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Abstract - Bayesian Network is a graphical model that ex-
presses causal relationship among events, which is regarded
to be useful in decision making in various practical scenes.
A number of algorithms to learn Bayesian Network structure
from data have been proposed so far, but since the problem
to learn Bayesian Network structure is proved to be NP-hard,
it takes considerable time to learn sub-optimal structures. As
one of the efficient approximation algorithm to obtain good
(but not optimal) solution in practical time, EDA-based ge-
netic algorithms are used. However, it still takes time to com-
pute the solution on a CPU. Thus, in this paper, we propose
a method to accelerate the EDA-based algorithm by design-
ing parallel execution of the algorithm using GPUs. Through
evaluation, we show that the proposed algorithm runs about
14-times faster than the original one executed on CPU. We
also compare the quality of Bayesian network models created
by major approaches in the literature, and found that EDA-
based algorithm is superior to the others. We concludes that
the proposed algorithm to learn Bayesian network structures
is good in both quality and computational speed.
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1 INTRODUCTION

Bayesian Networks (BNs) are regarded as useful graphi-
cal models used to analyze causal relationship among events.
There are so many practical fields in which Bayesian Net-
works are effectively utilized, such as bioinformatics research,
medical analyses and diagnosis, computer security, system di-
agnosis and monitoring, etc. Recently, because we are sur-
rounded by so much data coming from the Internet, sensors
embedded to the environment, or various information sys-
tems, the importance of Bayesian Networks as analytic tools
is continuously growing larger and larger.

A large number of studies have been dedicated to learn
good BNs efficiently in the literature. It is well-known that
BN structure learning can be formulated as an optimization
problem that optimizes a model score defined as an infor-
mation criterion. However, because it is proved to be NP-
hard [1], to solve the problem approximately within practi-
cal time is significantly important. One traditional method is
K2 [2], which introduce the constraint on variable order to
reduce the search space. The variable order is the constraint
on events n1, n2, . . . , nk where ni can be a parent of nj only
if ni ≺ nj . However, because the order constraint such that
ni ≺ nj cannot be defined frequently (i.e., it is possibly de-
fined only in the apparent case, for example, ni occurs before
nj in time), there are many cases in practice in which order

constraint is not applicable.
To solve the optimization problem without order constraint,

many studies tried to find sub-optimal BN models. Recently,
algorithms based on genetic algorithms (GAs) are well-stud-
ied, as shown in the survey article [6]. Among them, we in
this paper focus on a kind of GA-based algorithm called EDA
(Estimation of Distribution Algorithms), in which the distri-
bution of model scores on the graph space is estimated in or-
der to find better-score Bayesian Network models efficiently.
Note that EDA is one of the representative methods to com-
pute BN models efficiently and approximately.

Specifically, we treat a EDA-based algorithm called PBIL
(Probability-Based Incremental Learning) [12], which is re-
ported to be the best to learn BNs among EDAs-based algo-
rithms [7]. The problem here is that the above algorithms
including PBIL-based one take significant time to learn BNs.
To cope with the large data available today, acceleration of
those algorithms to run within shorter time is important.

In this paper, we present a method to accelerate a PBIL-
based BN-learning algorithm to run much faster using GPU
computation. Our method incorporates parallel computation
on GPU based on the coalesce access technique to accelerate
the calculation of model scores such as AIC. We evaluated
the proposed method using well-know bench-mark data sets,
and found that the algorithm achieve about 14-times faster
running speed than the original CPU-executed algorithm us-
ing consumer-class GPU hardware. We further compared the
quality (i.e., optimality) of the solusions between major algo-
rithm to learn Bayesian Networks in order to confirm the per-
formance of PBIL-based algorithms. As a result, we found
that the PBIL-based algorithm is superior to the other ma-
jor approaches to learn BNs. From above, we conclude that
the algorithm proposed in this paper computes good solutions
within a short time by utilizing GPUs.

This paper is organized as follows. In Sec. 2, we describe
the major approaches of algorithms to learn BNs in the liter-
ature. In Sec. 3, we introduce the optimization problem to
learn BN structures and give the specific description of PBIL-
based BN-learning algorithm. After we concisely explain the
GPU architecture related to our work in Sec. 4, we describe
the proposed method to accelerate the PBIL-based algorithm
using GPU computation in Sec. 5. In Sec. 6 we evaluate
the running speed and the quality of solution of the proposed
method, we finally conclude the work in Sec. 7.

