
Log Data Collection of Real-time Control System using Fault Tree Analysis

Naoya Chujo†, Akihiro Yamashita‡, Nobuyuki Ito‡, Yukihiko Kobayashi‡, and Tadanori Mizuno†

†Faculty of Information Science, Aichi Institute of Technology, Japan
‡Mitsubishi Electronic Engineering Co., Ltd., Japan

ny-chujo@aitech.ac.jp
{Yamashita.Akihiro, Ito.Nobuyuki, Kobayashi.Yukihiko}@ma.mee.co.jp

mizuno@mizulab.net

Abstract - The increasing complexity of embedded systems
in information and communication technology causes a prob-
lem with locating faults during system failures. One reason
for this problem is that complicated systems consist of so
many components that basic log data do not contain useful
information about abnormal system behavior by faulty com-
ponents. Since available time resources in real-time systems
are limited, we cannot use much time for logging all data to
specify the faulty components.

In this paper, we present a logging method of real-time con-
trol system using Fault Tree Analysis for locating the faulty
components. Fault Tree Analysis is applied for assumed sys-
tem failures, and then specific data in fault trees are defined
to locate the faulty components. Log tasks are scheduled to
collect the specified data in cooperation with system tasks.
Once the assumed system failure is observed during system
operation, the related log tasks wake up and collect the spec-
ified data to diagnose system faults. The experimental results
have shown that specified data related to faulty components
are collected by log task and the overhead for logging is pre-
dictable.

Keywords: Fault Tree Analysis, Log Data, Fault Diagno-
sis, Real-time, Embedded System

1 INTRODUCTION

In recent years, while the embedded software in systems
such as those in automobiles or medical devices has grown in-
creasingly complicated, numerous real-time control systems
have been developed. These complexities have caused a range
of problems, including reduced productivity and increasing
difficulty in pinpointing fault origins. Thus, improving the re-
liability of such systems has become an important objective.
Logging data has become a popular method to improve the
reliability.

The primary role of the log data associated with faults is
to record items such as fault occurrence time and the nature
of the fault. In addition, fault-diagnosis functions allow the
collection of log data describing the basic status of the system
at the fault occurrence time. However, by using only this basic
level of log data, it remains difficult to determine the factors
that caused the fault to occur.

In this paper, we present a logging method for a real-time
control system using a fault tree analysis to locate the faulty
components. For assumed system failures, specific data in
fault trees are used to locate the faulty components.

To summarize our contribution, we find that log data col-
lection based on fault tree analysis is useful for the identifi-
cation and tracking of the failed component through our case
studies. Further, the time required for data collection is pre-
dictable, and the log task is able to be scheduled not to disturb
control tasks. Although constructing a fault tree of complex
system requires long time, fault trees are assumed to be given
in this study.

The remainder of this paper is organized as follows.
In Section 2, we review related work and discuss case stud-

ies involving automotive fault diagnosis and reliability im-
provements by using a fault analysis model. In Section 3,
we describe our proposed method to collect log data based on
the fault tree analysis for a real-time system. In Section 4,
experiments using a miniature car and a motor control system
are presented. The results show that the faults of a real-time
system can be detected by the proposed method. Moreover,
the overhead for collecting log data is evaluated, because pre-
dictable overhead is important for a real-time system. In Sec-
tion 5, we discuss these results. Our conclusions are presented
in Section 6.

2 RELATED RESEARCH

Real-time control systems for applications such as automo-
biles and medical devices require extremely high reliability,
and various methods exist for improving system reliability.
In this section, we introduce a case study of automotive fault-
diagnosis functionality. We also discuss the fault tree analysis
(FTA) [1] to improve reliability.

2.1 Fault Diagnosis in Automobiles

The field of automotive fault-diagnosis functionality pro-
vides a case study of log data collection in a real-time control
system. For example, on-board diagnosis (OBD) [2], which
is a tool for diagnosing system status in automobiles, consists
of an automatic diagnosis via the computers embedded in au-
tomobiles. Most automobiles in service today are equipped
with OBD. Figure 1 shows a diagram of OBDII, which is a
second-generation OBD system. OBDII monitors and diag-
noses Electronic control units (ECUs) via the controller area
network (CAN). ECU is an embedded system that controls
the automotive electrical and electronic system.

