
Reducing Interruption Time by Segmented Streaming Data-Scheduling in Hybrid

Broadcasting Environments

Tomoki Yoshihisa

Cybermedia Center, Osaka University, Japan

yoshihisa@cmc.osaka-u.ac.jp

Abstract - In hybrid broadcasting environments, clients play

streaming data such as video or audio while receiving them.

Playback interruptions occur when data reception is later than

the start time of data play. Although methods of reducing

interruption time have been proposed, these methods have

large drawbacks in that the server often broadcasts data that

most clients have already received. Hence, I propose an

interruption-time reduction method in which the server

schedules some segmented streaming data. By broadcasting

segments according to a schedule, the server can deliver the

segments that many clients have not yet received, thus

effectively reducing the interruption time.

Keywords: Broadcast Schedule, Continuous Media,

Interruption Time, Video-on-Demand

1 INTRODUCTION

There has recently been a great deal of interest in hybrid

broadcasting environments and in streaming delivery using

these environments. In this type of delivery, servers deliver

streaming data such as video or audio from both broadcasting

systems and communication systems. In broadcasting

systems (e.g., TV and radio), servers broadcast data

according to predetermined broadcast schedules and can

deliver data to many clients concurrently. In communication

systems (e.g., the Internet), clients can receive the data they

want by requesting them directly from servers at arbitrary

timings. The hybrid broadcasting environments of these

systems are effective for streaming delivery, because clients

can receive data from both broadcasting systems and

communication systems.

In streaming delivery in hybrid broadcasting environments,

clients play streaming data while receiving them from both

systems. When data reception is later than the start time of

data play, playback interruptions occur. A short interruption

time is preferable for viewers to enjoy video or audio.

Methods of reducing the interruption time for streaming

delivery in hybrid broadcasting environments have been

proposed [1]–[6]. Here, interruption time means the elapsed

time during which playback interruptions occur. This

includes the time elapsed from when a request is made to play

the data to when the data start to play.

In previous methods, the data are divided into segments of

fixed sizes and the server broadcasts the data segment that is

1 This research was supported in part by the Strategic Information

and Communications R&D Promotion Programme (SCOPE) of the

Ministry of Internal Affairs and Communications, Grant-in-Aid for

requested by the client that has the shortest margin time (i.e.,

the margin between the current time and the time when the

next interruption occurs). However, this approach has the

following drawback. The newest client is the one with the

shortest margin time, and this client requests the first segment.

The server therefore often broadcasts this segment but many

clients have already received it. (For details see Section 3.2.)

The server can therefore reduce the interruption time

effectively by broadcasting segments that the majority of

clients have not yet received.

Here, I propose an interruption time reduction method for

hybrid broadcasting environments1. In the proposed method,

the server can broadcast segments that many clients have not

yet received by scheduling some segments dynamically. This

is the key point of the proposed method and is different from

conventional methods used in hybrid broadcasting

environments. Appropriate number of segments scheduled

can be estimated by computer simulations. The system can

find this by simulating interruption times changing the

parameters. By broadcasting segments according to the

created schedule, the server does not always broadcast only

the first segment, even when new clients request data play.

By broadcasting segments that many clients have not yet

received, the server can reduce the average interruption times

when there are large numbers of clients.

I also describe how to determine the number of scheduled

segments in this paper. By adjusting the estimated

interruption time so that it is close to the appropriate value,

the proposed method can effectively reduce the average

interruption time. I evaluate the proposed method under some

average request arrival intervals and reveal that the method

can reduce average interruption times further than can

conventional methods.

Scientific Research (B) number 15H02702, and Grant-in-Aid for

Challenging Exploratory Research number 26540045.

Figure 1: A hybrid broadcasting environment

Broadcast station

Server
Streaming data

Broadcasting area Client

International Journal of Informatics Society, VOL.8, NO.3 (2016) 141-149 141

ISSN1883-4566 ©2016 - Informatics Society and the authors. All rights reserved.

The rest of the paper is organized as follows. Section 2

explains related work. The proposed methods are presented

in Section 3 and evaluated in Section 4. Finally, I present my

conclusions in Section 5.

2 RELATED WORK

Methods of reducing interruption times have been proposed

before [7]–[12]. After explaining hybrid broadcasting

environments, I will introduce some of the methods used for

streaming delivery with reduced interruption times in hybrid

broadcasting environments.

2.1 Hybrid Broadcasting Environments

Figure 1 shows the hybrid broadcasting environment

assumed in this paper. The clients in the broadcasting area

can receive data from the broadcasting system. Also, they can

ask the server for the data they want and receive them from

the communication system. The broadcast station delivers the

data via broadcast channels and is managed by the server. The

server has streaming data and can broadcast the data to the

clients by using the broadcast station. It can also send the data

to the clients by unicasting using the communication system.

The streaming data consist of segments. The segments are

units for playing the streaming data, such as GOPs (Groups

of Pictures) for MPEG-encoded streaming data. Examples of

streaming delivery in hybrid broadcasting environments are

the delivery of video data to TVs or delivery to smart phones

connected to the Internet. In this case, the broadcasting

system is a terrestrial broadcasting system or a satellite

broadcasting system and the communication system is the

Internet.