2 RELATED WORK

In this section, we concisely introduce the major approaches
to learn BNs presented in the literature.
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Local search is one of the most basic approaches to solve
large-space optimization problems, including BN learning.
Greedy hill climbing (GHC), which is the most basic one,
explores the search space by moving to the best-score point
among the vicinity of the current point. In learning BNs, GHC
is usually applied to search the graph space. There are several
variants in this sort of algorithms such as MMHC[4].

Simulated annealing (SA) is also a well-known local-search-
based algorithm used in learning BNs [5], which is different
from GHC in that SA does not always move to better-score
point; SA has a parameter T called temperature, which is de-
creased gradually as iteration proceeds. In each iteration, SA
selects randomly a point in the vicinity, and moves to it if the
score of the new point is better, otherwise moves to it with the
probability determined by T .

Genetic algorithms (GAs) are frequently used in NP-hard
problems to obtain approximate solutions in a practical time.
In GAs, crossover and mutation operators are applied to ob-
tain a set of next-generation individuals. For learning BNs,
one major strategy is called K2GA[3][8][9], in which GA is
applied to evolve the order constraint from which K2 heuristic
generates a graph structure. There are other ways to use GA
to learn BNs such as graph evolution [10] and co-evolution
algorithms [11] that evolve directly the graph structure.

As a kind of GA, EDA-based algorithms also have applied
to learn BNs. In EDA, the distribution of scores in the search
space is estimated using a set of individuals in a generation,
and update the probability vector to generate individuals of
the next generation. PBIL (Probability Based Incremental
Learning), which is one of EDA, is first proposed in [12], first
applied to learn BNs in [13], and reported to outperform other
EDAs in learning BNs[7]. PBIL stops running when the prob-
ability vector converges. To avoid terminating and continue
searching, several mutation operators such as bitwise muta-
tion (BM)[14], transpose mutation (TM)[7], and probability
mutations (PM)[15] have been proposed. Later, efficient rep-
etition technique called PBIL-RS is proposed in [16] and re-
ported to outperform the above mutation operators.

A few parallel algorithms to learn Bayesian Networks have
been proposed in the literature. Nikolova, et al., proposed a
parallel algorithm that searches graph space in parallel using
conditional independence tests [19]. However, since this al-
gorithm runs on multi-CPU platforms, it is not comparable to
our algorithm that runs on GPU. Of course, utilizing muiti-
CPU hardware is a possible choice. However, our choice, i.e.,
using GPUs, has an advantage that we can use well-populated
and cheeper hardware to accelerate the structure learning of
Bayesian networks. Linderman[20] and Wang[21], respec-
tively, proposed an algorithm that accelerate MCMC sam-
pling in the ordering space. Althrough MCMC-based algo-
rithm could be a powerful choice to learn Beysian Networks,
they are usually applied to the case in which each node (i.e.,
events) takes a real value and its statistical distribution is as-
sumed. However, since in this paper we treats the case of dis-
crete values, especially binary values in many cases, MCMC-
based methods are too heavy and time-consuming. No paral-
lel algorithm for GPU that is suitable to treat discrete-value
cases has not been proposed so far.

3 PRELIMINARIES

3.1 Problem Formulation
A Bayesian Network model is a graphical model that repre-

sents the causal relationship among events. A Bayesian Net-
work model has a structure represented by a directed graph
where events are denoted by nodes while causal relationships
are denoted by directed edges. In many cases (including this
work), each node takes multinomial discrete values, and con-
ditional probabilities among them are expressed by a model.
See Fig. 1 for a concise example. Nodes n1, n2, and n3 rep-
resent distinct events, where they take 1 if the corresponding
events occur, and take 0 if the events do not occur (in this case
we show a binomial case for conciseness). Edges n1 → n3

and n2 → n3 represent causal relationships, which mean that
the probability of occurrence for each n3 value depends on
the values of n1 and n2. If edge n1 → n3 exists, we call that
n1 is a parent of n3 and n3 is a child of n1. Because nodes n1

and n2 do not have their parents, they have own prior proba-
bilities P (n1) and P (n2). On the other hand, because node
n3 has two parents n1 and n2, it has a conditional probability
P (n3|n1, n2). In this example, the probability that n3 oc-
curs is 0.890 under the assumption that both n1 and n2 occur.
Note that, from this model, Bayesian inference is possible: if
n3 is known, then the posterior probability of n1 and n2 can
be determined, which enables us to infer more accurately the
occurrence of events.

