
Invited Paper: An Anomaly Detection System for Equipment Condition Monitoring 
Makoto Imamura*, Michael Jones**, and Daniel Nikovski ** 

*School of Information and Telecommunication Engineering, Tokai University, Japan
** Mitsubishi Electric Research Laboratories, USA 

*imamura@tsc.u-tokai.ac.jp 
**{mjones, nikovski}@merl.com 

Abstract - In industrial domains, equipment condition mon-
itoring (ECM) has attracted much attention as the Internet of 
Things (IoT) has been emerging and growing. This paper 
describes our anomaly detection system for ECM to solve 
the requirements in terms of development efficiency, sensor 
big data management, and feature extraction characteristic 
of sensor data, which we have experienced in the develop-
ment of practical systems. First, we proposed a novel rela-
tion based query language TPQL (Trend Pattern Query Lan-
guage) as a basis for declaratively describing the conditions 
that anomaly sensor data satisfy in order to improve devel-
opment efficiency and the maintainability of programs. 
TPQL provides a convolution operator and a time interval 
join as important common operations for anomaly detection. 
The former is for extracting features of time series segments, 
and the latter is for time consuming preprocessing, such as 
missing value completion and merging data with different 
sampling periods. Second, we introduce function libraries 
for TPQL in order to solve the problems in terms of sensor 
big data management and feature extraction. In terms of 
sensor big data management, we select key-value store data-
base for accumulating sensor data and provide data trans-
formation functions among key-value, stream and relation to 
enable the selection of data type in accordance with various 
processes such as storage, aggregation among relations, and 
time series processing. Furthermore, we propose an exem-
plar learning method that can summarize the features of 
training time series with a smaller set of exemplars for ena-
bling fast anomaly detection even for big sensor data. In 
terms of feature extraction, we propose a novel leg vibration 
analysis that can extract the global trend pattern in time se-
ries with local fluctuations, so that it can capture the vibra-
tion behavior depending on a given amplitude and a given 
window size. 

Keywords: Equipment Condition Monitoring, Anomaly 
Detection, Feature Extraction, Sensor Data 

1 INTRODUCTION 

As the Internet of Things (IoT) [1] has been emerging and 
growing, sensor big data that are streamed from various 
equipment in power plants, industrial facilities, and build-
ings can be made available for monitoring, diagnosis, ener-
gy-saving, productivity improvement, quality management, 
and marketing. As a result, industry has paid much attention 
to the use of big sensor data generated from equipment or 
facilities in order to create a smarter society. 

Equipment Condition Monitoring (ECM) is a typical ser-
vice that uses big sensor data, and machine learning tech-
niques for big sensor data are key technologies to make 
ECM smarter [2]. 

We have published elemental technologies for anomaly 
detection [3]-[6]. This paper illustrates a total anomaly de-
tection system exploiting the elemental technologies. The 
rest of our paper is organized as follows. Section 2 describes 
the problems to be solved, and then introduces an anomaly 
detection system based on Trend Pattern Query Language 
(TPQL) to solve them. Section 3 and section 4 discuss leg 
vibration analysis and exemplar learning, respectively, as 
key technologies of our system. Section 5 shows an evalua-
tion of our system. 

2 ANOMALY DETECTION SYSTEM-
BASED ON TPQL  

The problems of anomaly detection for ECM can be large-
ly grouped into three categories: development efficiency, 
management of sensor big data, and accuracy of anomaly 
detection.  

In order to solve the above problems, first, we have pro-
posed a relation based query language TPQL (Trend Pattern 
Query Language) [3]-[4] to express constraints in time se-
ries data for anomaly detection. TPQL is an SQL-like lan-
guage, and it can help programmers describe application-
dependent conditions for anomaly sensor data with a com-
mon function library. And then, we implemented an anoma-
ly detection system based on TPQL with Java, and applied it 
to real applications. 

Figure 1 shows the overall structure of our system. A 
TPQL interpreter calls the common function library, key-
value store database, and relational database, by means of a 
given TPQL script. A TPQL script describes anomaly condi-
tions with the help of the function library, which is designed 
on the basis of the requirements that we have encountered 
through our experience in the development of practical 
ECM systems. Furthermore, configuration management 
information as input makes TPQL scripts separated from the 
parameters dependent on actual facilities. This separation 
improves maintainability of TPQL scripts. 

This section mainly illustrates the problems to be solved, 
our solution to those, and the difference with respect to re-
lated work. In terms of the implementation details of TPQL, 
please refer to [3] and [4]. 

2.1 Development Efficiency 

Programming for data preprocessing that is specific to 
each application has a large proportion in the development 
effort for anomaly detection functions. Therefore, we aim to 
propose a general relation based query language, TPQL, 
which has a common function library containing functions 
that are commonly used in our development of anomaly 
detection systems, while also maintaining the semantics of 
SQL. TPQL provides two basic common functions for pre-
processing: a convolution operation and a time-interval join. 

International Journal of Informatics Society, VOL.8, NO.3 (2016) 161-169 161

ISSN1883-4566 ©2016 - Informatics Society and the authors. All rights reserved.



(1) Convolution operation
One of the common operations of anomaly detection for

sensor data is sliding window processing, because a time 
series segment for a given time period is a basic processing 
unit. In a typical anomaly detection procedure, features are 
extracted from each time segment, and then the extracted 
features from test data are compared with those for training 
data. If the features of the test data are different from those 
of the training data, the test data is determined to be anoma-
lous. 