The basic scope of OBD encompasses monitoring, data
recording, and communication. Monitoring is checking for
the flashing of malfunction indicator lamps (MILs) when rel-

International Journal of Informatics Society, VOL.8, NO.3 (2016) 151-159 151

ISSN1883-4566 ©2016 - Informatics Society and the authors. All rights reserved.



Figure 1: Second-generation on- board diagnosis system
(OBDII).

evant items meet fault detection criteria. Data recording and
communication are the recording of a code (in the event of a
fault) and the specifying of the fault. A diagnostic tool can
subsequently be used to read this code.

It is generally believed that monitoring frameworks in OBD
systems should grow increasingly sophisticated in the future.
Monitoring frameworks include an automotive fault-diagnosis
function that allows computers to detect faults.

When an automobile detects a fault, it records diagnostic
trouble code (DTC) that encodes information on the sensors
involved in the fault, the events that have been diagnosed and
the basic status of the automobile. The basic status data is
called Freeze Frame Data (FFD).

However, information of the FFD is limited to basic au-
tomobile information, such as engine rotation, temperature
of cooling water, and O2 sensor output. Although the FFD
includes much necessary information, it is not sufficient for
diagnosing the individual controllers used in modern auto-
motive systems. A high-end modern automotive system has
dozens of ECUs using an estimated sixty-five million lines of
code [3].

Moreover, the real-time nature of controllers makes it dif-
ficult to diagnose faults, because the period of a control cycle
by sophisticated controllers is on the order of milliseconds.
It is much shorter than the period of the FFD, which has a
recording cycle time of hundreds of milliseconds, and most
typically 500 milliseconds [4], depending on the system.

2.2 Fault Tree Analysis to Improve Reliability

FTA was developed for the reliability assessment and safety
analysis of military systems [1]. To date, FTA has been widely
applied to various types of industrial plants and transportation
systems. In an FTA, the lower event and/or combinations of
such events are investigated to determine whether they caused
the higher event or the final top-level event, which is undesir-
able system failure. The tree format, called a fault tree, is
defined to express the relation between the lower events and
higher events.

As an example of an FTA, we consider the case of car halt.
Figure 2 shows the fault tree (FT) diagram corresponding to
the halt of an electric vehicle (EV).

Figure 2: FT diagram for the case of car halt.

Figure 3: Schematic diagram of the LoFTE method.

We note first that the event at the top of the diagram is the
undesirable event within the system. In this case, we posi-
tioned car halt as the top-level event. Possible causes for this
top-level event include circuit protection by overheat, loss of
power supply, and hardware fault. Among these events, pos-
sible causes for circuit protection by overheat include circuit
malfunction and motor temperature out of range. We proceed
in this way to trace the possible causes of each event.

The rectangles in the diagram show intermediate events
that could be possible causes for the upper-level events. The
circles in the diagram show basic events that could cause sys-
tem faults.

By specifying events that could cause system faults (top-
level events), an FTA enumerates the causes of lower-level
events that lead to top-level events (system faults). This enu-
meration can then be used to analyze the causes and fault
events that contributed to the system failure.

FTA was developed as an analysis technique in system de-
sign for the prevention of system failure, but it is often used
for the purpose of finding the cause after a system failure. In
this paper, FTA is used to data collection for the cause analy-
sis of failures in real-time system.

Enhanced FTA approaches to analyze large scale compli-
cated computer-based systems were developed. For example,
dynamic fault tree (DFT)[5] is an effective method for the
analysis of computer-based systems. DFT provides a means
for combining FTA with Markov analysis for sequence depen-
dent problems. DFT method works for fault tolerant comput-
ing systems by introducing the functional dependency gates
and the spare gates. Another extension of FTA is condition-
based fault tree analysis (CBFTA) [6]. CBFTA starts with the
known FTA, but by condition monitoring system, CBFTA up-
dates failure rates and applies to the FTA. CBFTA recalculates

N. Chujo et al. / Log Data Collection of Real-time Control System using Fault Tree Analysis152



periodically the top event failure rate, and then the system re-
liability is monitored in undergoing system. These enhanced
FTA approaches also work for the cause analysis of failures
in real-time system.