2.2 Methods for Interruption Time Reduction

In the UVoD (Unified Video-on-Demand) method [2], the

server broadcasts the streaming data cyclically via each

broadcast channel. Because the time to the start of each

broadcast cycle is delayed for all broadcast channels, clients

get more opportunities to receive the data. When an

interruption is about to occur, the client tries to receive the

data that causes the interruption directly from the server via

the communication system.

In the SSVoD (Super-Scalar Video-on-Demand) method

[3], the server broadcasts the data in the same way as with

UVoD. However, unlike with UVoD, the server does not send

the requested data to the clients until other clients request the

same data. After the server has received a number of requests,

the server multicasts the requested data to the clients.

In the NBB VoD (Neighbors-Buffering Based Video-on-

Demand) method [4], the server broadcasts the data in the

same way as with UVoD, but it then uses a peer-to-peer (P2P)

approach. Clients receive the desired data from other clients

that have already received them. If the other clients do not

have the data, the server sends them directly to the client

requesting them.

In the above methods, the server broadcasts all of the data

repeatedly, although clients can receive some parts of the data

from the communication system. In contrast, FC (First

segment from Communication), MC-LB (Middle segment

from Communication and Last segment from Broadcast), and

MC-LC (Middle segment from Communication and Last

segment from Communication) methods have been proposed

[5]. In these methods, the server predicts the data that the

clients will receive from the communication system and

eliminates the predicted data from the broadcast schedule.

These three methods differ in terms of which data are

eliminated. However, the broadcast schedule is static and the

methods do not consider the data that the clients have already

received.

In the DHB (Dynamic Heuristic Broadcasting [7]) method,

the server dynamically broadcasts the requested data by using

other broadcast channels. Figure 2 shows a broadcast

schedule under the DHB method. Ci (i = 1, 2, ...) denotes the

broadcast channels. The data are divided into six segments,

S1, ... , S6. The server broadcasts S1, ... , S6 sequentially via C1.

As an example, suppose that a new client requests data play

during broadcasting S2. The client can receive S3, ... , S6 from

C1. To make the interruption time for this client short, the

server broadcasts S1 and S2 via C2. However, this method

considers data reception only from the broadcasting system,

not from the communication system.

In the SET-C (Shortest Extra Time per Client) method [6],

the server determines the data to broadcast dynamically,

taking into account margin time. As explained in Section 1,

the margin time is the time between the current time and the

time when the next interruption will occur, and it is calculated

from the data that the clients have already received. Figure 3

gives an example of margin time. The vertical red line

indicates the current time and the colored area indicates the

data that the client has already received. At the time shown in

the figure, the client is receiving the 7th segment and the

margin time is the time until that segment will start to play.

The SET-C method can reduce interruption time, because the

probability that the client will avoid interruptions is increased

by broadcasting the segment that the client with the shortest

margin time requests. In the SET-C method, however, the

server broadcasts the first segment when a new client requests

data play, because the server determines the next segment to

broadcast every time a broadcasting block finishes.

Accordingly, the server often broadcasts segments that many

other clients have already received. This is the main problem

of the SET-C method.

Figure 2: Broadcast schedule using the DHB method

Figure 3: Example of margin time

S1 S2 …C1

C2 S1 S2

S3 S4 S5 S6

Time

Margin Time

Current Playing Position

T. Yoshihisa / Reducing Interruption Time by Segmented Streaming Data-Scheduling in Hybrid Broadcasting Environments142

3 PROPOSED METHOD

This section explains the interruption-time reduction

method that I propose. After explaining the assumed system

environments, I explain the data delivery for broadcasting

systems and for communication systems.

3.1 Assumed System Environments

This research assumes streaming delivery on hybrid

broadcasting environments (explained in Section 2.1).

Because the server has many streaming data and it is difficult

to predict which data the clients will play, the clients do not

receive data before they request data play. Clients play

streaming data from the beginning to the end continuously,

without fast-forwarding or rewinding. Their storage capacity

is larger than the size of the requested streaming data. The

broadcast station uses one broadcast channel to broadcast one

data stream, as occurs in actual systems.

3.2 Main Problem of the Existing (SET-C)

 Method

In previously proposed methods, the advantage of the

broadcasting system (i.e., concurrent delivery of the same

data to multiple clients) is the most apparent when the number

of clients receiving the same data increases. However, as

explained in Sections 1 and 2, the server broadcasts the first

segment when new clients request data play, because it is the

new clients that have the shortest margin time. Here, the term

new client means a client that has just started data play from

the beginning of the streaming data. Accordingly, the server

often broadcasts segments (including the first segment) that

many clients have already received. Figure 4 gives an

example. Clients 1 to 3 have received the preceding seven

segments. The black vertical lines indicate the playing

positions of each client. In this situation, the clients are

requesting data play at different times and the playing

positions differ among the clients, although the data received

are the same. Here, suppose the case in which the new client,

Client 4, requests data play. Clients 1 to 3 are receiving

segment 8 and their margin times are respectively 1.5, 4.8,

and 9.2 s. The margin time of Client 4 is 0 s, because this

client has not received any segments. In this case, under the

previously proposed (SET-C) method, the server broadcasts

segment 1, because the margin time of Client 4 is the shortest

and Client 4 has requested segment 1. However, the other

clients have already received segment 1 and the server cannot

exploit the advantage of the broadcasting system. One of the

solutions is for the server not to broadcast the segment that

the new client requests, but instead to broadcast the segment

that many clients have not yet received.