A convolution operation is the cumulative sum of the re-
peated multiplication of sliding window segments and a 
given feature function. The output of a convolution opera-
tion is a time series which consists of feature values of each 
time segment of input time series. A convolution operation 
makes the description of a procedure clear by separating 
feature functions from the calculation.  

Typical feature functions in convolution operations are 
aggregation, regression, and Fourier transform.  
(i) Aggregation functions

TPQL provides standard aggregation functions for time se-
ries segments, such as max, min, average or standard devia-
tion.  

A typical query example with aggregation is as follows: 
Let f and g are time series of temperature. “Find the time t 
when average value of 25 minutes segment f starting from t 
is 5 degrees higher than that for g.”; 
(ii) Regression function

Regression and auto-regression are used to estimate future 
value from past data. If the deviation between estimated val-
ues and actual measurement is large, it is judged to be 
anomaly.  

A typical query example with regression is as follows: 
“Find the time when the difference between the actual meas-
urement and the estimated value by auto-regression with win-
dow size 15 is larger than 5 degrees”.  
(iii) Fourier transform

The Fourier transform is known to describe the spectral char-
acteristics for steady-state sensor data. An anomaly is often 
detected as the change in the frequency spectrum. A typical 
query example with a Fourier transform is as follows: “Find 
the time when the spectral density in normal mode is below half 
that of usual data”. 

(2) Time-interval based join

Typical pre-processing steps for raw data are as follows.

- Missing value completion

- Merging data with different sampling periods

We introduced time-interval based join for a time-series
data table whose key is a pair of column “time” and column 
“time interval” to describe the above preprocessing steps, 
while maintaining the semantics of SQL. We use a method 
of constructing a subdivision that merges two different sub-
divisions on the same interval, used in the definition of the 

Figure 1: An Anomaly Detection System based on TPQL

Key-Value Store 
Database

*1) Trend Pattern Query Language
*2) Statistical and Smoothed  Trajectory Features

TPQL*1) Interpreter

TPQL
Script

Configure
Management
Information

Exemplar Learning (Section 3)

- SST*2) feature extraction
- Exemplar construction

from training data
- Comparison of test data

with exemplar

Convolution Operation

- Aggregation
- Regression
- Fourier Transform
- Leg Frequency (Section 4)

Time Interval Join

- Missing Value completion
- Merging data with

different sampling period

Data Transformation

- Stream to Key-value
- Key-vale to Relation
- Relation to Stream
- Stream to Relation

Relational
Database

Exemplar 
(on memory)

Common Function Library

Sensor 
Data

Detected
Anomaly

M. Imamura et al. / Invited Paper: An Anomaly Detection System for Equipment Condition Monitoring162



Stieltjes integral, for joining tables with different time inter-
vals.  

A standard temporal query language TSQL [7] also sup-
ports operation over time intervals, such as intersection and 
inclusion and so on, but does not support time-interval join.  

2.2 Sensor Big Data Management 
There are a lot of sensors in a facility, so that a large 

amount of data will be accumulated as time passes. If there 
are 10,000 sensors, sampling period is one second and one 
byte per one point, the amount of data is about 1 Gbytes per 
one day. If the number of sensors per device is 50, the total 
number of 10000 sensors would be reched by as little as 200 
devices in a facility, or 200 products in the consumer market. 
Therefore, 10,000 sensors is not an excessive assumption. 
Furthermore, missing values often occur in sensor data, so 
relational databases that are frequently used in enterprise 
domains, may not be suitable, because they have excessively 
strict data management functions. We propose two functions. 
One is for data transformation and the other is for fast pro-
cessing. 
(1) Data Transformation

With respect to storage, our system uses key-value store
database, which is often used for big data, and provides mu-
tual transformation functions among key-value data, rela-
tional data and stream data for developers to select a suitable 
data type in accordance with the purpose of processing in 
TPQL scripts. Generally speaking, key-value data are suita-
ble for accumulating data, relational data are suitable for 
aggregation over relations, and stream data are suitable for 
data passing to external functions and time series analysis. 

The typical stream query language CQL [8] is also a rela-
tion-based one, and has a sliding window process as one of 
its basic operations. CQL provides the transformation be-
tween relational data and stream data, that is, “Relation to 
Stream” and “Stream to Relation”. TPQL adds “Stream to 
Key-value” and “Key-value to Relation” as basic data trans-
formation functions. 
(2) Exemplar Learning

With respect to fast processing, we proposed a compres-
sion method that opearates by combining similar data seg-
ments into one segment, in order to speed up anomaly detec-
tion procedures. We call this method exemplar learning in 
this paper. Exemplar learning will be illustrated in the next 
section. 

2.3 Feature Extraction Characteristics of 
Sensor Data 

A lot of algorithms have been proposed for anomaly detec-
tion [9]. We have a policy to select existing algorithms in 
accordance with our application requirements. Pre-
processing for sensor data is as important as the anomaly 
detection algorithms themselves. The techniques for prepro-
cessing are sometimes called feature engineering [10], and 
are a very important factor in determining the success of 
anomaly detection systems. 

Vibrational behavior is very important for anomaly detec-
tion. The Fourier transform is a useful and frequently used 
feature for steady state data, but it is not so useful for transi-
ent or non-periodical data from our experience. We intro-
duce a novel feature which we call leg frequency in order to 
calculate the frequency of variations in time series that in-

clude an upward trend and a downward trend alternatively. 
Leg frequency is treated as a feature function in convolution 
operation in TPQL. 