However, real-time control systems may have the unex-
pected failure during operation, and some failures are not re-
produced in the off-line. We think that it is because of incom-
pleteness or difficulty of modeling control systems including
mechanical, electrical, and computer parts. Therefore, there
are needs to perform the log data collection and off-line diag-
nosis.

3 PROPOSED METHOD FOR
COLLECTING LOG DATA

In this section, we present our proposed method, which
we named Log data collection using Fault Tree Expansion
(LoFTE) [7]. We then describe our method by using a simple
example of a system fault and the FT, after which we demon-
strate a case of fault-event identification. Throughout this re-
search, single fault was assumed.

3.1 Philosophy of LoFTE Method

The LoFTE method implements FTA at the system design
stage and determines both the collection schedule and the data
to be collected at the time of fault detection. Then, during the
system operation stage, log data are collected, with proper
consideration paid to the real-time nature of the system at the
fault detection time. Thus, this method aspires to achieve real-
time fault diagnosis by collecting the log data during system
operation. More specifically, our method executes the follow-
ing procedures at the system design stage and during system
operation.

Procedure at the system design stage:

1. conduct FTA based on the system design specifications.

2. Within the FT, specify the data to be collected by soft-
ware.

3. Store collection schedules for the specified data within
the control software.

Procedure at the system operation stage:

1. Identify fault(s) that arise during control tasks.

2. Report the log-data-collection task responsible for in-
formation associated with the fault(s)

3. The data associated with the fault(s) are then collected
as log data based on the relevant scheduling.

We further describe the system by referring to the example
depicted in Fig. 3. The results of the FTA at the system design
stage are stored as FT1, FT2, and so on. In this case, we
assume that a fault in FT2 has occurred and we initiate the
log-data collection task. The log-data collection task collects
the log data displayed for FT2.

Figure 4: Subtrees for the case of car halt.

3.2 Collection of Log Data

In the LoFTE method, the collection of log data is executed
based on information of the fault tree. Once a faulty event is
detected, all events in the fault tree should be recorded. How-
ever, the log data of a large number of events are not prefer-
able, because the work of collecting log data takes a long time
and makes it difficult to analyze faulty events. To this end, the
control software is analyzed to determine its module structure
[8]. The collection of log data is executed based on the struc-
ture [9].

In this subsection, we use the example of the EV discussed
in subsection 2.2 as an example of a real-time control system
and consider the collection of log data.

The fault tree diagram in Fig. 2 has three subtrees: S0 of
the control circuit module, S1 of the power supply module and
S2 of the other hardware module. These subtrees are shown in
Fig. 4. We assume that the control software for each module
is designed to be independent from the others. Therefore, the
work of collecting log data for the fault tree is divided into
three parts.

4 EXPERIMENTS

In this section, we describe our experiments conducted to
test whether it is possible to identify the cause of a fault from
the collected sensor data and the FT. The overhead of the pro-
posed method is estimated through experiments.

4.1 Experiment with Miniature Car

In the first experiment, we used a miniature car as an ex-
perimental device.

4.1.1 Experimental Device

The experimental device was a 1/10-scale miniature car,
Robocar 1/10 (hereafter referred to as RoboCar) for the au-
tomotive platform (AP) [10], which was designed to be a
research platform for autonomous driving. Figure 5 show a
photograph of the experimental device, and Figure 6 show a
structural diagram of the RoboCar system.

RoboCar is equipped with a V850/FG4 CPU [11], multiple
input devices, including a three-axis acceleration sensor, eight
infrared range sensors, a three-axis gyro sensor, two field-
effect transitor (FET) temperature sensors, a motor encoder,

International Journal of Informatics Society, VOL.8, NO.3 (2016) 151-159 153



Figure 5: RoboCar 1/10 for AP.

