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Abstract - On the Internet anonymity should be provided
for many services and protocols. For example, an electronic
voting system should guarantee to prevent the disclosure of
who voted for which candidate. Trace anonymity is an ex-
tension of the formulation of anonymity by Schneider and
Sidiropoulos, and we presented an inductive method based
on simulation techniques of I/O-automaton theory. In this
study we discuss a proof technique for a timed version of trace
anonymity. Even though communication patterns are indis-
tinguishable, the sender’s identity might be disclosed by de-
tecting the timing of message emission. The sender’s identity
also might be disclosed by detecting the occurrence of time-
out. To deal with such timing features, this study employs
timer variables which range over non-negative real numbers.
This means that we must deal with an infinite-state system
for timed anonymity, but I/O-automaton theory provides var-
ious proof techniques for infinite-state systems that incorpo-
rate theorem-proving. Our proof method for timed anonymity
is based on the conventional I/O-automaton theory, and the
existence of an anonymous simulation is shown with two steps.
In the first step, we prove the anonymity of an untimed sys-
tem, and then we extend the anonymity result for the corre-
sponding timed system incrementally.

Keywords: Timed systems, Anonymity, Verification, For-
mal Method, I/O-automaton

1 INTRODUCTION

We say a security protocol is anonymous if an adversary
who can observe all the occurrences of events from the proto-
col cannot determine who is the “actor” of the events. There
are many studies to describe and verify the anonymity of secu-
rity protocols formally; for example, in [1] a proof technique
that incorporates theorem-proving is introduced.

In this paper we discuss the anonymity of timed systems.
Recently various real-time systems are used on the Internet.
To establish the reliability of timed systems, there have been
many studies based on formal methods that modeled and ver-
ified the correctness of timed systems [2][3]. To establish
anonymity, we should deal with patterns of communication
such as the number of messages or the existence/nonexistence
of a message. However, even though communication pat-
terns are designed to be indistinguishable, the sender’s iden-
tity might be disclosed by detecting a timing of message emis-
sion. Also, the sender’s identity might be disclosed by de-
tecting the occurrence of a timeout. That is, the detection of
timing information leads to the disclosure of who is an actor.

We describe a timed system with an I/O-automaton-based
formal specification language [4]. This enables us to employ
a proof method developed for the anonymity of untimed sys-
tems. By introducing a timer variable, we must deal with an

infinite-state system. However, I/O-automaton theory [5][6]
does not assume finiteness of the number of states or trace
length, and it provides a proof technique called a simulation-
based method that can handle infinite-state systems directly.
In this paper we discuss how to apply a simulation-based
method for proving the anonymity of timed systems.

This paper is organized as follows. In section 2, we first
describe the basic notion of anonymity, and a proof technique
developed in [1]. Then, we present a simple motivating ex-
ample in Section 3. Also, a timed system is described in
IOA language. After showing a basic idea for proving timed
anonymity in Section 4, we have discussions in Section 5.

1.1 Related Work

There are studies (e.g. [7]-[9]) that analyze the anonymity
of security protocols or communication systems, with deal-
ing with the delay patterns. There are also studies on model-
ing the anonymity of real-time systems [10][11]. However, it
has not been investigated well how to design and verify timed
anonymous systems formally.

For untimed systems, a formal modeling of anonymity [12]
was introduced based on the applied π-calculus [13][14], and
it provides a good framework for verification. However, the
notion of timed anonymity is not dealt with. As another ap-
proach, an epistemic-logic-based technique is known for mod-
eling the anonymity of multi-agent systems [15]. It might be
possible to extend the technique for timed systems by em-
ploying temporal logics [16] such as CTL or LTL. However,
the anonymity of timed multi-agent systems should be proven
by a human prover manually.

Based on Petri net theory [17] or timed I/O-automaton the-
ory [18], there are many studies to verify properties of timed
systems. It seems possible to formalize the notion of timed
anonymity in such theories directly. However, for that case
we must prove both of “the symmetry of communication pat-
terns” and “the symmetry of timing” at the same time; this
may be a burden to a protocol designer. In this study, we
firstly prove the symmetry of communication patterns only.
And then, the result is extended to the timed anonymity in-
crementally.