Rain flow method [11],[12] in material mechanics is a re-
lated work. It calculates the amplitude of deformation which 
causes the fatigues or the cracks form in materials. It calcu-
lates the maximal pair of upward trend and downward trend 
at each maximal point. But our leg vibration analysis calcu-
lates the frequency in a time series segment for given ampli-
tude so that it can describe the degree of fluctuation for the 
given amplitude that is decided to distinguish anomaly from 
noise with domain knowledge. 

A typical query with leg vibration analysis is used in de-
tecting hunting in control systems. A query example is as 
follows: “Find the time when the number of the alternate oc-
currences of upward and downward trends whose amplitude are 
above 3 ℃ during 30 minutes window is larger than 2”. In this 
example, 3 ℃ and 30 minutes are the parameter that are decid-
ed by the application requirement.  

Leg vibration analysis will be illustrated in section 4. 

3 EXEMPLAR LERNING 

3.1 Statistical and Smoothed Trajectory 
(SST) Features 

We proposed statistical and smoothed trajectory (SST) 
features [5] that can capture the shape and the stochastic 
behavior of the time series within the window so that it can 
handle various types of sensor data. 

To detect anomalies in a time series, we first learn a model 
of the time series given normal time series data. To learn a 
model we use a fixed-size sliding window over the training 
time series and compute a feature vector representing each 
window. Our model consists of a set of exemplars represent-
ing the variety of feature vectors that exist over all windows 
in the training time series. The feature vector that is comput-
ed for each window consists of a trajectory component that 
captures the shape of the time series within the window and 
a statistical component that captures the stochastic compo-
nent. The trajectory component is designed to capture the 
low frequency information in the time series window. It is 
computed using a simple fixed window running average of 
the raw time series to yield a smoothed time series after sub-
tracting the mean of the window. Because of smoothing, 
half of the values in the smoothed time series can be dis-
carded without losing important information. Thus, the tra-
jectory component has w/2 elements where w is the number 
of time steps in the window. Figure 2a) shows a noisy sine 
wave time series and the corresponding smoothed time se-
ries with half the values discarded is shown in Fig. 2b). The 
statistical component is a small set of statistics computed 
over time series values in the window which are mainly de-
signed to characterize the high frequency information in the 
raw time series window. There are many possible choices 
for a set of statistics that well characterize the high frequen-
cy information in a time series window. The statistics used 
for experiments in this paper are mean, standard deviation 
(std), mean of the absolute difference |𝑧𝑧(𝑡𝑡) − 𝑧𝑧(𝑡𝑡 + 1)| 
(mean abs diff), number of mean crossings divided by win-
dow length (num. mean crossing/w), percentage of positive 
differences (% pos.diff), percentage of zero differences (% 
pos.zero), and the average length of a run of positive dif-

International Journal of Informatics Society, VOL.8, NO.3 (2016) 161-169 163



ferences divided by window length (avg. run of pos. diff/w).  
Here, 𝑧𝑧(𝑡𝑡) is the value of the raw time series at time 𝑡𝑡. Fig-
ure 5(c) shows the vector of statistics for an example win-
dow. This choice of statistics has worked well in practice 
across a variety of different time series, but as mentioned 
before other statistics would likely also work well. The tra-
jectory component is half the length of the window (w/2 
time steps), and the statistical component is 7 real numbers 
for a total of w/2+7 real values. We call this novel represen-
tation Statistical and Smoothed Trajectory (SST) features.  

3.2 Anomaly Detection using Exemplar 
Learning  

One possible model for a time series is simply the set of all 
SST features that are computed from all overlapping win-
dows of the time series. This model would be an inefficient 
representation because the overlapping windows would pro-
duce many very similar feature vectors. A much more effi-
cient model is created by finding a small set of exemplars 
that compactly represent the set of all SST features from the 
time series. An exemplar in this context is a representation 
of the SST features of a group of similar windows (overlap-
ping or not) from the training time series. We use an ag-
glomerative clustering algorithm to select SST exemplars 
from the set of all SST features for a time series. 

The agglomerative clustering algorithm works as follows. 
After computing SST features for every window of the train-
ing time series, a set of exemplars is learned by initially as-
signing each SST feature as its own exemplar and then itera-
tively combining the two nearest exemplars until the mini-
mum distance between nearest exemplars is above a thresh-
old. This is illustrated in Fig. 3. 

We use Euclidean distance to measure the distance be-
tween two exemplars: 

 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓1,𝑓𝑓2� = ∑ �𝑓𝑓1. 𝑡𝑡(𝑖𝑖) − 𝑓𝑓2. 𝑡𝑡(𝑖𝑖)�2 +
𝑤𝑤
2
𝑖𝑖=1  

            𝑤𝑤
14
∑ �𝑓𝑓1. 𝑠𝑠(𝑖𝑖) − 𝑓𝑓2. 𝑠𝑠(𝑖𝑖)�27
𝑖𝑖=1  

where 𝑓𝑓1  and 𝑓𝑓2  are two feature vectors, 𝑓𝑓𝑗𝑗 . 𝑡𝑡  is the length 
w/2 trajectory component of 𝑓𝑓𝑗𝑗, and 𝑓𝑓𝑗𝑗 . 𝑠𝑠 is the length 7 sta-
tistical component of 𝑓𝑓𝑗𝑗 . The w/14 coefficient causes the 
statistical and trajectory components to be weighted equally. 