Figure 6: Structure of the RoboCar control system.

and four wheel encoders. Sensor data from all of these in-
put devices are obtained from the RoboCar API. The device
is also equipped with two output devices: a servo motor and a
DC motor. These devices are controlled by the RoboCar API.
The communications specifications correspond to the CAN
[12] and the Universal Asynchronous Receiver Transmitter
(UART).

4.1.2 Software Used in the Experiment

In this experiment, we used TOPPERS/ATK2 [13], a real-
time OS designed for next-generation automotive embedded
systems. This OS was designed by the Center for Embedded
Computing Systems at Nagoya University (NCES) and was
designed to comply with AUTOSAR [14], a standard specifi-
cation for automotive embedded software.

4.1.3 Experimental System

The experimental system used in this work consists of the
RoboCar (the system in which the fault occurs) and a com-
puter that monitors sensor data transmitted from the RoboCar
via Bluetooth. Figure 7 shows a schematic diagram of the
experimental system[15].

Three tasks were implemented as TOPPERS/ATK2 appli-
cations: our proposed LoFTE task, a control task, and a com-
munication task. The LoFTE task collects log data from the
sensors installed on the RoboCar. The control task controls
the various system actuators on the basis of the sensor data

Figure 7: Schematic depiction of the experimental system.

collected by the sensor-data collection task. For example, this
task controls the motor torque to ensure that the driving mo-
tor maintains a constant velocity. The communication task
transmits the data collected to the computer. The system was
realized by periodically executing these tasks at a cycle period
of 100 msec.

In this experiment, Bluetooth wireless communication was
used for the communication. The rate of data transmission
via Bluetooth was at 115,200 bits per second (bps) to allow
the computer to monitor data transmission from the RoboCar.

4.1.4 Assumed Fault and Experimental Procedure

In the first experiment, the RoboCar traversed a circular
track in the clockwise direction until its motion was obstructed
manually to bring the RoboCar to a halt. We take the halt of
the RoboCar as our fault event in this experiment. We de-
signed one specific fault event for this experiment.

At the system design stage, we anticipate the causes of the
RoboCar halt and prepare the fault tree diagram, shown in
Fig. 8. The shaded events indicate the causes of the fault
assumed in our experiment.

We assigned codes for all events of the fault tree accord-
ing to the level. The event of Level 0, car halt, was assigned
the code, 0x01. Three events of Level 1, circuit protection by
overheat, loss of power supply, and hardware fault, were as-
signed codes, 0x10, 0x11, and 0x12, respectively. Two events
of Level 2, circuit malfunction and motor temperature out
of range, were assigned codes, 0x20, and 0x21, respectively.
Three events of Level 3, cooling fault, overload of motor, and
fault of temperature sensor, were assigned codes, 0x30, 0x31,
and 0x32, respectively. Two events of Level 4, overcurrent
and overvoltage, were assigned codes, 0x40, and 0x41, re-
spectively. The codes of the shaded events of Fig. 8 are listed
in Table 1.

In this experiment, we measured the velocity of both wheels
powered by the driving motor, the current, and the FET tem-
perature to record the status of the RoboCar. We config-
ured the overheat protection function to go into operation at
80.0 ℃, and the current limit function at 10 A.

N. Chujo et al. / Log Data Collection of Real-time Control System using Fault Tree Analysis154



Figure 8: FT diagram for the case of RoboCar halt.

Table 1: Assigned codes for the case of RoboCar halt.

4.1.5 Experimental Results

Table 2 shows the experimental results. The RoboCar mo-
tion was obstructed at 3’59”7 after measurements began. The
driving motor continued to operate after this time, but stopped
10 seconds later.