3.3 G-SET-C (Grouped SET-C) Method

The proposed G-SET-C method increases the probability

that the server will broadcast the segment that many clients

have not yet received, thus reducing interruption time. The

server broadcasts the segment that the new client requests

after it has broadcast some of the other segments.

The G-SET-C method does not directly consider the

number of clients requesting the same segments. The reason

is that direct consideration by the server of the number of

clients requesting the same segments gives a longer

interruption time than the G-SET-C method, as shown in the

evaluation results (see the G-MRB method in Section 4.2).

This is because clients receive their requested segments from

the communication system while the server broadcasts the

scheduled segments. Thus, the advantage of the broadcasting

system (delivery of data to all clients concurrently) does not

operate. However, with the G-SET-C method, by scheduling

some of the segments, the server can broadcast segments that

many clients have not yet received. This is the key point of

the G-SET-C method. The details are given in the next section.

3.3.1 Effectiveness of Grouped Scheduling

The G-SET-C method uses grouped scheduling. That is, the

server schedules some segments every time broadcasting of

scheduled segments finishes. This avoids the problem

described in Section 3.2.

There are two reasons why grouped scheduling achieves the

broadcasting of segments that many clients have not yet

received. The first is that the server does not consider the

margin times of new clients until the next scheduling time.

The server can therefore broadcast segments other than the

first one, even when a new client comes along. Because many

clients have already received the first segment, the server can

avoid broadcasting that segment and can instead broadcast

segments that most clients have not yet received. In the

original SET-C method, the server soon broadcasts the first

segment when a new client comes along, because the server

schedules only one segment at the finish of every

broadcasting segment.

The second reason is that the segment that each client does

not have and that is the closest to the current playing position

for each client gradually becomes the same as time proceeds.

This is because the segment requested by the client with the

shortest margin time is not broadcast for a long time, and the

broadcast segments are eventually received by all clients.

This phenomenon (i.e., in which clients catch up with other

clients that have started playing the data earlier) is also

Figure 4: A figure to explain the problem

Client1

Client2

Client3

Client4

1 2 3 4 5 6 7 8 ・・・

1 2 3 4 5 6 7 8 ・・・

1 2 3 4 5 6 7 8 ・・・

1 2 3 4 5 6 7 8 ・・・8

8

8

1 0 sec

0.4 sec

1.3 sec

2.0 sec

Margin

Time

Requested

Block

Duration for Playing a Segment (0.47 sec)

International Journal of Informatics Society, VOL.8, NO.3 (2016) 141-149 143

observed with the original SET-C method. However, for the

first reason given above, clients easily catch up with other

clients with the G-SET-C method. For these reasons, with the

G-SET-C method, the server can broadcast segments that

many clients have not yet received without considering the

number of clients requesting the same segments. The main

difference between the G-SET-C method and the SET-C

method is the number of scheduled segments.

3.3.2 Delivery on Broadcasting Systems

With the G-SET-C method, the server schedules G

segments when creating the next broadcast schedule. The

server creates broadcast schedules every time the

broadcasting of all scheduled segments finishes. The server

creates the schedules by considering the segments requested

by clients that will have shorter margin times. For this, the

server predicts the margin times of all clients.

Let S(g) denote the time to start broadcasting the gth

segment (g = 1, ... , G) included in the broadcast schedule,

and let Ei (g) denote the predicted margin time of client i. The

server can get the actual margin time (=Ei (1)) because the

server creates the broadcast schedule at S(1) and this is the

current time. Let Ri (g) denote the time for client i to finish

receiving the segment requested at S(g). The time needed to

broadcast one segment is Bb, and the duration of play of one

segment is Pb.

First, when S(f + 1) < Ri (f) (f = 1, ... , G-1)—that is, client

i cannot finish receiving the requested segment before the

broadcasting start time of the f + 1th scheduled segment—the

margin time at S(f + 1) decreases by the amount of time taken

to play one segment. So, Ei (f + 1) = Ei (f) – Bb. If this is a

negative value, Ei (f + 1) = 0. Next, suppose the case when Ri

(f) < S(f + 1), that is, client i can finish receiving the requested

segment before the broadcasting start time of the f + 1th

scheduled segment. When an interruption occurs before the

finish time of reception (Ei (f) < Ri (f) – S(f)), the client restarts

playing the data after its reception. So, Ei (f + 1) = Ri (f) + Pb

– S(f + 1). This always takes a positive value, because Bb < Pb

in this research. Otherwise, if (Ri (f) – S(f) < Ei (f)), the margin

time increases by the amount of time it takes to play one

segment. So, Ei (f + 1) = Ei (f) – Bb + Pb. Hence,

𝐸𝑖(𝑓 + 1)