Two exemplars are combined by a weighted average of the 
corresponding elements. The weight is the count of the 
number of feature vectors that have already been averaged 
into each exemplar divided by the total count. Each resulting 
exemplar is thus simply the overall average of the feature 
vectors that went into it. The threshold that determines when 
to stop combining exemplars is set to 𝜇𝜇 + 3𝜎𝜎 where 𝜇𝜇 is the 
mean of the Euclidean distances (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝑓𝑓1,𝑓𝑓2�) between each 
initial SST feature vector and its nearest neighbor among the 
initial SST feature vectors and 𝜎𝜎 is the sample standard de-
viation of these distances. The running time of this exemplar 
selection algorithm is 𝑂𝑂(𝑛𝑛2𝑤𝑤) (where 𝑛𝑛 is the length of the 
training time series and 𝑤𝑤 is the chosen window size). 

After exemplar selection, each exemplar is associated with 
a set of original SST features that were averaged together to 
form the exemplar. The standard deviation of each element 
of the w/2+7 length feature vector is then computed and 
stored with each exemplar. These standard deviations are 
computed over the set of SST feature vectors associated 
with a particular exemplar. An exemplar is thus represented 
by w/2 + 7 mean elements and w/2 + 7 standard deviation 
elements. In our experiments, the final exemplar set is typi-
cally between 1% and 5% of the total number of features 
(windows). 

After the model is learned, anomalies are found in a test-
ing time series as follows. For each window of the testing 
time series, an anomaly score is computed. This is done by 
first computing the SST feature of the window. Then the 
nearest neighbor exemplar to the SST feature is found. The 
distance function used is 

                                   
Figure 2: Example time series window (a) along with its trajectory (b) and statistical components 

(c) Statistical components 

a) Raw time series  
      subsequence 

b) Trajectory Component 
 (Smoothed time series) 

c) Statistical component : 
        mean:                               0.25 
        std:                                    0.74 
        mean abs diff:                  0.29  
        num mean crossings/w:   0.12 
        % pos.diff:                        0.49 
        % zero.diff:                      0.00 
        avg. run of pos. diff/w:    0.005 

M. Imamura et al. / Invited Paper: An Anomaly Detection System for Equipment Condition Monitoring164



𝑑𝑑(𝑓𝑓, 𝑒𝑒) = �max �0,
|𝑓𝑓. 𝑡𝑡(𝑖𝑖) − 𝑒𝑒. 𝑡𝑡(𝑖𝑖)|

𝑒𝑒.𝜎𝜎(𝑖𝑖)
− 3�

𝑤𝑤
2

𝑖𝑖=1

 
 

+
𝑤𝑤
 14

�max�0,
|𝑓𝑓. 𝑠𝑠(𝑖𝑖) − 𝑒𝑒. 𝑠𝑠(𝑖𝑖)|

𝑒𝑒. 𝜀𝜀(𝑖𝑖)
− 3�

7

𝑖𝑖=1

 

where 𝑓𝑓 is the SST feature vector for the current window 
consisting of a trajectory vector, 𝑓𝑓. 𝑡𝑡 and a statistical vector 
𝑓𝑓. 𝑠𝑠, 𝑒𝑒 is an exemplar for the current dimension consisting of 
trajectory (𝑒𝑒. 𝑡𝑡) and statistical (𝑒𝑒. 𝑠𝑠) vectors as well as the 
corresponding standard deviation vectors, 𝑒𝑒.𝜎𝜎 for the trajec-
tory component and 𝑒𝑒. 𝜀𝜀 for the statistical component. 

This distance corresponds to assigning 0 distance for each 
element of the trajectory or statistical component that is less 
than 3 standard deviations from the mean and otherwise 
assigning the absolute value of the difference divided by the 
standard deviation for each element that is more than 3 
standard deviations from the mean. In equation 2 and in our 
experiments, the statistical component is given equal 
weighting to the trajectory component, although this 
weighting can be changed based on the application. 

4 LEG VIBRATION ANALYSIS 

Facility maintenance in buildings, plants, or factories 
needs to calculate the frequency of variations in sensor data 
in order to detect a sign of failure or deterioration. Fink et al. 
proposed a leg search method [13] to find a global trend in a 
time-series including small variations such as noise. The 
dotted lines in Fig. 4 are examples of legs. Both lines show 
the global upward trend that includes local up-down seg-
ments. 

However, their method treats only single legs so that it can 
find an upward or downward trend, but can't catch the fre-
quency of variations. We developed leg vibration analysis 
that can calculate the frequency of variations in time-series 
that includes upward trends and downward trends that can 
appear alternately and iteratively. We showed an algorithm 
whose calculation order is linear in the window size. In con-
trast, the computational order of a naïve algorithm is factori-
al in the square of window size. 

Definition: time series X, sbsequences X[p:q] 
A Time Series X=[x1,…,xm] is a continuous sequence of 

real values. The value of the i-th time point is denoted by 
X[i] = xi. 

Figure 3: Illustration of agglomerative clustering for learning exemplars. The exemplars (which are SST 
feature vectors) are represented by blue rectangles. At each iteration the exemplars with minimum distance 
between them are averaged together using a weighted average. This process is repeated until the minimum 

distance is above a threshold.