In the interval prior to 3’59”7, the drive velocity of the
RoboCar (which was moving clockwise) was approximately
0.8 m/sec for the left wheel and 0.6 m/sec for the right wheel.
At the time the car reached the obstruction, the velocity of
both wheels fell to 0.3 m/sec. At 4’00”4, the left wheel ve-
locity jumped to 1.4 m/sec, while the right wheel velocity
fell to 0.0 m/sec, which shows the right wheel was locked.
At 4’09”7, the driving motor halted and the velocity of both
wheels fell to 0.0 m/sec.

The current of the RoboCar ranged from 1.0 A to 4.0 A
in the interval prior to 3’59”7, but it jumped to a maximum
value of 7.7 A after encountering the obstruction. At 4’00”4,
the current rose to 10.2 A, which showed the overcurrent.

The temperature remained roughly constant until 3’59”7,
but it jumped to 80.2 ℃ at 4’09”4 after encountering the ob-
struction. The driving motor halted at 4’09”7, and the tem-
perature remained high.

The event codes 0x40 and 0x31, which corresponded to
overcurrent and overload of motor, were detected at 4’00”04.
In addition, 0x21and 0x10 , which corresponded to motor

Table 2: Detected events induced by RoboCar halt.

Figure 9: Wiper control system.

temperature out of range and circuit protection by overheat,
were detected at 4’09”04. The code 0x01, which corresponded
to car halt, was detected at 4’09”07.

In addition, we saw that the execution time for logging in-
creased after detection of the codes. The execution time was
4 µsec at 3’59”7. The execution time jumped to 124 µsec at
4’00”4, and it increased with the number of detected codes.

4.2 Experiment with Wiper Control System

In the second experiment, we used a wiper control system
as the experimental device.

4.2.1 Experimental System

Figure 9 shows a structural diagram of the wiper control
system. The device is equipped with a CPU board (KED-
SH101), a servo motor, and a monitoring computer. These
are connected via RC232C and RS485 networks. The servo
motor can be controlled from KED-SH101 via the networks.

In this experiment, we used TOPPERS/JSP [16], a real-
time kernel designed for embedded systems.

Three tasks were implemented as TOPPERS/JSP applica-
tions (the LoFTE task, a control task, and a communication
task), and the system was realized by periodically executing
these tasks. The LoFTE task was executed every 700 ms. The
LoFTE task collects log data from the servo motor, and the
data are sent to the monitoring computer.

International Journal of Informatics Society, VOL.8, NO.3 (2016) 151-159 155



4.2.2 Assumed Fault and Experimental Procedure

For this experiment, we designed two specific fault events
that cause a wiper halt. The moving wiper operation was ob-
structed manually, and it caused the servomotor to increase
the motor current to keep it moving. Because the motor tem-
perature increased due to the increased current, it finally brought
about a wiper halt. We take the obstruction as the first fault
event in this experiment.

As our second fault event, we designed a communication
fault event. When the wiper system was moving to the left
and right, the communication was interrupted intentionally by
setting the disable flag of the communication register, bring-
ing no response from the servo motor. The interruption also
caused a wiper halt.

At the system-design stage, we anticipate the causes of a
wiper halt and prepare the fault tree diagram shown in Fig. 10.
The shaded events indicate the causes of the fault assumed in
our experiment.

We assigned the codes for all events of the fault tree ac-
cording to level. All of the assigned codes are listed in Ta-
ble 3. The event of Level 0, wiper halt, was assigned code
0x01. Three events of Level 1, circuit protection by over-
heat, communication fault, and hardware fault, were assigned
codes 0x10, 0x11, and 0x12, respectively. Six events of Level
2, motor temperature out of range, circuit malfunction, check
sum error, parameter read error, response time out, and neg-
ative acknowledge, were assigned codes 0x20, 0x21, 0x22,
0x23, 0x24, and 0x25, respectively. Six events of Level 3,
cooling fault, overload of motor, fault of temperature sensor,
no response from servo motor, excess number of retries, and
disconnection of network, were assigned codes 0x30, 0x31,
0x32, 0x33, 0x34, and 0x35, respectively. Four events of
Level 4, overcurrent, overvoltage, loss of motor power supply,
and communication disable flag, were assigned codes 0x40,
0x41, 0x42, and 0x43, respectively.