A communication system can be described as a state ma-
chine. Thus, for finite systems we can employ SAT/SMT-
solvers [19]-[21] or model checkers [22][23]; especially, UP-
PAAL [22] is a well-known model checker for timed sys-
tems where we can check properties described in a temporal
logic. However, we can see that timed systems are essentially
infinite-state. The untimed version of I/O-automaton theory
does not assume the finiteness of automata, and it provides
techniques to prove the trace inclusion of infinite-state sys-
tems, which can be applied with a theorem-proving approach
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Figure 1: D1

Figure 2: D2

Figure 3: D3

[24]. Hence, in this study we discuss the timed anonymity
property with the untimed I/O-automaton theory.

2 PRELIMINARIES

This section explains how to formalize (untimed) anonymity
by I/O-automaton. We assume that readers are familiar with
the basic notions and notations for I/O-automaton theory and
an I/O-automaton-based formal specification language; see
also Appendix A.

2.1 Basic Notion of (Untimed) Anonymity
We explain the basic notion of anonymity with the follow-

ing example.

Example 1 (Donating anonymously) There are two people,
Alice and Bob, and we assume that only one of them has made
an anonymous donation. Alice was going to contribute $5,
while Bob was going to contribute $10.

I/O-automaton D1 in Fig. 1 describes the above situation. Ac-
tions $5 and $10 of D1 are external actions to represent a do-
nation. After the occurrence of I’m(Alice) or I’m(Bob),
either $5 or $10 occurs. Here, I’m(Alice) and I’m(Bob)
are actions that specify the donor. For convenience, we call
I’m(Alice) and I’m(Bob) actor actions. We can see
that D1 is anonymous if an adversary who observed all the
occurrences of the non-actor actions cannot determine which
actor action of D1 will occur.

If an adversary observed that $5 was posted, then the ad-
versary can deduce that Alice made a donation, since action

I’m(Alice) can occur in D1 only when action $5 occurs.
That is, D1 is not anonymous. One reason for D1 not being
anonymous is that an adversary can know how much money
was posted. So, we assume that a donation was posted in
an envelope. Suppose f is an operation to replace exter-
nal actions $5 and $10 of D1 with a fresh external action
envelope, and we define D2 as f(D1) (see Fig. 2). This
operation hides information on how much money was posted.
With D2, an adversary who is able to detect the occurrence
of envelope cannot deduce which actor action is possible.
Hence, D2 is anonymous.

If Bob is going to post $10 in two envelopes each contain-
ing $5, then we cannot establish anonymity even though all
the messages are encrypted. Figure 3 shows I/O-automaton
D3, which describes the above setup. Here, an adversary can
determine the identity of a donor by counting the number of
times that envelope occurs. Therefore, D3 is not anony-
mous. This example shows that a system might not be anony-
mous even though all the messages are encrypted.

Below, we formally discuss the correctness of communi-
cation patterns with regard to anonymity. Let X be an I/O-
automaton and A be a family with the following conditions:
(i)

∪
A′∈A A′ ⊂ ext(X); (ii) A′ and A′′ are disjoint for any

distinct A′, A′′ ∈ A. We call A a family of X’s actor ac-
tions, and an element of

∪
A′∈A A′ is called an actor action

(on A). The occurrences of different actor actions should be
indistinguishable to an adversary. That is, if an eavesdropper
cannot distinguish the trace set of system X and that of X’s
“anonymized” version, then we can see that X is anonymous.
This is formalized as follows.

Definition 1 Let X be an I/O-automaton and A be a family of
X’s actor actions. We define I/O-automaton anonymA(X)
as follows:

states(anonymA(X)) = states(X),
start(anonymA(X)) = start(X),
ext(anonymA(X)) = ext(X),
int(anonymA(X)) = int(X) and
trans(anonymA(X))

= {(s1, a, s2) | (s1, a, s2) ∈ trans(X) ∧ a ̸∈
∪

A′∈A A′}
∪{(s1, a, s2) | (s1, a′, s2) ∈ trans(X)

∧A′ ∈ A ∧ a′ ∈ A′ ∧ a ∈ A′}.