International Journal of Informatics Society, VOL.8, NO.3 (2016) 161-169 165



A Time Series subsequence s = [xp, xp+1,...,xq] = X[p:q] is 
a continuous subsequence of X starting at position p and 
ending at position q. We denote the starting time point, the 
ending time point, and the length of a subsequence l by start, 
end and length respectively: 

start(s)  ≡ p 
end(s)  ≡ q 

length(s)  ≡ q-p+1 

Definition: Leg 
Let X be time series. 
An upward leg l = X[p:q] is a subsequence of X that satis-

fies the following conditions from (1) to (3). 
∀𝑖𝑖.  𝑝𝑝 ≤ 𝑖𝑖 ≤ 𝑞𝑞      𝑋𝑋[𝑝𝑝] < 𝑋𝑋[𝑖𝑖] < 𝑋𝑋[𝑞𝑞] (1) 

𝑋𝑋[𝑝𝑝 − 1] ≥ 𝑋𝑋[𝑝𝑝] (2) 
𝑋𝑋[𝑞𝑞] ≥ X[𝑞𝑞 + 1] (3) 
A downward leg l = X[p:q] is a subsequence of X that sat-

isfies the following conditions from (4) to (6) 
∀𝑖𝑖.  𝑝𝑝 ≤ 𝑖𝑖 ≤ 𝑞𝑞      𝑋𝑋[𝑝𝑝] > 𝑋𝑋[𝑖𝑖] > 𝑋𝑋[𝑞𝑞] (4) 
𝑋𝑋[𝑝𝑝 − 1] ≤ 𝑋𝑋[𝑝𝑝] (5) 
𝑋𝑋[𝑞𝑞] ≤ X[𝑞𝑞 + 1] (6) 

If l is an upward leg or downward leg, l is called a leg. 

Definition: Sign and amplitude of a leg 
Let X[p:q] be a leg l . We define the sign and amplitude of 

a leg l by the following. We denote them by amp and sign 
respectively:  

sign(𝑙𝑙)  ≡ sign(𝑋𝑋[𝑞𝑞] − 𝑋𝑋[𝑝𝑝]) 
amp(𝑙𝑙)  ≡  abs(𝑋𝑋[𝑞𝑞] − 𝑋𝑋[𝑝𝑝]) 

Definition: Leg Vibration Sequence 
Let l1, l2,.., ln be legs, and A be a positive real number. A 

leg vibration sequence with amplitude A is a leg sequence u 
= [l1, l2,.., ln] that satisfies the following conditions from (7) 
to (9).  

For 1≦i≦n-1   end(li) ≦start(li+1) (7) 
For 1≦i≦n       amp(li) ≧ A (8) 
For 1≦i≦n-1   sign (li) × sign (li+1) < 0 (9) 

Definition: Frequency of a leg vibration sequence 
Let v = [l1, l2,.., ln] be a leg vibration sequence. The start, 

end, length, sign, amplitude and frequency for a leg vibra-
tion sequence v are defined as follows. We denote them by 
start, end, length, amp and freq respectively: 

start(v) ≡ start(𝑙𝑙1) 
end(v) ≡ end(𝑙𝑙𝑛𝑛) 
length(v)  ≡   n 

sign(v)   ≡  sign(𝑙𝑙1) 
amp(v)   ≡  min

𝑖𝑖
amp( 𝑙𝑙𝑖𝑖)for 1 ≦ 𝑖𝑖 ≦ 𝑛𝑛 

freq(v)   ≡  sign(𝑣𝑣)  ×  length(𝑣𝑣) 

Definition: Leg vibration sequence set of a subsequence for 
amplitude A 

Let X[p:q] and A be a subsequence of time series X and 
amplitude respectively. Leg vibration sequence set for am-
plitude A  𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴) is defined by a set of leg vibration 
sequences v = [l1, l2,.., ln] that satisfy the following condi-
tions from (10) to (12). 

amp(v) ≧ A (10) 
p ≦start(v) (11) 
end(v) ≦ q (12) 

Definition: Leg frequency of a subsequence for amplitude A 
Let  𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴) be a leg vibration sequence set of a sub-

sequence 𝑋𝑋[𝑝𝑝: 𝑞𝑞] for an amplitude A. Leg frequency 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴 
of a subsequence X[p:q] for A is defined by below. 

freq𝐴𝐴(𝑋𝑋[𝑝𝑝: 𝑞𝑞]) ≡ sign(𝑣𝑣max) × length(𝑣𝑣max) 
where 𝑣𝑣max  =   argmax

𝑣𝑣∈𝑉𝑉(𝑋𝑋[𝑝𝑝:𝑞𝑞],𝐴𝐴)
length(v) (13) 

Leg frequency is well defined because 𝑣𝑣max is not unique 
but the sign of 𝑣𝑣maxs is unique due to the lemma below. 

Lemma: Let   𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴) be a leg vibration sequence set 
of a subsequence 𝑋𝑋[𝑝𝑝: 𝑞𝑞] for amplitude A. The signs of leg 
vibration sequences that satisfy (13) are the same. 

Proof. We assume that u = [l1, l2,.., ln] and v = [m1, m2,.., mn] 
are leg vibration sequences where both u and v have the 
maximal length n in 𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴) and have different signs. 
We will show this assumption implies contradiction. With-
out loss of generality, we can assume that sign(u) is positive 
and sign(v) is negative; leg l1 is upward leg and m1 is down-
ward leg. 

Since l1 and m1 cross, either one is included by the other, 
or either one proceeds the other, one of the following condi-
tions is true. 

start(l1) < start(m1) < end(l1) < end(m1) (14) 
start(m1) < start(l1) < end(m1) < end(l1) (15) 
start(l1) < start(m1) < end(m1) < end(l1) (16) 
start(m1) < start(l1) < end(l1)  < end(m1) (17) 
start(l1) < end(l1)  ≤ start(m1) < end(m1) (18) 
start(m1) < end(m1) ≤ start(l1) < end(l1) (19) 

The definition of leg implies that the above magnitude re-
lations in the formulas from (14) to (17) satisfy not equality 
but inequality. 