=

{

0 (𝑆(𝑓 + 1) < 𝑅𝑖(𝑓), 𝐸𝑖(𝑓) < 𝐵𝑏)

𝐸𝑖(𝑓) − 𝐵𝑏 (𝑆(𝑓 + 1) < 𝑅𝑖(𝑓), 𝐸𝑖(𝑓) > 𝐵𝑏)

𝑅𝑖(𝑓) + 𝑃𝑏 − 𝑆(𝑓 + 1)

(𝑆(𝑓 + 1) > 𝑅𝑖(𝑓), 𝐸𝑖(𝑓) < 𝑅𝑖(𝑓) − 𝑆(𝑓))

𝐸𝑖(𝑓) − 𝐵𝑏 + 𝑃𝑏
 (𝑆(𝑓 + 1) > 𝑅𝑖(𝑓), 𝐸𝑖(𝑓) > 𝑅𝑖(𝑓) − 𝑆(𝑓))

In the proposed G-SET-C method, the server schedules the

segment that is requested by the client j that satisfies the

following equation for each g. N is the set of clients. When

some clients have equivalent margin times, the server

schedules the segment that was requested by the client that

requested the initial data play earliest.

𝐸𝑗(𝑔) = min
𝑖∈𝑁

𝐸𝑖(𝑔)

Figure 5 shows the flow of the G-SET-C method. The

server can calculate Pb and Bb before the streaming data

delivery service starts, because these values are constant

during the service. When the service starts, or when the server

finishes broadcasting the scheduled segments, the server

starts the process of broadcast schedule creation. First, the

server calculates S (g). The value can be calculated from the

current time and Bb. After that, the server predicts Ri (g) by

using the current communication bandwidth. The server also

predicts Ei (g). From the predicted values of Ei (g), the server

creates broadcast schedules. The server reports the broadcast

schedule to the clients for their determination of the segment

to receive from the communication system. The server then

starts broadcasting the scheduled segments.

3.3.3 Margin Time Prediction

With the G-SET-C method, to calculate the predicted

margin time Ei (g) (g = 1, ... , G), the server needs to predict

the time taken to finish receiving segment Di (g) that client i

requests at S(g).

When the client receives Di (g) from the broadcasting

system, the server can calculate Ri (g) by using S(g), because

the server can calculate the time to start broadcasting each

scheduled segment. For example, if Di (g) is scheduled to the

eth segment in the broadcast schedule, Ri (g) = S(e) + Bb.

When the client receives Di (g) from the communication

system, the server predicts Ri (g) by using the communication

bandwidth for client i at the time of creation of the broadcast

schedule, Ci. Ci is the bandwidth between the server and client

i. First, client i may have received part of Di (1) at that time.

So, Ri (1) is given by the remaining data size divided by Ci.

Next, for Di (f + 1) (f = 1, ... , G–1), Ri (f + 1) = Ri (f) if Di (f

+ 1) is the same segment as Di (f). Otherwise, Ri (f + 1) is

the value obtained by adding the segment size divided by Ci

to Ri (f).

The following time sequence shows how the server decides

on broadcast segments in the G-SET-C method.

1. The server predicts the margin times. For prediction of the

time taken for each client to finish receiving segments from

the communication system, the server uses the current

bandwidths.

2. The server creates the broadcast schedule on the basis of

the predicted margin times.

3. The server notifies all clients of the broadcast schedule.

Figure 5: Flow of the G-SET-C method

The server calculates S(g).

The server calculates Pb and Bb before the service starts.

The service starts / Broadcasting the scheduled segments finishes

The server predicts Ri(g) by using the

current communication bandwidth.

The server predicts Ei(g) from Pb, Bb, S(g), and Ri(g)

The server creates the broadcast

schedule and reports it to the clients.

The server starts broadcasting the scheduled segments.

T. Yoshihisa / Reducing Interruption Time by Segmented Streaming Data-Scheduling in Hybrid Broadcasting Environments144

4. When a client finishes receiving segments from the

communication system, the client decides on the next

segment to receive from the communication system. For

this decision, clients use the notified broadcast schedule.

5. The client starts receiving the decided segment from the

communication system. If the client’s bandwidth changes

greatly, the chosen segment will differ from the server’s

prediction. Otherwise, it will be the same.

The predicted margin times, including Ri (g), are based on

the bandwidths for communication with the client at the time

of creation of the broadcast schedules. This is merely a

prediction. So, margin times can differ greatly from actual

times if the bandwidths change greatly. Otherwise, they are

close to the actual times. The sequence therefore does not

include cyclic dependency.

3.3.4 Determination of G

The interruption time depends on the number of scheduled

segments, G. As confirmed in the evaluation section, the

interruption time is reduced further by giving an appropriate

value for G. The appropriate value depends on the average

arrival interval, the bit rate, etc. and is difficult to estimate.