If traces(anonymA(X)) = traces(X) holds, we say X is
trace anonymous on A.

2.2 How to Prove Anonymity
This section describes a proof method for anonymity [1].

Definition 2 Assume X is an I/O-automaton and A is a fam-
ily of X’s actor actions. An anonymous simulation asA of
X on A is a binary relation on states(X) that satisfies the
following conditions:

1. asA(s, s) holds for any initial state s ∈ start(X);

2. For any s1, s2, s
′
1 ∈ states(X) and a ∈ sig(X),

asA(s1, s
′
1) and s1

a→X s2 implies the following:
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Figure 4: Automaton GMT

If a ∈ A′ holds for some A′ ∈ A, for all a′ ∈
A′ there is a state s′2 such that asA(s2, s

′
2) and

s′1
a′

⇒X s′2; otherwise, there is a state s′2 such
that asA(s2, s′2) and s′1

a⇒X s′2.

I/O-automaton X is trace anonymous on A if X has some
anonymous simulation asA. It is easy to see

traces(anonymA(X)) ⊇ traces(X)

since anonymA(X) has all the transitions of X . The other
inclusion

traces(anonymA(X)) ⊆ traces(X)

of traces can be shown since asA is a forward simulation from
I/O-automaton anonymA(X) to I/O-automaton X . A for-
ward simulation from I/O-automaton P to I/O-automaton Q
is a binary relation r ⊂ states(P )× states(Q) with the con-
ditions shown in [5]; if there is a forward simulation, then we
have traces(P ) ⊆ traces(Q) ([5], Theorem 3.10).

Proposition 1 Let X be an I/O-automaton. If there is an
anonymous simulation asA of X on A, then

traces(anonymA(X)) = traces(X)

holds. □

3 ANONYMITY FOR TIMED SYSTEMS

This section discusses a formalization of timed anonymity.

3.1 Example
To explain the notion of timed anonymity, we introduce the

following example.

Example 2 There are two people, Alice and Bob. Alice has
$50, while Bob has $10,000. Charlie has requested only one
of them to give him $10. We do not know which person makes
a payment, but one of them actually sends $10.

I/O-automaton GMT in Fig. 4 describes the above situation.
Action giveMe10(mem), where mem is Alice or Bob,
is a special action to represent the actor, and pay10 is an
action for a payment. Automaton GMT has the trace set

traces(GMT) =

{
giveMe10(Alice).pay10,
giveMe10(Bob).pay10

}
.

Figure 5: Timed Automaton GMTt

In this case, an adversary who observed the occurrence of
action pay10 cannot determine the preceding action. That
is, both of giveMe10(Alice) and giveMe10(Bob) are
possible, so the adversary never knows who made a payment.
We can see that this is the same thing of the second setting in
Example 1, so GMT is trace anonymous.

In Example 2, Alice possibly pays $10 even though she
has only $50. In the following, we would like to consider a
modified example.

Example 3 Bob has much money ($10,000), so he can send
$10 immediately. But Alice has only $50. When asked by
Charlie, she thinks for a moment before sending $10.

This is described with a timed automaton in Fig. 5. In this
modeling, Alice who has only $50 might take some time up to
100 seconds before sending $10. On the other hand, Bob can
make a decision within one second. From this observation, if
the payment of $10 occurs after one second, then the payer is
Alice. This means that even though communication patterns
are indistinguishable, the sender can be identified by detecting
the timing of message emission.

3.2 Describing Timed System in IOA
This section describes a timed system with an (infinite-

state) untimed I/O-automaton. With examples in the previous
section, we explain a basic idea of timed anonymity.