First, we will deduce the contradiction when the condition 
(14) is true. Since l1 is an upward leg, X[start(m1)]  <
X[end(l1)]. Since m1 is an downward leg, X[start(m1)]  >
X[end(l1)]. These equations contradict each other. When the
condition (15) is true, a proof is in the same way.

Secondary, we will deduce the contradiction when the 
condition (16) is true. Since amp(m1) ≧ A and l1 an upward 
leg, l1_1  = X[start(l1): start(m1)] is an upward leg whose am-
plitude is greater than or equal to A. Therefore, [l1_1, m1, 
m2,.., mn] is a leg sequence whose length is n + 1. It contra-
dicts that v has the maximal length n in 𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴). When 
the condition (17) is true, a proof is in the same way. 

Lastly, we will deduce the contradiction when the condi-
tion (18) is true. Since [l1, m1, m2,.., mn] is a leg sequence 
whose length is n + 1. It contradicts that v has the maximal 

Figure4: Leg 

M. Imamura et al. / Invited Paper: An Anomaly Detection System for Equipment Condition Monitoring166



length n in 𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴). When the condition (19) is true, a 
proof is in the same way. 

Therefore, the initial assumption – u and v have different 
sign – must be false. □ 

Definition: Leg Frequency 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑋𝑋,𝐴𝐴,𝑊𝑊(𝑡𝑡) 
Let X, A, W are time series, amplitude and window size re-

spectively. A Leg Frequency of X at time t with A and W, 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑋𝑋,𝐴𝐴,𝑊𝑊(𝑡𝑡), is defined as follows: 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑋𝑋,𝐴𝐴,𝑊𝑊(𝑡𝑡) ≡  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐴𝐴(𝑋𝑋[𝑡𝑡: 𝑡𝑡 + 𝑊𝑊 − 1]) 

Leg frequency qualifies the vibration of a time series sub-
sequence, when amplitude and window size are given. Larg-
er amplitude means larger width of variation. The sign of 
frequency is the sign of the first leg of the longest leg se-
quence. That is, a positive frequency at time point t with 
window size W means that the first leg has an upward trend 
in the subsequence X[t:t+w-1]. Similarly, a negative fre-
quency means that the first leg is downward. A frequency of 
2 means that the subsequence has one convex pattern whose 
amplitude is larger than A, while a frequency of -2 means 
that it has one concave pattern. If the absolute value of the 
frequency for a subsequence is larger than 4, we know that 
the subsequence has at least 4 consecutive up-down trends 
with the specified amplitude within the specified window 
size. This rule is often used for detecting vibration over 
specified amplitude. 

Figure 5 shows the leg sequences in the same subsequence 
for several different amplitudes. The amplitudes are 1 for 
the top, 2 for the middle, and 4 for the bottom, respectively. 
The frequencies are 6 for the top, - 5 for the middle and 2 
for the bottom respectively. 

Let n, W and A be the length of time series, window size 
and amplitude respectively. The computational order of cal-
culating leg frequency 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑋𝑋,𝐴𝐴,𝑊𝑊 by an algorithm derived 
directly from the definition is O(n×(W!)), because search-
ing all the possible legs in constructing 𝑉𝑉(𝑋𝑋[𝑡𝑡: 𝑡𝑡 + 𝑊𝑊 −
1],𝐴𝐴) needs the computation whose order is O((W!)) in the 
worst case. However, we can obtain faster algorithm whose 
computational order is O(n×W) by using left most vibration 
sequence and the theorem which it satisfies. 

Definition: Leftmost Leg Vibration Sequence 
Let X and 𝐿𝐿 be a time series and a set of legs whose ampli-
tude are greater than or equal to amplitude A respectively. 
The leftmost vibration sequence in 𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴)  is a leg 
sequence [𝑚𝑚1,.., 𝑚𝑚𝑖𝑖,…, 𝑚𝑚𝑛𝑛] when 𝑚𝑚𝑖𝑖 is selected repeatedly 
until we can not select it in the below way: 

𝑚𝑚1 = argmin𝑙𝑙∈𝐿𝐿 end(𝑙𝑙) 
𝑚𝑚𝑖𝑖+1 = argmin𝑙𝑙∈𝐿𝐿𝑖𝑖  end(𝑙𝑙) for ≥ 1 

Where 𝐿𝐿𝑖𝑖 ≡ {𝑙𝑙 ∈ 𝐿𝐿|start(𝑙𝑙) ≥ end(𝑚𝑚𝑖𝑖)and 
sign(𝑙𝑙) ⋅ sign(𝑚𝑚𝑖𝑖) < 0} 

Theorem: The leftmost leg vibration sequence is a leg se-
quence that has the maximal length in 𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴). 

Proof. Let u = [l1, l2,.., ln] be the leftmost leg vibration se-
quence whose length is n. We will reduce contradictory if v 
= [m1, m2,.., mk] is assumed a maximal leg vibration se-
quence in 𝑉𝑉(𝑋𝑋[𝑝𝑝: 𝑞𝑞],𝐴𝐴) whose length k is greater than n. 

First, we will prove that leg l1 and m1 have the same sign. 
Let us suppose that leg l1 and m1 have different sign. Since u 
is leftmost, we can prove [l1, m1, m2,.., mk] is a leg vibration 
sequence whose length is m + 1 by exploiting the reasoning 

method in the previous lemma. It contradicts the length of v 
is maximal. Therefore, the assumption – l1 and m1 have dif-
ferent sign – must be false.  