In this experiment we measured current, voltage, tempera-
ture and the control register of the servo motor. We configured
the overheat protection function to go into operation at 60 ℃,
and we set the maximum current at 100 mA. The communica-
tion control register and the number of retries were monitored
in this experiment.

4.2.3 Experimental Results

Table 4 shows the experimental results for the first fault
event. The wiper motion was started at 0’03”99 after mea-
surements began. Then, the wiper’s motion was manually ob-
structed at 0’07”. The motor continued to operate after this
time, but stopped at 1’14”45.

The current of the wiper system was in the range from 12
mA to 14 mA in the interval from 0’03”99 to 0’07”08, but it
jumped to a value of 611 mA after encountering the obstruc-
tion, which showed the overcurrent because the current limit
was 100 mA. The overcurrent was kept to 1’14”45.

The temperature remained roughly constant at 41 ℃ or
42 ℃ until 0’07”08, but it rose to 60 ℃ at 1’14”45 after en-
countering the obstruction.

Table 3: Assigned codes for the case of wiper halt.

Table 4: Detected events induced by wiper obstruction.

Event codes 0x40 and 0x31, which corresponded to over-
current and overload of motor, were detected at 0’07”68. In
addition, 0x20, 0x10, and 0x01, which corresponded to tem-
perature exceeding limit (60 ℃), circuit protection by over-
heat, and wiper halt, were detected at 1’14”45.

The execution time for logging was 1 msec after detecting
two event codes at 0’07”68, then it increased to 2 msec when
detecting five event codes at 1’14”45. Because the time res-
olution of TOPPERS/JSP kernel is 1 msec, we could not see
that the execution time increased with the number of detected
codes.

Table 5 shows the experimental results for the second fault
event. The wiper started to swing at 0’07”18 after measure-
ments began. The communication was obstructed at 0’16”47
after measurements began. The wiper halted at 0’17”07.

In the interval prior to 0’15”79, the register code of the
communication register was 0x30 (00110000), which showed

N. Chujo et al. / Log Data Collection of Real-time Control System using Fault Tree Analysis156



Figure 10: Assumed fault in wiper control system.

Table 5: Detected events induced by communication error.

that the transmit enable bit and the receive enable bit were
set, and the communication was enabled. At 0’16”47, the
register code changed to 0x00 (00000000), which showed that
the communication was disabled. At 0’17”07, the number of
retries for the communication reached 6, which showed that
the maximum number of retries was exceeded.

Event codes 0x43 and 0x33, which corresponded to dis-
able flag of communication and no response from servo mo-
tor, were detected at 0’16”47. In addition, 0x24, 0x11, and
0x01, which corresponded to response timed out, communi-
cation fault, and wiper halt, were detected at 0’17”07.

5 DISCUSSIONS

Our experiments confirmed that the LoFTE method was ca-
pable of logging the sequences of faulty events up to the top-
level event. The sequences of faulty events provide useful
information for identifying the cause of the fault.

In the first experiment using the RoboCar, we see first that
over current and overload of the motor can be detected, then
the events on the path of the fault tree can be detected, and
finally the RoboCar halt (the top-level event) can be detected.

In the second experiment using the wiper control system,
we see that the communication disable flag (the basic event)
and no response from the servomotor can be detected as the
second fault event. After that, the events on the path of the
fault tree can be detected, and finally the wiper halt (the top-
level event) can be detected.

Regarding the load of LoFTE tasks, the maximum execu-
tion time was estimated at 149 µsec. This time was less than
1% of that of the control cycle period, 100 msec in the first
experiment. However, more importantly, the overhead of real-
time system was predictable [17]. Because the execution time
for logging increased with the number of the detected codes,
the load of the LOFTE task was predictable by the heights of
the fault trees.

We assumed a single fault at a time in this study, and so the
order of logged events was straightforward on the path of the
fault tree. However, in the case of multiple faults, the order of
logged events would be complicated.