However, the system can give a value close to the appropriate

one by performing a computer simulation of the average

interruption time. Some network simulators have been

developed and we can use these simulators. The system can

adjust the value to make it close to the appropriate value while

delivering the data.

For example, service providing systems can find the most

appropriate value of G by modifying the parameters for

simulations based on actual values. They can get actual values

by measuring them for a period, e.g. day, week, month, after

stopping streaming data delivery services. Simulation results

in Section 4 are measured using the author developed

simulator. By using such a simulator, the systems can find the

value of G that is close to the appropriate value.

3.3.5 Example of Broadcast Schedule Creation

Here, I give an example of the creation of a broadcast

schedule by using a simulation result. The simulated situation

is shown in Table 1. In this situation, the time to play a

segment Pb = 0.469 s and the time to broadcast a segment Bb

= 0.125 s. At 1982.899 s after the beginning of the simulation,

client 395 is playing segment 22 and the segment that the

client does not have and that is the closest to the current

playing position is segment 23. The actual margin time is the

time between the current time and the time to start playing

segment 23 and is 0.445 s.

In this example, G = 2. The server schedules segment 23 as

the first scheduled segment since Ei (1) = 0 (i = 394, 396, 397,

398, 399). When the predicted margin times are equivalent,

the server schedules the segment requested by the client that

requested data play earliest. Here, again, Ei (g) (g = 1, ... , G)

is the predicted margin time at the time to start broadcasting

the gth scheduled segment. Next, the server predicts the

margin times of all clients at the time of the start of

broadcasting of the second scheduled segment so as to

determine the second segment to be included in the broadcast

schedule. The margin times of clients 394 and 395 are equal

to Pb minus Bb, because they request segment 23. So, at

1982.899 s, E394 (2) = E394 (1) – Bb + Pb = 0 – 0.125 + 0.469

= 0.344 s and E395 (2) = E395 (1) – Bb + Pb = 0.445 – 0.125 +

0.469 = 0.789 s. In this simulation, the time for client 396 to

finish receiving segment 3 from the communication system

R396 (1) = 1982.993 s. So, the margin time E396 (2) = R396 (1)

+ Pb – S(2) = 1982.993 + 0.469 – (1982.899 + 0.125) = 0.438

s. The times for other clients to finish receiving their

requested segments are later than S(2) and Ej (2) = 0 (j = 397,

398, 399). Therefore, the server schedules segment 2, which

is requested by client 397, as the second scheduled segment.

Just at 1986.649 s, the server again schedules two segments

and first schedules segment 30 as the first scheduled segment,

since E395 (1) is the shortest and client 395 requests the

segment. Next, the server predicts the margin times for each

client and decides on the second scheduled segment. At

1986.649 s, the time to start broadcasting the second segment

is 1986.649 + 0.125 = 1986.774 s. The predicted margin times

for this time are; E394 (2) = E394 (1) – Bb = 0.5375 – 0.125 =

5.25 s, E395 (2) = E395 (1) – Bb + Pb = 0.500 – 0.125 + 0.469 =

0.844 s, E396 (2) = E396 (1) – Bb = 0.750 – 0.125 = 0.625 s, and

E397 (2) = E398 (2) = E399 (2) = 1.875 – 0.125 = 1.75 s. These

values are the predicted margin times at 1986.649 s and are

different from those at 1982.899 s through the symbols are

the same. The client that has the shortest predicted margin

time is client 396 and the client requests segment 10. So the

server schedules segments 30 and 10 at 1986.649 s.

The catch-up phenomenon explained in Section 3.3.1 is

observed in the following way. The time of 1982.899 s is

immediately after client 399 requests data play, at which time

the client requests segment 1. At 1984.149 s, the segments

that client 399 has received are the same as those received by

clients 397 and 398, and they are requesting segment 4. That

is, client 399 catches up with clients 397 and 398. Also, at

1986.649 s, the segments that have been received by clients

396 to 399 are the same, and they are requesting segment 10.

Table 1: Example of segment scheduling

Time [s]
Client

ID

Playing

segment

Closest

Non-received

segment

Margin

time [s]

(=Ei (1))

1982.899

394 22 23 0

395 22 23 0.445

396 2 3 0

397 1 2 0

398 1 2 0

399 0 1 0

1984.149

394 24 25 0.250

395 24 25 0.250

396 5 7 1.000

397 3 4 0

398 3 4 0.125

399 2 4 0.750

1986.649

394 29 40 5.375

395 29 30 0.500

396 8 10 0.750

397 6 10 1.875

398 6 10 1.875

399 6 10 1.875

International Journal of Informatics Society, VOL.8, NO.3 (2016) 141-149 145

Clients 397 to 399 catch up to client 396. The advantage of

the broadcasting systems (i.e., that the server can deliver the

same data to all clients) operates well here, because the

segment that clients 396 to 399 do not have, and that is the

closest to the current playing position, is the same at 1986.649

s.