IOA [4] is a formal specification language based on I/O-
automaton theory. In IOA, a state is formalized as a tuple of
values. Automaton GMT in Fig. 4 is written as follows.

automaton GMT
signaure

% AorB = { Alice, Bob }
output giveMe10(mem: AorB)
output pay10

states
money: Nat := 0

transitions
% This is an actor action.
output giveMe10(mem)

pre money = 0
eff if (mem = Alice) then

money := 50;
else

money := 10000;
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fi

output pay10
pre (money = 50 \/ money = 10000)
eff money := money - 10

Here, two actions giveMe10(mem) and pay10 are defined
in a precondition-effect style; giveMe10(mem) is an actor
action. If we define a candidate binary relation asGMT as:

asGMT(s, s
′) ⇐⇒ s.money = s′.money

∨ |s.money− s′.money| = 9950

then the binary relation satisfies the conditions to be an anony-
mous simulation of automaton GMT, where α.β represents the
value of variable β at state α.

To model a timed system, in this paper we introduce special
variables:

• timer : a timer variable for elapsing time, and

• timerFlg : a flag variable for activating/deactivating
the timer.

Thus, we can define the following automaton GMT2:

automaton GMT2
signaure

output giveMe10(mem: AorB)
output pay10
internal timerDeactivate

states
money: Nat := 0,
timer: Real := 0.0,
timerFlg: Bool := true

transitions
output giveMe10(mem)

pre ˜timerFlg
/\ money = 0

eff if (mem = Alice) then
money := 50;

else
money := 10000;

fi
timerFlg := true

output pay10
pre ˜timerFlg

/\ (money = 50 \/ money = 10000)
eff money := money - 10;

timerFlg := true

% This action is internal and it does
% not appear in traces.
internal timerDeactivate

pre timerFlg
eff timerFlg := false

where we can easily see that traces(GMT2) = traces(GMT)
holds. The value of timerFlg should be false if either
giveMe10(mem) or pay10 is enabled, and timerFlg
becomes true if the action is actually fired. Also, action

timerDeactivate, which is called a time action, is en-
abled only if timerFlg is true and the value of timerFlg
becomes false. This means that a normal action and a time
action occur alternately. Note that action timerDeactivate
does not change the value of timer and the time action does
not appear in traces since it is internal.

By modifying GMT2, we can develop Fig. 5’s automaton
GMTt. Specifically, we remove timerDeactivate from
GMT2 and we add the following three actions.

output giveMe10Time
pre timerFlg

/\ money = 0
eff timerFlg := false

output pay10Time(t)
pre timerFlg /\ t = timer

/\ (money = 50 \/ money = 10000)
/\ ((money = 50)

=> ( 0.0 <= timer
/\ timer <= 100.0))

/\ ((money = 10000)
=> ( 0.0 <= timer

/\ timer <= 1.0))
eff timer := 0.0;

timerFlg := false

output elapse(delta)
pre timerFlg /\ delta > 0.0

/\ (money = 50 \/ money = 10000)
/\ ((money = 50)

=> ( ( 0.0 <= timer
/\ timer <= 100.0)

/\ ( 0.0 <= timer + delta
/\ timer + delta

<= 100.0)))
/\ ((money = 10000)

=> ( ( 0.0 <= timer
/\ timer <= 1.0)

/\ ( 0.0 <= timer + delta
/\ timer + delta

<= 1.0)))
eff timer := timer + delta

Below we classify GMTt’s actions as follows:

• Normal actions (giveMe10(mem) and pay10): ap-
pear in the original automaton GMT; and

• Time actions (giveMe10Time, pay10Time(t) and
elapse(delta)) : are employed for expressing tim-
ing constraints and for elapsing time.

In IOA specification GMTt, action giveMe10Time and its
corresponding normal action giveMe10(mem) have a com-
mon condition “money = 0” in their precondition part. Also,
actions pay10Time(t) and pay10 have a common con-
dition “(money = 50 \/ money = 10000)”. More-
over, actions giveMe10Time and pay10Time(t) do not
rewrite variable money. Hence, after firing giveMe10Time
or pay10Time(t), its corresponding normal action is en-
abled. From this observation, we can see that a one-step tran-
sition by action pay10 in Fig. 5 is formalized with a two-
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Figure 6: GMTt’s Transitions (Expanded in Conventional I/O-Automaton)

step transition sequence with pay10Time(t) and pay10
in IOA language; this is shown in Fig. 61.
GMTt has another time action, elapse(delta), and the

output action is employed for elapsing time. The precondition
of elapse(delta) defines the timing constraint at time
timer and at time time+ delta.