The Bayesian Networks model can be learned from the
data obtained through the observation of events. Let N =
{ni}, (1 ≤ i ≤ |N |) be a set of events, and O = {oj},
(1 ≤ j ≤ |O|) be a set of observations, where |N | is the
number of events and |O| that of observations. Let oj =
(xj1, xj2, . . . , xj|N |) be j-th observation, which is a set of
observed values xji on event ni for all i(1 ≤ i ≤ |N |). We
try to learn a good Bayesian Network model m from the given
set of observations. Note that, good Bayesian Network model
m is the one that creates data sets similar to the original ob-
servation O. As an model score (i.e., evaluation criterion) to
measure the level of fitting between m and O, several infor-
mation criteria such as AIC (Akaike’s Information Criterion)
[17] are used. Formally, the problem of learning Bayesian
Networks that we consider in this paper is defined as follows:

Problem 1: From the given set of observations O, find a
Bayesian Network model m that has the lowest model score.

3.2 PBIL
In PBIL, an individual creature m is defined as a vector

m = {e1, e2, . . . , eL}, where ei(1 ≤ i ≤ L) is the i-th ele-
ment that takes a value 0 or 1, and L is the number of elements
that consist of an individual. Let P = {p1, p2, . . . , pL} be a
probability vector where pi(1 ≤ i ≤ L) represents the prob-
ability to be ei = 1. The algorithm of PBIL is described as
follows:

(1) As initialization, we let pi = 0.5 for all i = 1, 2, . . . , L.

(2) Generate a set M that consists of |M | individuals ac-
cording to probability vector P , i.e., element ei of each
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Figure 1: An Example of Bayesian Network Models
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Figure 2: A Probability Vector

individual is determined by the corresponding proba-
bility pi.

(3) Compute the score for each individual m ∈ M .

(4) Select a set of individuals MTopk whose members have
evaluation scores within top k in M , and update the
probability vector according to MTopk. Specifically,
the formula applied to every pi to update the probability
vector is shown as follows.

pnewi = ratio(i)× α+ pi × (1− α), (1)

where pnewi is the updated value of the new probability
vector (pi is replaced with pnewi in the next generation),
ratio(i) is the function that represents the ratio of indi-
viduals in MTopk that include edge i (i.e., ei = 1), and
α is the parameter called learning ratio.

(5) Repeat steps (2)-(4) until P converges.

By merging top-k individuals, PBIL evolves the probability
vector such that the good individuals are more likely to be
generated. Different from other genetic algorithms, PBIL
does not include “crossover” between individuals. Instead,
it evolves the probability vector as a “parent” of the generated
individuals.

3.3 PBIL-based Bayesian Networks Learning
In this section, we describe a PBIL-based algorithm that

learns BN models. Because our problem (i.e. Problem 1) to
learn BN models is a little different from the general descrip-
tion of PBIL shown in the previous section, a little adjustment
is required. In our problem, individual creatures correspond
to each BN model. Namely, with the set of events N , an indi-
vidual model is represented as m = {e11, e12, . . . , e1|N |, e21,

e22, . . . , e|N |1, e|N |2, . . . , e|N ||N |} where eij corresponds to
the edge from an event ni to nj , i.e., if eij = 1, the edge from
ni to nj exists in m, and if eij = 0 it does not exist. Similarly,
we have the probability vector P to generate individual mod-
els as P = {p11, p12, . . . , p1|N |, p21, p22, . . . , p|N |1, p|N |2,
. . . , p|N ||N |} where pij is the probability that the edge from
ni to nj exists. A probability vector can be regarded as a table
as illustrated in Fig. 2. Note that, because BNs do not allow
self-edges, pij is always 0 if i = j. The process of the BN-
learning algorithm is basically obtained from the steps of the
general PBIL, as described in the following (See also Fig. 3
that illustrate these steps).

(1) Initialize the probability vector P as pij = 0 if i = j,
and pij = 0.5 otherwise, for each i, j(1 ≤ i, j ≤ |N |).

(2) Generate M as a set of |M | individual models accord-
ing to P .

(3) Compute the evaluation scores for all individual models
m ∈ M .

(4) Select a set of individuals MTopk whose members have
top-k evaluation values in M , and update the probabil-
ity vector according to the formula (1).

(5) Repeat steps (2)-(4) until P converges.