Since l1 and m1 have the same sign and u is leftmost, it is 
true that end(l1) ≤ end(m1) ≤ start(m2). Therefore [l1, m2,.., 
mk] is a leg vibration sequence. In the same way, [l1, l2, m3,.., 
mk] is a leg vibration sequence. Since k > n, [l1, l2,.., ln, 
mn+1,.., mk] is a leg vibration sequence where the amplitude 
of each leg is greater than or equal to A. Therefore, a subse-
quence X[end(ln) : end(mk)] must include the leftmost leg 
ln+1 whose amplitude is greater than or equal to A and whose 
sign is the same as that of mn+1, that is, different from that of 
ln. This means that [l1, l2,.., ln, ln+1] is the leftmost vibration 
sequence. It contradict that u is the leftmost vibration se-
quence.  

Therefore, the initial assumption – the length of v is great-
er than that of u – must be false. □ 

The computational order of constructing leftmost leg vi-
bration sequence is O(W), therefore that of leg frequency 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑋𝑋,𝐴𝐴,𝑊𝑊 is O(n×W). 

5 EVALUATION 

We have developed a TPQL based anomaly detection sys-
tem and applied it to a practical application system. With 
regard to development efficiency, we compared the number 
of lines of programs by TPQL to those by Java. We con-
firmed that the convolution operation for describing feature 
extraction for sliding windows can reduce about 100 lines to 
1 line. However, enough evaluation of development effi-
ciency for constructing real applications remains as a future 

20:17 20:27 20:37       20:46

20:17 20:27 20:37       20:46

20:17 20:27 20:37       20:46

Frequency = 6 
Amplitude = 1.0℃

temperature

time

temperature

time

time

Frequency = -5
Amplitude = 2.0℃

Frequency = 2
Amplitude = 4.0℃

temperature

Figure 5: Trend Graphs of Experimental Data 

International Journal of Informatics Society, VOL.8, NO.3 (2016) 161-169 167



work. The rest of this section shows the result of processing 
time. 
(1) TPQL

We confirmed that our system satisfies the processing time
that are required by our real application. Our requirement of 
ECM for buildings is that the processing must be completed 
within one day for the following conditions:  
- 3 anomaly detection scenarios for each signal
- 5,000 signals with sampling period one minute in half a

year
The detail results and the conditions in the experiment are 

described in [4].  
(2) Exemplar Learning

We compared our algorithm to the simple yet effective
Brute Force Euclidian Distance (BFED) algorithm [14] 
which has proven to be the most accurate over a variety of 
different testing time series [15]. Data for the experiment are 
24 data sets that are available from the paper [16] and 2 syn-
thesized data sets. The result shows that our algorithm is 
about from 5 times to 100 times faster than the BFED algo-
rithm without losing accuracy. The detail results and the 
conditions in the experiment are described in [5].  
(3) Leg vibration analysis

We applied leg vibration analysis to anomaly detection for
HVAC (Heating Ventilation, and Air Conditioning) systems. 
It is known that a significant variation of room temperature 
during operation often shows an anomaly in the control 
and/or sensor system.  

The data for the experiment consisted of room temperature 
readings with sampling period one minute, for a total dura-
tion of three years. The total number of time points is thus 
1,578,239. We obtain leg frequencies with window size 30 
minutes and with amplitude 1.0℃, 2.0℃, and 4.0℃, respec-

tively. A higher amplitude means a higher warning level. 
Leg vibration analysis can enable adaptive monitoring by 
selecting an appropriate window size and amplitude.  

Our leg vibration analysis software detected 1901 points 
(0.12%)，454points (0.029%)，and 69 points (0.0044%) 
for amplitudes of 1.0℃ , 2.0℃ , and 4.0℃ , respectively. 
Fig. 4 shows a snapshot of leg frequencies as a function of 
time for each amplitude. The top, the middle, and the bottom 
graphs correspond to amplitudes of 1.0℃, 2.0℃, and 4.0℃, 
respectively. Fig. 5 above shows the leg sequences for the 
subsequences that are surrounded by the rectangular area in 
Fig. 6. 

The processing times for amplitudes 1.0℃ , 2.0℃ , and 
4.0℃ were 0.612 sec., 0.554sec., and 0.489 sec. respectively. 
We set the threshold on the absolute value of leg frequency 
to 4, in order to detect anomalies for each temperature. All 
computational times satisfy the requirements of our applica-
tion. The detail results and the conditions in the experiment 
are described in [6]. 

6 CONCLUSIONS 

This paper describes a TPQL-based anomaly detection 
system whose main features are convolution operation, time 
interval join, data transformation, exemplar learning and leg 
vibration analysis.  

Our efforts have been mainly focused on feature extraction 
and machine learning based anomaly detection, that is, a 
data-driven approach. A data-driven approach has a problem 
that it can detect the differences from the ordinary behavior 
of sensor data, but it cannot distinguish the symptoms of 
failures from only unusual behavior. Our future direction is 
to develop a hybrid method to combine a data-driven ap-

Figure 6: Trend Graphs of Experimental Data

temperature

temperature

temperature

temperature

時区間A 時区間B 時区間C 時区間D

Amplitude = 1.0℃

Room Temperature
28
24
20
16

8
4
0

-4
-8

19:15 19:30 19:45      20:00                10:15               20:30          20:45              21:00           21:15

19:15 19:30 19:45      20:00                10:15               20:30          20:45              21:00           21:15

6
2 

-2
-6

19:15 19:30 19:45      20:00                10:15               20:30          20:45              21:00           21:15

4
2
0

-2
-4

19:15 19:30 19:45      20:00                10:15               20:30          20:45              21:00           21:15

Amplitude = 2.0℃

Amplitude = 4.0℃

Window size = 30 min.