4 ANALYZING ANONYMITY FOR TIMED
SYSTEMS

This section analyzes the anonymity of timed systems.

4.1 Counterexample for GMTt’s Anonymity
Automaton GMTt does not have a trace

giveMe10Time.giveMe10(Bob).
elapse(30).pay10Time(30).pay10

that represents “Bob is asked and he pays $10 after 30 sec-
onds”; note that Bob must make a payment in one second.
However, automaton GMTt’s corresponding anonymous sys-
tem anonym{{Alice,Bob}}(GMTt) has the above trace; that
is, we cannot say:

traces(GMTt) = traces(anonym{{Alice,Bob}}(GMTt)).

This means that anonym{{Alice,Bob}}(GMTt)’s anonymity
does not lead to GMTt’s anonymity. Therefore, GMTt is not
anonymous.

4.2 Anonymizing GMTt
In this section we modify GMTt. Specifically, we define:
1In Fig. 6, there are green states and orange ones. Time actions can

be enabled in orange states only, while in green states non-time actions are
enabled. Also, for simplicity of depicting the automaton, a state in this figure
actually represents a collection of states; for example, a state of “money =
50” represents infinitely many states where the value of timer ranges over
{ t | 0 ≤ t ≤ 100 }.

output pay10Time(t)
pre timerFlg /\ t = timer

/\ (money = 50 \/ money = 10000)
/\ ((money = 50)

=> ( 0.0 <= timer
/\ timer <= 1.0))

/\ ((money = 10000)
=> ( 0.0 <= timer

/\ timer <= 1.0))
eff timer := 0.0;

timerFlg := false

output elapse(delta)
pre timerFlg /\ delta > 0.0

/\ (money = 50 \/ money = 10000)
/\ ((money = 50)

=> ( ( 0.0 <= timer
/\ timer <= 1.0)

/\ ( 0.0 <= timer + delta
/\ timer + delta

<= 1.0)))
/\ ((money = 10000)

=> ( ( 0.0 <= timer
/\ timer <= 1.0)

/\ ( 0.0 <= timer + delta
/\ timer + delta

<= 1.0)))
eff timer := timer + delta

for pay10Time(t) and elapse(delta). That is, we re-
place “timer<=100.0” and “timer+delta<=100.0”
in actions pay10Time(t) and elapse(delta)with con-
ditions “timer<=1.0” and “timer+delta<=1.0”, re-
spectively. We call the resulting automaton GMTt2. This is
to assume Alice responds in one second.

The modified automaton has an anonymous simulation:

asGMTt2(s, s
′) ⇐⇒ asGMT(s, s

′)
∧ s.timer = s′.timer
∧ (s.timerFlg ⇐⇒ s′.timerFlg).
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This formula contains GMT’s anonymous simulation relation
asGMT. With this binary relation, we can prove the anonymity
of GMTt2 with the following steps:

1. Find an anonymous simulation for GMT;

2. Then, extend the anonymity result for GMTt2.

In the remainder of this section, we describe why the above
proof is possible.

4.2.1 GMTt2’s Initial State’s Condition

Let (s, t, p) ∈ start(GMTt2) be an initial state of GMTt2,
where s is a tuple that represents a state of automaton GMT,
t is a value of variable timer, and p is a value of variable
timerFlg. From the definition of GMTt2, we have t =
0.0 and u = true. Clearly, we have asGMT(s, s) implies
asGMTt2((s, 0.0,true), (s, 0.0,true)).

4.2.2 Step’s Correspondence for Normal Actions

A normal action of GMTt2 can be enabled only if the value
of variable timerFlg is false. If the action is fired, then
variable timerFlg is changed to be true, but timer is
not changed. Hence, we can see that for any normal action a
we have:

• (s1, t, p)
a→GMTt2 (s′1, t, p

′) and

• asGMTt2((s1, t, p), (s2, u, q))

implies

• We have t = u from the definition of asGMTt2;

• We have p = q = false and p′ = true since a is a
normal action; and

• We have asGMT(s1, s2) and s1
a→GMT s′1.