Same as the genearal PBIL, the BN-learning algorithm e-
volves the probability vector so that we can generate better
individual models. However, there is a constraint specific to
BNs, that is, a BN model is not allowed to have cycles in it.
To consider this constraint in the algorithm, step 2 is detailed
as follows:

(2a) Consider every pair of events (i, j) where 1 ≤ i, j ≤
|N | and i ̸= j, create a random order of them.

(2b) For each pair (i, j) in the order created in step (2a), de-
termine the value eij according to P ; every time eij is
determined, if eij is determined as 1, we check whether
this edge from ni to nj creates a cycle with all the edges
determined to exist so far. If it creates a cycle, let eij
be 0.

(2c) Repeat steps (2a) and (2b) until all the pairs in the order
are processed.

These steps enable us to learn good BN models within the
framework of PBIL.

3.4 PBIL-RS
Note that PBIL introduced above does not include mutation

operators. Therefore, naturally, it easily converges to a local
minimum solution. To avoid converging to the local mini-
mum solution and to continuously improve the solution af-
ter that, several mutation operators have been proposed such
as Bitwise Mutation (BM) [14], Transpose Mutation (TM)
[7], and Probability Mutation (PM) [15]. PBIL-RS (PBIL-
Repeated Search) [16] is also a method to avoid converging to
local minimum solution, which, when it detects convergence,
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spreads the search area again. PBIL-RS is shown to find bet-
ter solutions compared to the mutation-based methods such
as BM, TM, and PM by repeating spreading and converging
[16].

4 GPU ARCHITECTURE

4.1 GPU Structure

GPU (Graphics Processing Unit) is an arrayed processor
that is originally developed to accelerate graphical comput-
ing, which currently is used to accelerate general scientific
computation. A GPU structure is illustrated in Fig. 4. A GPU
has a hierarchical structure where it consists of multiple (tens
to hundreds of) Streaming Multi-processors (SMs) and a SM
further includes multiple (tens to hundreds of) Streaming Pro-
cessors (SPs). Since each SP in a SM concurrently executes
a fragment of program code, a GPU executes a number of
fragmented codes in parallel, which potentially results in sig-
nificant performance.

To exchange data between a CPU and a GPU, a memory
called global memory is prepared in the GPU that can be ac-
cessed by both the CPU and the GPU. Also, to accelerate par-
allel computation, each SM has a small high-speed memory
called shared memory that can be accessed by all SPs in the
same SM. A thread runs in each SP, and the threads in the
same SM runs the same bytecode in parallel with different
values of variables. Thus, memory accesses of threads are ex-
pected to occur simultaneously. To optimize the efficiency of
the parallel access is the key issue to design algorithms for
GPU. Note that, if the number of threads to execute exceeds
the number of SPs in a SM, a single SP executes multiple
threads in turn until all of them are executed.

4.2 Coalesce Access to Global Memory

To have as much performance gain as possible from GPU,
one of the most basic techniques is to consider the efficient

access to the global memory called coalesce access, which is
illustrated in Fig. 5. Coalesce access is a synchronized par-
allel access technique in which threads in a SM simultane-
ously access the successive addresses in the global memory
to achieve high-throughput memory access. When the access
is scheduled completely to the successive addresses, the SM
read/write the memory block in a single action that completes
the access of all SPs. To utilize coalesce accesses is an impor-
tant technique in designing GPU algorithms.

5 ACCELERATING PBIL WITH GPU

5.1 Overview
The method we propose in this paper extends PBIL and its

family algorithms (such as PBIL-RS and the mutation exten-
sions) to run in significantly shorter time by means of parallel
computation of GPU. We re-designed Step (3) of PBIL de-
scribed in Sec. 3 for GPU execution to compute the model
scores for a collection of models M . Because, in PBIL, hun-
dreds of models are to be computed in a single generation to
estimate a distribution of model scores, introducing parallel
computation in Step (3) is significantly effective.

Specifically, we detailed the step (3) in the following.

(3a) Transporting data from CPU to the global memory.

(3b) For each model m, we compute the evaluation score by
executing the following substeps (3b-1) and (3b-2).

(3b-1) Counting the occurrences in the observation set
that match each value pattern.

(3b-2) Computing evaluation scores from the counts.

(3c) Transporting the computed scores back to CPU.