3.3.6 Delivery via Communication Systems

As in most of the previously proposed methods, clients start

receiving blocks from the communication system when they

request data play. Clients receive the block that satisfies the

following conditions:

・The block will cause interruptions if the client waits for its

broadcasting.

・The block can be received faster than reception from the

broadcasting system.

・The block is closest to the current playing position.

If there are no blocks that satisfy these conditions, to avoid

redundant communication the clients do not receive the

blocks from the communication system. They request the

next block when they finish receiving each block.

4 EVALUATION

In this section I present the results of simulations used to

evaluate the proposed G-SET-C method.

4.1 Evaluation Environments

Table 2 shows the evaluation parameter values. The

assumed streaming data are MPEG2-encoded (2 Mbps)

movie data with a duration of 25 min. The segments consist

of GOPs and the data size is the same as the general GOP data

size (0.5 s). The broadcast bandwidth is 8 Mbps, assuming

that the broadcasting system is a terrestrial one. The assumed

communication system is the Internet. The communication

bandwidths for all clients are equivalent. If the total

communication bandwidth for the clients exceeds the server’s

communication bandwidth, the server’s communication

bandwidth is apportioned equally to each client. The header

includes information on the identifiers for the streaming data

and segments and the number of segments. The data size for

each item of information is 4 bytes and the header size

becomes 4 3 = 12 bytes. G indicates the number of

scheduled segments.

In the simulation, clients request data play when they arrive

in the system and leave the system when they finish playing

the data. I measured interruption times until the number of

clients arriving reached 4000. Interruption times saturate

when the number of clients arriving is 4000 and this was a

sufficient number of clients to calculate average interruption

times.

4.2 Comparison Methods

The performance of the original SET-C method is

equivalent to that of the G-SET-C method when G = 1. Other

comparison methods are explained below.

・ BCD-BE-AHB (Broadcast- and Communication-based

Delivery-BE-AHB) Method

This method applies the BE-AHB method proposed in

[12] to hybrid broadcast environments. Data delivery on

the broadcasting system is similar to the original. The data

is divided into some segments. The data sizes for segments

are calculated from broadcasting bandwidths. The

segments are repeatedly broadcast via each channel. Data

delivery on the communication system under this method

uses the same algorithm as that under the proposed method.

The broadcast schedule is static with this method, whereas

that under the proposed method is dynamic.

・G-MRB (Grouped-Most Requested Block) Method

With this method, the server schedules the top G

segments requested by the majority of clients. When there

are some segments for which the number of clients

requesting the segment is the same, the server schedules

the segment that is requested by the client that started data

play earliest. When the number of segments requested is

less than G, the server broadcasts all requested segments.

・G-LTIT-C (Grouped-Longest Total Interruption Time per

Client) Method

With this method, the server schedules the segments that

are requested by the client with the longest interruption

time at the time of broadcast of each scheduled segment.

Let Ii (g) denote the predicted interruption time for client i

at the time of broadcast of the gth scheduled segment (g =

1, ... , G), i.e., S(g). The server can get Ii (g) by asking each

client their interruption times. Ii (f + 1) (f = 1, ... , G–1) is

given by the following equation.

𝐼𝑖(𝑓 + 1)

=

{

𝐼𝑖(𝑓) + 𝐵𝑏 − 𝐸𝑖(𝑓) (𝑆(𝑓 + 1) < 𝑅𝑖(𝑓), 𝐸𝑖(𝑓) < 𝐵𝑏)

𝐸𝑖(𝑓) (𝑆(𝑓 + 1) < 𝑅𝑖(𝑓), 𝐸𝑖(𝑓) > 𝐵𝑏)

𝐼𝑖(𝑓) + 𝑅𝑖(𝑓) − 𝑆(𝑓) − 𝐸𝑖(𝑓)

 (𝑆(𝑓 + 1) > 𝑅𝑖(𝑓), 𝐸𝑖(𝑓) < 𝑅𝑖(𝑓) − 𝑆(𝑓))

𝐼𝑖(𝑓) (𝑆(𝑓 + 1) > 𝑅𝑖(𝑓), 𝐸𝑖(𝑓) > 𝑅𝑖(𝑓) − 𝑆(𝑓))

In the G-LTIT-C method, the server schedules the

segment that is requested by the client j that satisfies the

following equation for each g. When some clients have the

same interruption time, the server schedules the segment

that was requested by the client that started data play

earliest.

𝐼𝑗(𝑔) = max
𝑖∈𝑁

𝐼𝑖(𝑔)

The G-LITT-C method differs from the SET-C method

and the G-SET-C method, even when G = 1, because the

G-LITT-C method considers interruption time. The SET-C

Table 2: Simulation parameter values

Item Value

Duration of data streaming

Bit rate

Broadcast bandwidth

Clients’ communication bandwidth

Server’s communication bandwidth

Segment size

Header size

25 min

2 Mbps

8 Mbps

1 Mbps

30 Mbps

125.012 Kbytes

12 bytes

T. Yoshihisa / Reducing Interruption Time by Segmented Streaming Data-Scheduling in Hybrid Broadcasting Environments146

method and the G-SET-C method consider margin time.

