecutive signals.

For example, let us consider the test automaton components
in Fig. 9.

TA1 = (Lin, a1?, x > 0, ∅, ∅, Lout, ∅, ∅)

TA2 = (Lin, a2?, true, ∅, ∅, Lout, ∅, ∅)

We can use a rename operator (TA@label\label2) to change
the labels of test automaton components.

For example,TA1@Ls\Lout andTA2@Ls\Lin will re-
nameLout of TA1 andLin of TA2 in Fig. 9 each toLs as
shown in Fig. 10.
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Figure 7:Test automaton component.

Figure 8: Typical test automaton components: (i) a normal
transition, (ii) a force to an error state and (iii) a transition to
itself.

The fusion operator (+) is a binary operator which merges
locations in both terms.

For example,(TA1@Ls\Lout)+(TA2@Ls\Lin)will merge
Ls of TA1 andLs of TA2 in Fig. 10 to the result shown in
Fig. 11.

Figure 8 (ii) forces the test automaton to an error state. It is
used when the conditions required for a counter-example are
not met.

Figure 8 (iii) stays in a location. It cannot reach location
Lout while the event happens with a condition guard.

4 CASE STUDY

We have applied the method proposed in Section 3 to the
verification of a chemical plant system reported in IPA [10]
as a case-study for the “post-verification” of a system.

Figure 12 shows a schematic diagram of the system. The
functionality of the system is as follows:

• When the water level is more than a prescribed alert
level (40cm), the system opens a discharge valve for 5
seconds to prevent overflow. During this 5-second pe-
riod and the 10 seconds following it (15 seconds total)
the system will not accept a new open instruction.

• The system can also perform the same discharge oper-
ation as an instruction from a human operator.

• An instruction from the operator always takes prece-
dence over the other instructions. The system accepts it
even during the prohibited interval of 15 seconds. Op-
erator instructions have priority over even past instruc-
tions made by the operator.

In operation, even when the water level had exceeded the
alert level and the 15-second wait period for new instruc-
tions had passed, the appropriate action was not taken by the
system. Furthermore, instructions from the human operator
which should always have precedence were also ignored. We
performed modeling using UPPAAL in order to diagnose this

Figure 9:Test automaton components 1 and 2.

Figure 10:Renamed test automaton components.

failure. Model diagnoses in Figs. 13 and 14 show the control
system and a model expressed in UPPAAL, respectively. Fig-
ure 14 is derived from the specification of the chemical plant
system and the model in Fig. 13.

In Fig. 13, signalM4 represents a manual input from the
operator and signalC2 represents a signal which shows that
the water level has exceeded the alert level. For both signals,
a 1 indicates an input signal for starting the discharge and a
0 represents no input. Based on these inputs we have two
timers for representing the state where the system is draining
water and the 15-second wait state when new instructions are
not accepted. The specific logic between the inputs and the
timers is given in the “In” model (Fig. 14).

In Fig. 14, a double circle represents the initial state. A lo-
cation with a C represents a committed location. A committed
state cannot be delayed and the next transition must involve
an outgoing edge of at least one of the committed locations.
Expressions in green represent a “guard” which evaluates to
a Boolean value. If a guard expression does not hold, the
corresponding transition cannot fire. An expression in yellow
represents a “select” and in this model, we use it to receive an
input from a user (C2: 0or 1, M 4: 0or 1). An expression in
blue represents an “update”. The model updates variables at
the same time as the corresponding transitions. An expression
in light blue represents a “synchronization”. A synchroniza-
tion label is formed as eitherExpression! or Expression?.
A transition withExpression? fires on receiving the corre-
sponding transition withExpression! .

Typically, formal methods decide whether properties which
we expect to hold really hold on the model. In this case, it
would be natural to consider the negation of a failure that has
occurred in the system as a property to check using model
checking. In our example, we must determine “whether the
system is sometimes put into discharge mode when water
draining is not suppressed and the water level sensor is in a
state of alert level.”

We check Expression (2) in Section 3.1 on the model. As
shown in Fig. 4, it is confirmed that this property is not satis-
fied. The generated counter-example, however, is trivial and
it cannot be used to explain why the property is not satisfied.
Therefore, it cannot be used for the fault diagnosis of the sys-
tem.
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Figure 11: Fusion oftest automaton components.