As written in Step (3b), we first count the number of oc-
currences in the observation data O that match each value
pattern of events. Here, value patterns are defined on each
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event as a set of values taken by the event and its parent
events. For definition, see Fig. 1 again. The value patterns
on event n3 is the combination of values of n3 and its parents
n1 and n2. Since those three variables take binomial values
(i.e., 0 or 1), we have 8 value patterns such as (n1, n2, n3) =
(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1). For conciseness, we denote
it by n1n2n3 = {000, 001, . . . , 111}. In general, the set of
value patterns for event ni is denoted by Vi = p1p2 . . . prni

= {0..00, 0..01, · · · , 1..11} where the parents of ni in model
m is pa(ni) = {p1, p2, . . . , pr} and r is the number of par-
ents of ni.

Then, our task in step (3b) is to compute the number of oc-
currences Niv in O that takes value pattern v, for every event
i ∈ N and value pattern v ∈ Vi. Although there are sev-
eral information criterion such as AIC, BIC and MDL that
are used as model scores in learning Bayesian Network struc-
ture, they are all computed from the counts of value patterns,
as shown in Sec. 5.3.

The basic strategy for counting value patterns is to assign a
SM to a single model m, and to use all SPs in the SM in paral-
lel to count all value patterns for all events in m. By assigning
a model m to a single SM, we compute the model score of m
in the SM. Each SM in a GPU processes models one by one in
parallel to compute model scores for all models in M . In the
following subsections, we describe the algorithm to process
m within a SM to show how to make efficient manipulation
of data, especially to gain from the coalesce access of global
memory.

5.2 Data Structure
In Step (3a), we transport the data required to compute

model scores to the global memory. We declare three arrays
that represent the following sets, respectively, in the global
memory.

(i) The observation set O.

(ii) The model set M .

(iii) An array to record the computed model scores.

The pseudo code to define these data items is shown in the
following.

u_int8_t observation[N][O];
boolean model[M][N][N];
float modelScore[M];

Here, variables M,N,O represents |M |, |N |, and |O|, respec-
tively. We represent the observation set O as a two-dimensional
array observation where the 1st dimension is events and
the 2nd observations. We represent The model set M as a
three-dimensional array model where 1st dimension is used
for the index of models and 2nd and 3rd dimensions are used
to describe each model. Each model is expressed as an adja-
cency matrix such that model[m][i][j] is true if there is
a directed link from event i to j in m. The array modelScore
is used to retain the value computed by the algorithm.

We use the Shared Memory to place the counters that retain
the counts of every value patterns for all events in a model, as
follows.

u_int16_t counter[Vi];

Here, Vi denotes the number of value patterns on event i ∈
N . Note that Vi is determined depending on the number of
parents of i in the model m, and the number of their multino-
mial values. Thus, this array may exceed the capacity of the
shared memory. (Consider that, if pj may take a value from
w(pj) distinct values, Vi = w(i)w(p1)w(p2) . . . w(pr).) If
the shared memory can afford to store this array in size, we
execute fast counting algorithm that we call case-1 shown in
Sec. 5.4, and otherwise, we use alternative algorithm that we
call case-2 shown in Sec. 5.5.

5.3 Model Scores
Note that we count the number of observations in each

case to compute evaluation scores. Although there are several
information criterion such as AIC, BIC and MDL, used as
model scores in learning Bayesian Network structure, they all
are computed from the number of observations in each case.
For instance, AIC is computed with the following formula:

AIC = −2l(θ|O) + 2k, (2)

where θ denotes the parameter set, l(θ|O) denotes the likeli-
hood of θ under observation O, and the term k represents the
number of parameters. Here, we further show that the func-
tion l(·) is represented by the following formula

l(θ|O) ∝
∑
i∈N

∑
v∈Vi

(Niv) log θiv, (3)

where i denotes an event, v denotes a value pattern, Niv de-
notes the number of occurrences in observations O that match
i and v, and θiv is a parameter computable from Niv . This
means that, by counting the number of observations for each
value pattern, we can compute the evaluation score of the
model m such as AIC. Note that other information criteria
used in Bayesian Networks such as BIC, MDL, etc., also can
be computed through counting the matching value patterns in
the observation set O.

5.4 Computing Model Scores (Case 1)
If the size of the array counter[Vi] is within the ca-

pacity of shared memory, the procedure described here (i.e.,
case-1) is applied. Before computing the model score of the
given model m ∈ M , the SM responsible to this task com-
putes Niv for all i ∈ N and v ∈ Vi. In the procedure, the SM
proceeds each node i sequentially. Thus, we now fix i ∈ N
and focus on computing Niv for all v ∈ Vi.