Thus, there exists a state s′2 of GMT such that:

• We have s2
a′

⇒GMT s′2 and asGMT(s
′
1, s

′
2);

• a ∈ {giveMe10(Alice),giveMe10(Bob)} im-
plies a′ ∈ {giveMe10(Alice),giveMe10(Bob)};
and

• a = pay10 implies a′ = a = pay10.

Therefore, for the state (s′2, t,true), we have:

• (s2, u, q) ≡ (s2, t,false)
a′

⇒GMTt2 (s′2, t,true),
and

• asGMTt2((s
′
1, t, p

′), (s′2, t,true)).

Consequently, if binary relation asGMT is an anonymous sim-
ulation, then binary relation asGMTt2 satisfies a step corre-
spondence condition for any normal action.

4.2.3 Step’s Correspondence for Time Actions

If a time action is enabled, the value of timerFlg is true.
Also, variables timer and timerFlg can be changed by
the time action. Hence, for any time action b, we have:

• (s1, t, p)
b→GMTt2 (s′1, t

′, p′), and

• asGMTt2((s1, t, p), (s2, u, q))

implies

• s′1 = s1, t = u, and p = q = true holds;

• If b is elapse(delta) then p′ = true; otherwise,
p′ = false; and

• asGMT(s1, s2) holds.

If we can prove

(s2, u, q) ≡ (s2, t,true)
b⇒GMTt2 (s2, t

′, p′)

for state (s2, t′, p′), then asGMTt2((s1, t
′, p′), (s2, t

′, p′)) holds.
Hence, asGMTt2 satisfies the conditions to be an anonymous
simulation of GMTt2 for action b.

4.3 Further Analysis for GMTt2
We consider the transition

(s1, t, p) ≡ (s1, t,true)
b→GMTt2 (s1, t

′, p′) ≡ (s′1, t
′, p′)

shown in the previous section and a transition

(s2, t,true)
b→GMTt2 (s2, u

′, q′)

by time action b. From the definition of each time action, we
have u′ = t′ and q′ = p′. Moreover, the condition sequence

(s2, u, q) ≡ (s2, t,true)
b⇒GMTt2 (s2, t

′, p′)

is actually a one-step transition

(s2, u, q) ≡ (s2, t,true)
b→GMTt2 (s2, t

′, p′)

since GMTt2 does not have any internal actions. Hence, for
GMTt2, we can prove the anonymity by proving:

For any GMTt2’s time action b and any states s1, s2
with asGMT(s1, s2), if action b is enabled at state
(s1, t, p) then b is also enabled at (s2, u, q).

Specifically, it suffices to show the following three formulae
with a theorem proving tool [24], where enabled(s, a)
is true if action a is enabled at state s:

(as(s1, s2) /\ enabled(s1, giveMe10Time))
=> enabled(s2, giveMe10Time),
(as(s1, s2) /\ enabled(s1, pay10Time(t)))
=> enabled(s2, pay10Time(t))

and

(as(s1, s2) /\ enabled(s1, elapse(delta)))
=> enabled(s2, elapse(delta)).

8 Y. Kawabe et al. / Verifying Timed Anonymity of Security Protocols



5 DISCUSSION

This section discusses the formal proof approaches for timed
anonymity.

5.1 Untimed Automaton vs. Timed
Automaton

In this study, we described a timed system as an infinite-
state system with a conventional I/O-automaton, and we ap-
plied the proof method for anonymity [1] directly. As another
approach, it seems possible to redefine the anonymity proof
technique of [1][25] in timed automaton [26] or in timed I/O-
automaton [18]. In this section we compare the approaches.

Timed automaton models are designed for dealing with tim-
ing features of computation; so, several constraints are intro-
duced to verify timing properties properly. For example, an
execution sequence where only time actions occur infinitely
often and normal actions do not occur is regarded as unfair,
and unfair execution sequences are prohibited. However, for
anonymity verification we might not need such a condition;
even though there is an unfair execution sequence by actor
Alice in a security protocol, we can discuss the anonymity if
the security protocol has its corresponding (unfair) execution
sequence by actor Bob.