Figure 12: A schematicview of the chemical plant system
example from “Fault diagnosis method for the large-scale and
complex embedded system (in Japanese)”[10].

Our method creates a test automaton in a series of steps
to generate a human expected counter-example. The test au-
tomaton is derived by a coarse behavior series of counter-
examples in our previous work [10, 11]. LetTA1 be a test
automaton component obtained from type (i) components in
Fig. 8.

TA1 = TAid(start, input?, C2 == 1&&M4 == 0,

isT1end = 1, ∅, end, ∅, ∅)
Similarly, TA2, TA3, andTA4 can be obtained from test

automaton components in Fig. 8.
Figure 15 summarizes these test automaton components.

A test automaton obtained by the following expression is the
desired final automaton and is depicted in Fig. 16:

(TA1@Ls\end) + (TA2@Ls\start, Lt\end)

+(TA3@Ls\start) + (TA4@Lt\start)
By combining the model representing the system and the

test automaton, a detailed counter-example which can be used
in the diagnosis of the failure is obtained(Fig. 17). The odd-
numbered lines represent the states of the semantics model of
the given network of timed automata. For example, (Out0,
Out0, Wait, start) stands for the first timed automaton located
in Out0, the second timed automaton located in Out0, and so
on. In particular, the last element “start” corresponds to the
automaton in Fig. 16. The even-numbered lines represent
transitions of the semantics model of the given network of
timed automata. For example, “In [1, 0]” on the second line
and “In [1, 1]” on the 12th line represents a select input from
the user. “inputchange: In→ T1” on theeighth line repre-
sents the fire of a transition “inputchange!” on the model
“In” and transition “inputchange?” fires on themodel “T1”
also.

Figure 13: Control diagramof the chemical plant system.

Figure 14: UPPAALmodel of chemical plant system exam-
ple.

5 DISCUSSION

We discuss here the coverage and time taken in generating
a counter-example using test automaton components in this
work.

The desired counter-example for the case-study presented
in this paper was able to be constructed by the proposed test
automaton components because the counter-example was gen-
erated as a single path. We can expect a variety of cases to be
covered sufficiently using the same method.

The time required for counter-example generation was less
than 1 second in the example of this work. Since the pro-
posed method uses a test automaton as a guideline for cre-
ating counter-examples, it is assumed that the scalability of
generation time will fall within an appropriate range even if
the counter-example and scale of the time automaton become
bigger. In addition, the creation of the test automaton here
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Figure 15:Components of a test automaton for the plant ex-
ample.

Figure 16:Test automaton.

was by the authors. Therefore, it should be evaluated in the
future whether or not a novice in fault diagnosis can create a
correct automaton with the prescribed process and how long
it would take. This method involves only simple steps of as-
sembling the test automaton from the parts that are provided,
however, knowledge of model checking is required to create
a useful test automaton. Therefore, the method targets a user
with prior knowledge of model checking.

6 CONCLUSION

This paper proposed a method for generating a counter-
example which meets user expectations using test automata.
We applied the technique to a case study of a chemical plant
system in order to verify its effectiveness.

The proposed method is not designed to generate counter-
examples automatically. This is an approach that combines
model checking and test automata with human guidance to

Figure 17:The counter-example generated with the proposed
method.

generate a useful counter-example. Therefore, a method for
generating counter-examples automatically is needed in the
future and we must consider the following problems:

• We cannot fully search the model space in the case of
an infinite state transition system.

• Even in a finite state transition system, state-explosion
problems can occur.

Therefore, model abstraction techniques to properly reduce
the number of states of a model for each property [13, 14]
become important. Bounded model checking (BMC) [12]
would provide another approach. The BMC technique pre-
vents state explosion by limiting the search range of the fi-
nite state space. When BMC finds a violation on a finite
state space, counter-examples are generated as finite lengths.
In general, counter-examples have infinite length. However,
users typically want finite counter-examples and consider a
counter-example generated by BMC enough for their purposes.
In our future work, we will examine BMC as a promising
starting point for generating counter-examples of suitable length
within a reasonable amount of time.
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