It should be noted that constructing the complete FT of
a complex system is difficult. It is also difficult to evaluate
the validity of FT. However, even the FT is not complete, it
does not mean useless. The incomplete FTs would have un-
expected events or wrong edges between events. If the unex-
pected event had influence on system failure, they would have
implicit edges to some FTs. Such events are considered to be
detectable as the other events of FT. Otherwise, the events
have no influence on the system, and they are negligible. In
the case of the wrong edges, they make the fault analysis dif-
ficult, and another logging is necessary to verify the edges
between the events.

For this reason, our future work will be to access data sets
of the system for logging through remote networks, as shown
in Fig. 11. We would be able to access real-time controllers
by wireless communication and modify data sets for logging

International Journal of Informatics Society, VOL.8, NO.3 (2016) 151-159 157



Figure 11: Remote log collection system.

unexpected faults depending on the designer’s request. Fault
diagnosis of real-time controllers through remote networks
would be available. After detecting the faulty device or soft-
ware, the system could be fixed at service stations or by a
wireless network. This capability would reduce the problem
of designing complete fault trees of complex systems prior to
market release.

6 CONCLUSIONS

In this study, we proposed the LoFTE (Log data collection
using Fault Tree Expansion) method for log data collection
using a fault tree analysis. We then conducted experiments
involving a miniature car and a wiper control system.

The results of our experiments indicate that the LoFTE
method is capable of logging the sequences of faulty events.
Therefore, it is useful for identifying the cause of a fault. The
load of the logging task is small and predictable by using fault
trees. The log task is able to be scheduled without disturbing
control tasks.

Our future work will be to access and control data sets for
the logging of fault trees through remote network.

ACKNOWLEDGMENTS

This research is supported by JSPS KAKENHI Grant Num-
ber 26330074.

We extend our deepest gratitude to Associate Professor Shinya
Honda and the members of the Center for Embedded Com-
puting Systems at Nagoya University (NCES), who provided
extensive support and resources regarding TOPPERS/ATK2
during the completion of this work.

We are also particularly grateful for the assistance and sup-
port given by Shogo Fukuoka, Hiroki Kitagawa and Kazuhiro
Tsujita.

REFERENCES

[1] N. Leveson, Safeware, System Safety and Computers,
ACM, pp. 305-313 (1995).

[2] J. Shaeuffele, and T. Zurawka, Automotive Software En-
gineering - Principles, Processes, Methods and Tools,
SAE International, pp. 118-125 (2005).

[3] Mentor Graphics Inc., “News and Views 2014 Spring/
Vol. 9,” accessed June 13 (2015).
http://www.mentorg.co.jp/news and views/automotive/
2014/spring.html

[4] Toyota Motor Corp., Toyota Prius New Model Ref-
erence and Repair Manual, Parts Number NM12B1J,
pp. IN-36-38 (2010).

[5] R. Gulati and J. Dugan, “A Modular Approach for An-
alyzing Static and Dynamic Fault Trees,” IEEE Proc. of
Reliability and Maintainability Symposium, pp. 57-63
(1997).

[6] D. Shalev and J. Tiran, “Condition-based Fault Tree
Analysis (CBFTA): A New Method for Improved Fault
Free Analysis (FTA), Reliability and Safety Calcu-
lations,” Reliability Engineering and System Safety,
Vol. 92, No. 9, pp. 1231-1241 (2007).

[7] N. Chujo, A, Yamashita, N. Ito, Y. Kobayashi, and T
Mizuno, “Real-time Log Collection Scheme using Fault
Tree Analysis,” Proceedings of International Workshop
on Informatics 2015, pp. 109-114 (2015).

[8] M. Takahashi, “A Study of Fault Tree Analysis for Em-
bedded Software,” IPSJ Technical Reports, Vol. 2013-
SE-182 No. 24，pp. 1-8 (2013).

[9] S. Fukuoka, et al., “Scheduling for Logging of Real-
time Control Systems,” Proceedings of the 76th National
Convention of IPSJ, No. 1, pp. 59-60 (2014).