The untimed I/O-automaton model does not support such
conditions, but it has various verification tools and proof meth-
ods, and we can use them to prove anonymity. This as an ad-
vantage of using untimed I/O-automaton theory. However,
in our approach we should introduce a parameter for real-
valued times; that is, we must handle infinite-state systems.
We can overcome this problem since I/O-automaton theory
[5][6] does not assume finiteness of the number of states or
trace length, and simulation-based proof techniques are ap-
plicable to prove the trace inclusion of infinite-state systems.

We compared the both approaches, and in this study we
employed a formal specification language based on conven-
tional I/O-automaton theory. The main reason is that various
verification tools are available.

5.2 On Anonymity Proof Method for Security
Protocols with Stronger Adversaries

We have introduced an automaton that has variables timer
and timerFlg in this study. A similar approach is employed
in [27] to deal with stronger adversaries.

The technique in [1] can only deal with eavesdroppers, and
in [27] an adversary model has been introduced to handle
stronger adversaries, which may change the protocol’s state
in various ways, e.g. by sending dummy messages and by
rewriting disk image of a PC. This is formalized as follows.

Definition 3 (Attacker part) Attacker Atk of system X is
quadruplet (states(X), SAtk, AAtk, TAtk), where a set of at-
tacker’s states SAtk, a set of attacker’s actions AAtk and a
set of attacker’s transitions TAtk should satisfy:

sig(X) ∩AAtk = ∅ and
TAtk ⊆ {((s1, v1), a, (s2, v2)) | s1, s2 ∈ states(X),

v1, v2 ∈ SAtk,
a ∈ AAtk}.

With the attacker part Atk, automaton (X,Atk) is defined
with:

states((X,Atk)) = {(s, v) | s ∈ states(X), v ∈ SAtk},
start((X,Atk)) = {(s, v) | s ∈ start(X), v ∈ SAtk},
ext((X,Atk)) = ext(X) ∪AAtk,
int((X,Atk)) = int(X),
act((X,Atk)) = act(X), and
trans((X,Atk))
= {((s1, v), a, (s2, v)) | (s1, a, s2) ∈ trans(X), v ∈ SAtk}

∪TAtk.

For automaton (X,Atk), a state (s, v) ∈ states((X,Atk))
has two parts. The second part v is a state of the attacker, and
the protocol part X does not change the second part. We can
see that, in analogy with the above adversary model, timer-
related variables correspond to the attacker’s state v, and time
actions correspond to attacker’s actions TAtk.

This paper has shown a basic idea to prove the anonymity
of timed systems, but we have not introduced a formal defi-
nition for timed anonymity. We believe that it is possible to
introduce such a formal definition as in a similar way of [27].

6 CONCLUSION

This paper discussed a method to verify the anonymity of
timed systems. By describing a timed system with an I/O-
automaton-based formal specification language, a proof tech-
nique for anonymity of untimed systems can be applied to a
timed system.

This paper has shown a basic idea to prove the anonymity
of timed systems with a small example. As described in Sec-
tion 5.2 , the formalization of timed anonymity is not com-
plete, and it is an important future work. Also, it is another
interesting future work to deal with a larger example such
as Mixnet [28]. This is a well-known protocol that relaizes
anonymous communication, and we can see that this is a larger
and real application. In this study, we have conducted a step-
wise verification of anonymity with the following three steps:

1. After describing an untimed version’s specification of a
communication protocol, we prove the existence of an
anonymous simulation;

2. We obtain a corresponding timed version’s specifica-
tion by introducing some time actions;

3. We can easily extend the anonymous simulation rela-
tion for the timed system, and we prove that the ex-
tended binary relation satisfies the step’s correspondence
condition for all of the time actions.

We believe that the above approach is also applicable to vari-
ous real applications, including Mixnet, and it is an interesting
future work.
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A I/O-AUTOMATON AND IOA
LANGUAGE

I/O-automaton theory is a formal system to describe and
analyze distributed algorithms. This section provides a brief
overview of I/O-automaton theory and IOA formal specifi-
cation language. A formal definition of an I/O-automaton is
given in Section A.1.