Time

Time

Time

Time

M. Imamura et al. / Invited Paper: An Anomaly Detection System for Equipment Condition Monitoring168



proach with a physical model-based approach with equip-
ment domain knowledge in order to explain whether anoma-
lous behavior is actually a symptom of a failure. 

REFERENCES 

[1] J. Zheng, D. Simplot-Ryl, C. Bisdikian, H.T.Mouftah: “The
Internet of Things [Guest Editorial],” Communications Maga-
zine, IEEE , Vol.49, No.11, pp.30-31 (2011).

[2] M. Imamura, D. Nikovski, Z. Sahinoglu, M. Jones: “A Survey
on Machine Learning for Equipment Condition Monitoring Us-
ing Sensor Big Data,” IIEEJ Transactions on Image Electronics
and Visual Computing Vol.2 No.2, pp. 112-121 (2014).

[3] M. Imamura, S. Takayama, and T. Munaka: “A stream query
language TPQL for anomaly detection in facility management,”
The 16th International Database Engineering & Applications
Symposium (IDEAS '12), pp. 235-238 (2012).

[4] M. Imamura,T. Takeuchi, S. Kitagami, M. Kanno, T. Munaka:
“Time Series Data Query Language TPQL for anomaly detec-
tion in facility,” Journal C of Electronics and Communications
in Japan,Vol.134, No.1, pp. 156-167 (2014). (in Japanese).

[5] M. Jones and D. Nikovski and M. Imamura and T. Hirata: “Ex-
emplar Learning for Extremely Efficient Anomaly Detection in
Real Valued Time Series,” Data Mining and Knowledge Dis-
covery (DAMI), First online: 25, pp 1-28 (2016).

[6] M. Imamura, T. Nakamura, H. Shibata, N. Hirai, S. Kitagami, T.
Munaka: “Leg Vibration Analysis for Time Series,” IPSJ Jour-
nal, Vol. 57, No.4, pp.1303-1318 (2016). (in Japanese).

[7] R. T. Snodgrass (Ed.): The TSQL2 Temporal Query Language.
Kluwer (1995).

[8] A. Arasu, S. Babu, J. Widom: “The CQL continuous query
language: semantic foundations and query execution,” The In-
ternational Journal on Very Large Data Bases archive, Vol. 15,
No. 2, (2006).

[9] V. Chandola, A. Banerjee, V. Kumar: “Anomaly detection: a
survey,” ACM Comput Survey, Vol. 41, No. 3 (2009).

[10] W. Yan: “Feature Engineering for PHM applications,” The 7th
Annual Conference of the Prognostics and Health Management
Society,
http://www.phmsociety.org/sites/phmsociety.org/files/FeatureE
ngineeringTutorial_2015PHM_V2.pdf (2015).

[11] T. Endo, M. Matsuishi, K. Kounaga, K. Kobayashi, K.
Takahashi: “Rain Flow Method and Its Application,” Research
Report of Kyushu Institute of Technology, http://www-
it.jwes.or.jp/qa/details.jsp?pg_no=0040020170 (1974).

[12] I. Rychlik: “A new definition of the rainflow cycle counting
method,” International journal of fatigue Vol. 9. No. 2, pp.
119-121 (1987).

[13] E. Fin, B. P. Kevin: “Indexing of Compressed Time series,”
DATA MINING IN TIME SERIES DATABASES, World Sci-
entific, pp. 43-65 (2004).

[14] T. RakthanmanonT, B. Campana B, A. Mueen, G. Batista, B.
Westover, Q. Zhu, J. Zakaria, E. Keogh Searching and mining
trillions of time series subsequences under dynamic time warp-
ing. 18th ACM SIGKDD international conference on
knowledge discovery and data mining, pp 262–270 (2012).

[15] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E.
Keogh: “Querying and Mining of Time Series Data: Experi-
mental Comparison of Representations and Distance Measures,”
VLDB 2008, pp.1542-1552 (2008).

[16] E. Keogh, J. Lin, A. Fu: “HOT SAX: finding the most unusu-
al time series subsequence: algorithms and applications,” The
Fifth IEEE international conference on data mining, pp. 226–
233, www.cs.ucr.edu/eamonn/discords/ (2005). 

 
 

(Received September,30,2015) 
(Revised June 10,2016) 

Makoto Imamura He received 
a M.E. degree from Kyoto Uni-
versity of Applied Mathematics 
and Physics in 1986 and a Ph.D. 
degree from Osaka University of 
the Information Science and 
Technology in 2008. He is a 
professor of the school of In-

formation and Telecommunication Engineering at 
Tokai University. He had been worked as a research 
staff at the Information Technology R&D Center in 
Mitsubishi Electric Corporation until 2015. He has 
worked on datamining methods for prognostics and 
health management and cyber-physical production 
system. 

Daniel Nikovski He received a 
PhD in robotics from Carnegie 
Mellon University in 2002, and is 
presently a senior member of 
research staff and group manager 
of the Data Analytics group at 
Mitsubishi Electric Research La-
boratories. He has worked on 
probabilistic methods for reason-

ing, learning, planning, and scheduling, and their 
applications to hard industrial problems. He is a 
member of IEEE. 

Michael Jones He received a 
Ph.D. degree from the Electrical 

Engineering and Computer Sci-
ence department of the Massachu-
setts Institute of Technology 
(MIT) in 1997, and is currently a 
senior principal member of the 
research staff at Mitsubishi Elec-
tric Research Laboratories. He has 

worked mainly on problems in computer vision, but 
recently has also focused on time series analysis. 

International Journal of Informatics Society, VOL.8, NO.3 (2016) 161-169 169