[10] ZMP Inc., “RoboCar 1/10 for AP (Automotive Plat-
form),” accessed June 13 (2015).
https://www.zmp.co.jp/products/robocar-
110 package option#ap

[11] Renesas Electronics, “Data Sheet V850E2/FG4 32-bit
Single-Chip Microcontroller (2013),” accessed June 13
(2015).
http://documentation.renesas.com/doc/
DocumentServer/R01DS0139ED0100 FG4.pdf

[12] Robert Bosch GmbH, “CAN Specification Version 2.0
(1991),” accessed June 13 (2015).
http://www.kvaser.com/software/7330130980914/V1/
can2spec.pdf

[13] TOPPERS Project, “TOPPERS/ATK2,” accessed June
13 (2015).
https://www.toppers.jp/en/atk2.html

[14] S. Frst, “AUTOSARTechnical Overview,” AUTOSAR
Open Conference. (2011).

[15] H. Kitagawa, et al., “Logging for Fault Diagnosis of Re-
altime Control System,” Proceedings of Workshop on
Informatics 2014, pp. 158-164 (2014).

[16] TOPPERS Project, “TOPPERS/JSP kernel,” accessed
June 13 (2015).
http://www.toppers.jp/en/jsp-kernel.html

[17] P．Dodd and C. Ravishankar, “Monitoring and Debug-
ging Distributed Real-time Programs,” Software, Prac-
tice and Experience 22.10 pp. 863-877 (1992).

(Received September 30, 2015)
(Revised March 7, 2016)

N. Chujo et al. / Log Data Collection of Real-time Control System using Fault Tree Analysis158



Naoya Chujo received his M.S. degree in infor-
mation science in 1982 and Ph.D. degree in elec-
trical engineering in 2004 from Nagoya Univer-
sity, Japan. He is a professor in the Faculty of
Information Science of Aichi Institute of Technol-
ogy, Japan. His research interests are in the area
of embedded system and automotive electronics.
He is a member of IEEE, the Information Pro-
cessing Society of Japan (IPSJ), the Institute of
Electronics, Information and Communication En-
gineers (IEICE), the Institute of Electrical Engi-

neers of Japan (IEEJ), and Informatics Society.

Akihiro Yamashita received the B.E and M.E.
degree in Precision Engineering from the Kyoto
University, Japan in 1977 and 1979, respectively.
In 1979, he joined Mitsubishi Electric Corp. He
received the M.E. degree in Mechanical Engineer-
ing from the Carnegie Mellon University, USA, in
1987. In 2012, he joined Mitsubishi Electric Engi-
neering Corp. Since 2014, he has been a graduate
school student at Shizuoka University, Japan. His
research interests include control engineering and
computer science. He is a member of IPSJ.

Nobuyuki Ito joined Mitsubishi Electric engineer-
ing Co.,Ltd. in 1979. He’s a manager of the drive
system control engineering department. His ex-
pertise field is in the factory automation for which
a servo control system was utilized.

Yukihiko Kobayashi joined Mitsubishi Electric
engineering Co., Ltd. in 1986. He is a senior en-
gineer of the servo software engineering section.
His specialized field is built-in software.

Tadanori Mizuno received the B.E. degree in In-
dustrial Engineering from the Nagoya Institute of
Technology in 1968 and received the Ph.D. degree
in Engineering from Kyushu University, Japan, in
1987. In 1968, he joined Mitsubishi Electric Corp.
From 1993 to 2011, he had been a Professor at
Shizuoka University, Japan. From 2011 to 2016,
he had been a Professor at the Aichi Institute of
Technology, Japan. Since 2016, he is an Affili-
ate Professor at the Aichi Institute of Technology,
Japan. His research interests include mobile com-

puting, distributed computing, computer networks, broadcast communication
and computing, and protocol engineering. He is a member of Information
Processing Society of Japan, the Institute of Electronics, Information and
Communication Engineers, the IEEE Computer Society and Consumer Elec-
tronics, and Informatics Society.

International Journal of Informatics Society, VOL.8, NO.3 (2016) 151-159 159