Moreover, in the G-LITTC method the server schedules

several segments, whereas in the SET-C method it

schedules only one segment.

4.3 Interruption Time

The simulated interruption times for each client under the

proposed G-SET-C method are shown in Fig. 6. The figure

shows only the interruption times for the preceding 500

clients. The simulated average arrival intervals are 1, 30, or

60 s. The horizontal axis is the client ID, which is given along

with the request time for data play, and the vertical axis is the

interruption time. We can see that the interruption time has an

upper limit, though it has some dispersion. Hence, the

average interruption time is used as an evaluation criterion.

4.4 Influence of the Number of Scheduled

 Segments

The time taken to create the broadcast schedule depends on

the number of scheduled segments, G. The probability that

segment 1, which is requested by new clients, will be

broadcast increases as the interval taken to create the

broadcast schedule shortens, and the server often broadcasts

segment 1. Hence, I measure the average interruption times

under different G values. Because the characteristics of the

results change with the average arrival interval, the following

sections discuss each case individually.

4.4.1 Cases When the Average Arrival

Interval is 1 s

Figure 7 shows the average interruption times when the

average request arrival interval is 1 s. Figure 8 is an

enlargement of Fig. 7.

From these figures, we can see that in most cases the

proposed G-SET-C method gives the shortest average

interruption time. This is because the server does not always

broadcast the segment requested by new clients but instead

schedules the segments requested by other clients. Thus, the

probability of broadcasting a segment that many clients have

not yet received increases. Discussions of each method follow.

With the G-SET-C method, the average interruption time

decreases as G increases when G is less than 90. In such cases,

as G increases, the server broadcasts more segments that are

requested by clients other than new clients, that have just

started data play. Therefore, the chances that the server will

broadcast segments that many clients have not yet received

increases and the average interruption time is reduced

effectively. When G is greater than 90, the average

interruption time increases as G increases. In such cases, the

time elapsed until the server broadcasts segment 1, which is

requested by new clients, increases too much and the average

interruption time lengthens. When the value of G is much

larger, the average interruption time does not change greatly,

because new clients receive segment 1 from the

communication system while the server broadcasts other

segments.

The average interruption time under the G-SET-C method

approaches that under the BCD-BE-AHB method when G is

too large. The reason is that the server schedules the segment

that was requested by the client that started playing the data

earliest. The broadcast schedules under the proposed method

therefore become similar to those under the BCD-BE-AHB

method and the average interruption time becomes equivalent

when G is too large.

The BCD-BE-AHB method does not create the broadcast

schedule dynamically, and the broadcast schedule does not

depend on G. So, the method is not effective and the average

interruption time is longer than that under the proposed G-

SET-C method.

Figure 6: Clients’ interruption times

0

5

10

15

20

25

30

0 100 200 300 400 500

In
te

rr
u

p
ti

o
n

 T
im

e
[s

]

Client ID

1s

30s

60s

Figure 7: Average interruption time

(average request arrival interval 1 s)

Figure 8: Details of average interruption time

(average request arrival interval 1 s)

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300

A
ve

ra
ge

 In
te

rr
u

p
ti

o
n

 T
im

e
[s

]

Number of Scheduled Segments

G-SET-C（Proposed）

BCD-BE-AHB

G-MRB

G-LTIT-C

0

50

100

150

200

250

300

0 50 100 150 200 250 300

A
ve

ra
ge

 In
te

rr
u

p
ti

o
n

 T
im

e
[s

]

Number of Scheduled Segments

G-SET-C（Proposed）

BCD-BE-AHB

G-MRB

G-LTIT-C

International Journal of Informatics Society, VOL.8, NO.3 (2016) 141-149 147

With the G-MRB method, the average interruption time is

shortest when G is 2. When G is 1 or 2, segments that are

requested by clients with long interruption times are included

in the broadcast schedule. However, when G is larger than 2,

the interval for creating the broadcast schedule lengthens.

Therefore, the probability that such segments are included in

the broadcast schedule decreases and the interruption time

increases. Also, when G is larger than 50, the average

interruption time is constant. This is because the number of

clients that request segments is less than G and the broadcast

schedule does not change even if G increases.

With the G-LTIT-C method, the average interruption time

is shortest when G is 85. This is because the server broadcasts

more segments requested by clients other than new clients.

However, the time elapsed until the server broadcasts the first

segment increases as G increases. For the same reason, the

value of G that gives the shortest average interruption time is

the same as that with the G-SET-C method.

4.4.2 Cases When the Average Arrival

Interval is 30 s

Figure 9 shows the average interruption times when the

average request arrival interval is 30 s. The proposed G-SET-

C method gives the shortest average interruption time in all

cases. This is because, for the same reason as when the

average arrival interval is 1 s, the server schedules a number

of segments and does not always broadcast the segment that

the new client requests.

Compared with the result when the average arrival interval

is 1 s, the average interruption time under the G-MRB method

changes greatly. This is because the probability that several

clients request the same segment decreases as the average

request arrival interval lengthens. The influence of the

number of clients that request the same segment is larger with

the G-MRB method than with other methods because the G-

MRB method considers the number of segments requested

directly.