Our strategy to do this is to process occurrences in O in par-
allel using SPs. Thus, we designed the procedure such that
each thread reads a single occurrence of O and increments
the corresponding value in counter. Namely, we have as
large number of threads as the occurrences of O. By the
scheduler of GPU that assigns threads to SPs, we can read oc-
currences from successive addresses of the global memory as
shown in Fig. 6 (remember that the addresses of occurrences
for ni, p1, p2, . . . , pr are successive in array observation,
respectively), gaining from coalesce access.
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As the result of the above procedure executed for all events
i ∈ N , we can obtain Niv for all i ∈ N and v ∈ Vi.

After computing Niv for all i ∈ N and v ∈ Vi, we compute
the model score of m from them. This is simply done by
computing the value according to formula (2). To compute it
in parallel, we assign a SP for each i ∈ N and sum up the
model scores on the shared memory using a technique called
parallel reduction. We finally store the computed score into
the array modelScore in the global memory.

5.5 Computing Model Scores (Case 2)

If the size of the array counter[Vi] exceeds the capac-
ity of the shared memory, we have to choose a less efficient
algorithm. In the Alarm Network used in the evaluation of
this paper, we can use the case-1 algorithm only when the
number of parents r is less than 7, where each event takes 4
distinct values and we have about 48KBytes shared memory.

In the case-2 algorithm, instead of the array counter[Vi],
we define the array patternValue[O] as follows.

u_int16_t patternValue[O];

We simply use this array by storing pattern values of each oc-
currences of O. Retrieval of the pattern values from global
memory can be done using coalesce access in the similar way
to case-1. After retrieving the pattern values, we sort the val-
ues as shown in Fig. 7. Note that a GPU-specific sorting al-
gorithm called bitonic sort can be used for high-throughput
sorting. Then, we trace through the array sequentially in or-
der to count each value pattern and sum up the model score.
Although it takes a little longer than case-1, we can compute
the model score in relatively short time.

Table 1: Evaluation Environment
OS CentOS 5.0

CPU Intel Core i7 4770k (3.50GHz)
Memory 32GBytes

Model nVidia GeForce GTX
TITAN Black (0.98GHz)

# of SM 15
# of SP per SM 192 (2880 SPs in total)

GPU Global Memory 6143 MBytes
Shared Memory 49152 Bytes per SM

GPU Library CUDA 6.0
Compiler g++ 4.1.2

6 EVALUATION

We evaluate the proposed method in terms of both running
time and quality of the output model.

First, to clarify the performance of the proposed method
to accelerate computational speed, we compare the running
time of the proposed algorithm executed on GPU with its base
PBIL-based algorithm executed on CPU. Note that their out-
put is the same, only running time is different.

Second, as for the quality of the output model, we clarify
how good is the BN models computed by PBIL-based algo-
rithm. The quality of BN models can be measured by the
model score such as AIC. By comparing the model scores
obtained from major BN learning approaches, we show that
PBIL-based algorithm is the most excellent among them.

By combining the results of running time and model qual-
ity, we would clarify that the proposed method is better than
other major algorithms in the literature as it outputs higher-
quality BN models within shorter running time.

6.1 Computational Time

We compare the running time of the proposed algorithm
executed on GPU with its base algorithm PBIL-RS executed
on CPU. We implemented both algorithms in C++ language
with CUDA library for GPU processing. The execution envi-
ronment is shown in Table. 1. We used Alarm Network [18]
including 37 nodes as the base BN model; we generate an
observation set including 1024 occurrences based on Alarm
Network and learn BN models using each algorithm.

Figure 8 shows the computational time as generation pro-
ceeds. We see that the proposed algorithm that runs on GPU
is about 14-times faster than PBIL-RS that runs on CPU only.
In this figure, we also show a variant of the proposed algo-
rithm seen as “case-2 only” that always runs case-2 algorithm
instead of case-1 even if the number of parents is small. This
variant takes about 1.6-times longer than the both-algorithm
case, which indicates that case-1 algorithm is considerably
faster than case-2. To see the difference more precisely, we
show the execution ratio of case-1 and case-2 in each gener-
ation in Fig. 9. Because mostly case-1 algorithm is executed
with 100% ratio, we can estimate that the case-1 algorithm is
about 1.6-times faster than case-2.
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Figure 8: Execution Time (CPU vs. GPU)

Figure 9: Ratio of Case 1 and 2

6.2 Model Quality
Next, we compare the quality of major BN-learning algo-

rithms. As major algorithms to learn BN structure via opti-
mization over model scores, we selected greedy hill climb-
ing (GHC), simulated annealing (SA), PBIL, PBIL-RS, and
K2GA. Note that GHC, SA, and PBIL are the type of algo-
rithms that stop running when converged, and other two con-
tinue running until they are stopped by users.