A.1 I/O-Automaton Theory
An I/O-automaton X is a tuple

(sig(X), states(X), start(X), trans(X))

where sig(X) is a set of actions, states(X) is a set of states,
start(X) ⊂ states(X) is a set of initial states, and

trans(X) ⊂ states(X)× sig(X)× states(X)

is a set of transitions. There are three sorts of actions — in-
put, output and internal. We use in(X), out(X) and int(X)
for the sets of input, output and internal actions, respectively.
We assume that in(X), out(X) and int(X) are disjoint. We
define ext(X) as the union of out(X) and in(X), and an el-
ement of ext(X) is called an external action. For simplic-
ity, this paper only deals with I/O-automaton X satisfying
in(X) = ∅; that is, we assume that ext(X) = out(X).

Transition (s, a, s′) ∈ trans(X) is written as s
a→X s′;

we also write s →X s′ if a is internal. We define the rela-
tion →→X as the reflexive transitive closure of →X . For any
a ∈ sig(X) and s, s′ ∈ states(X), we write s

a⇒X s′ for
s→→Xs1

a→X s2 →→Xs′ with some s1, s2 ∈ states(X) if a
is external, or for s→→Xs′ if a is internal.
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automaton channel(i, j: ID)

signature
input send(const i, const j, r:Req)
output recv(const i, const j, r:Req)

states
queue: Seq[MES] so that queue = empty

transitions
input send(i, j, r)

eff queue := packet(i, j, r) -| queue
output recv(i, j, r)

pre queue ˜= empty
/\ last(queue) = packet(i, j, r)

eff queue := init(queue)

Note: We employ several pre-defined datatypes or operators, such
as datatype Seq for a sequence, operators := (substitution), -| (ap-
pending an element to the head of a sequence), |- (appending an
element to the tail), last (a sequence’s tail element) and init

(deleting the tail element).

Figure 7: Formalizing a communication channel

For any initial state s0 ∈ start(X) and transition sequence
α ≡ s0

a1→X s1
a2→X · · · an→X sn, the sub-sequence of

a1a2 · · · an that consists of all the external actions is called
the trace of α. We write traces(X) for the entire set of X’s
traces. In I/O-automaton theory, various properties of a dis-
tributed system can be defined as conditions of a trace set (see
Sec. 8.5.3 of [6]), and a proof technique with forward simu-
lations is available to show the inclusion of trace sets of two
I/O-automata.

Definition 4 A forward simulation f ⊂ states(X)×states(Y )
from automaton X to automaton Y is a binary relation with
the following:

1. For any initial state a of X , there is some initial state b
of Y and f(a, b) holds;

2. For any reachable states a1, a2 of X , any reachable
state b1 of Y and any action π of X , if f(a1, b1) and
a1

π→X a2 hold then there is a state b2 that satisfies

f(a2, b2) and b1
β⇒Y b2 with β = trace(a1

π→X a2).

Proposition 2 (Th. 3.10 of [5]) traces(X) ⊆ traces(Y ) holds
if there is a forward simulation from X to Y . □

A.2 IOA Specification Language
In this paper we specify systems in IOA language [4], which

is a formal specification language based on I/O-automaton
theory. Figure 7 is an IOA example that models a commu-
nication channel from agent i to agent j. IOA specification
channel(i, j) consists of the following portions:

1. signature: declares actions and their sorts;

2. states: declares variables. In this example, a vari-
able queue for a message sequence is declared with
the initial value empty and a sort Seq[MES];

3. transitions: defines a body for each action, and
the body is described in a precondition-effect style. There
are two actions in the above example:

Input action send(i, j, r): attaches message
packet(i, j, r) to the head of queue. Input
actions do not have preconditions;

Output action recv(i, j, r): is executable
when queue is not empty and the last element of
queue is packet(i, j, r). The effect is to
remove packet(i, j, r) from queue.

A state is formalized as a tuple of values for which a sort is
declared in the states-part of IOA specification. For exam-
ple, state set states(channel(i, j)) of I/O-automaton
channel(i, j) is

{ (queue) | queue is a value of sort Seq[MES] }.

(Received October 17, 2016)
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