Specific behaviors and parameter values are as follows:
GHC, in each iteration, always moves to the best model

within the vicinity where we define that the two models are
within their vicinity if one is generated by adding or deleting
one edge from the other.

SA selects the next model in the vicinity and moves there if
the score of the next model is better than the current one, and
otherwise, stay at the current model with probability e−∆/T

where ∆ is the difference of the scores of the current and next
models, and T is a parameter called temperature. T is initial-
ized as 2500 and decreased at each iteration by multiplying
r = 0.99999. As the vicinity to move in the next iteration, we
apply the operation for every pair of nodes to add the edge (or
delete if the edge already exists) in probability 0.004 (or 0.01
for deletion). These parameter values are determined to have
the best performance through preliminary tests.

PBIL has several parameters as described in Sec. 3. In
this evaluation, the number of individuals in each generation
|M | is 1000, the number of selected individuals k is 10, and
learning ratio α is 0.1, all of which are determined to have the
best performance through preliminary tests.

PBIL-RS is not specifically described in this paper due to
space limitation, but all the definitions and parameter values
are the same as [16].

K2GA applies GA to search the ordering space where K2
heuristic is used to convert from a node order to a graph struc-

Table 2: Final Scores (Average)
Method Final Score Execution Time

PBIL 8777.7 3716 (Sec)
Simluated Annealing 9191.9 71590.7 (Sec)
Greedy Hill Climbing 8841.5 3142.1 (Sec)

PBIL-RS 8746.1 10881 (Sec)
K2GA 10011.9 302266.8 (Sec)

ture. We use a typical crossover and mutation operator. Note
that there are various crossover and mutation operators, but
Ref. [3] reported that the performance is not so much differ-
ent.

We show the comparison result of the GA-based algorithms
K2GA, PBIL, and PBIL-RS in Fig. 10(a), which is the aver-
age of 10 repetitions. It is apparent that PBIL-based ones
compute far better models than K2GA. Note that PBIL and
PBIL-RS make almost the same curve, but PBIL stops around
320th generation due to convergence to a local minimum so-
lution, whereas PBIL-RS continues running and find better
models even after that.

As for non-GA algorithms, we show the score transition of
10 repetition of SA and GHC in Figs. 10(b) and 10(c), respec-
tively. We see that all executions of each method make a sim-
ilar curve until they converge and stop running. From those
curves in Fig. 10(a)(b)(c), PBIL makes the steepest curve,
meaning that the speed to approach better solutions is the
highest among them.

Finally, in Table 2, we present the final scores and the run-
ning time of each algorithm. As for PBIL-RS and K2GA,
we use the values of 1000th generation where improvement
is scarcely seen in both algorithms, and for others we use the
final values when they stop running. Among three algorithms
that stop running, PBIL takes the best score, and PBIL-RS im-
proves it by taking more execution time. Although GHC runs
in a short time due to its simplicity, the score is lower than
PBIL by more than 60. We also notice that the score of GHC
would not improve by using more time, whereas the score of
PBIL is continuously improved with time by using the tech-
nique of PBIL-RS. From above, we conclude that, in terms of
scores, PBIL family would be the best algorithm among those
compared.

7 CONCLUSION

We proposed a method to accelerate PBIL-based BN learn-
ing algorithms using GPU computation. We make the most of
the coalesce access technique of GPU computation to reduce
computation time using consumer level hardware. Through
evaluation, we confirmed that the proposed method achieves
about 14-times faster in running speed than the original PBIL-
RS executed on only CPU. Also, we compared the quality of
the computed BN models among several major approaches
in the literature. As a result, we found that PBIL-based al-
gorithms outperform other algorithms such as K2GA, greedy
hill climbing, and simulated annealing. From above, we con-
clude that the proposed algorithm have an excellent perfor-
mance in both speed and quality of solutions.
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(a) PBIL(-RS) vs. K2GA (b) Simulated Annealing (SA) (c) Greedy Hill Climbing (GHC)

Figure 10: Score Transition
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