When G is less than 25, the average interruption time

increases as G increases. This is because the interval for

creating broadcast schedules lengthens as G increases.

However, when G is larger than 25, the interruption time

decreases as G increases. This is because the server can

broadcast many segments requested by clients at the time of

creation of the broadcast schedule.

4.4.3 Cases When the Average Arrival Interval

is 60 s

Figure 10 shows the average interruption times when the

average request arrival interval is 60 s. In this case the

proposed G-SET-C method also gives the shortest average

interruption time.

Compared with the results for the other average arrival

intervals, one of the main differences is that the average

interruption time under the G-MRB method decreases as G

increases when G is small. This is because clients can receive

their requested segment from the communication system

while the server broadcasts the scheduled segments. Because

the server can broadcast more segments requested at the time

of creation of the broadcast schedule, the average interruption

time decreases as G increases. When G is larger than 10, the

average interruption time is constant, because the number of

segments requested is less than G. Therefore, in these cases

the server actually does not schedule G segments.

5 CONCLUSION

In this paper, I proposed a segmented streaming data

scheduling method for streaming delivery in hybrid

broadcasting environments. Different from conventional

methods, in the proposed G-SET-C method, the server

schedules some segments considering the margin time until

the next interruption. This approach leads to the broadcasting

of segments that many clients have not yet received. The G-

SET-C method thus contributes to further reduce interruption

time. I also described how to determine the appropriate

number of scheduled segments in this paper. My evaluation

revealed that in many cases the proposed method could

reduce the average interruption time further than with

conventional methods.

In the future, I am planning to propose a method that

considers stopping data play and applies the P2P data delivery

techniques.

Figure 9: Average interruption time

(average request arrival interval 30 s)

Figure 10: Average interruption time

(average request arrival interval 60 s)

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 In
te

rr
u

p
ti

o
n

 T
im

e
 [

s]

Number of Scheduled Segments

G-SET-C（Proposed）

BCD-BE-AHB

G-MRB

G-LTIT-C

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 In
te

rr
u

p
ti

o
n

 T
im

e
[s

]

Number of Scheduled Segments

G-SET-C（Proposed）

BCD-BE-AHB

G-MRB

G-LTIT-C

T. Yoshihisa / Reducing Interruption Time by Segmented Streaming Data-Scheduling in Hybrid Broadcasting Environments148

REFERENCES

[1] V. Gopalakrishnan, B. Bhattacharjee, K. Ramakrishnan,

R. Jana, and M.K. Vernon, “CPM: Adaptive Video-on-

Demand with Cooperative Peer Assists and Multicast,”

IEEE INFOCOM 2009, pp. 91-99 (2009).

[2] J.Y.B. Lee, “UVoD: An Unified Architecture for Video-

on-Demand Services,” IEEE Communication Letters,

Vol. 3, No. 9, pp. 277-279 (1999).

[3] J.Y.B. Lee and C.H. Lee, “Design, Performance

Analysis, and Implementation of a Super-Scalar Video-

on-Demand System,” IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 12, Issue 11, pp.

983-997 (2002).

[4] T. Taleb, N. Kato, and Y. Nemoto, “Neighbors-

Buffering-based Video-on-Demand Architecture,”

Signal Processing: Image Communication, Vol. 18,

Issue 7, pp. 515-526 (2003).

[5] M. Umezawa, T. Yoshihisa, T. Hara, and S. Nishio,

“Interruption Time Reduction Methods by Predicting

Data Reception for Streaming Delivery on Hybrid

Broadcasting Environments,” Proc. IEEE Pacific Rim

Conference Communications, Computers and Signal

Processing, pp. 185-190 (2011).

[6] S.W. Carter, J.F. Paris, S. Mohan, and D.D.E. Long, “A

Dynamic Heuristic Broadcasting Protocol for Video-on-

Demand,” Proc. IEEE International Conference on

Distributed Computing Systems, pp. 657-664 (2001).

[7] T. Yoshihisa, “Dynamic Data Broadcasting Methods for

Streaming Delivery on Hybrid Broadcasting

Environments,” Proc. International Workshop on

Advances in Data Engineering and Mobile Computing,

pp. 470-475 (2015).

[8] D.L. Eager and M.K. Vernon, “Dynamic Skyscraper

Broadcast for Video-on-Demand,” Proc. of International

Workshop on Advances in Multimedia Systems, pp. 18-

32 (1998).

[9] H. Kim and H.Y. Yeom, “Dynamic Scheme Transition

Adaptable to Variable Video Popularity in a Digital

Broadcast Network,” IEEE Transactions on Multimedia,

Vol. 11, No. 3, pp. 486-493 (2009).

[10] J.B. Kwon. and H.Y. Yeom, “Adjustable Broadcast

Protocol for Large-scale Near Video-on-Demand

Systems,” Computer Communications, Vol. 28, No. 11,

pp. 1303-1316 (2005).

[11] Q. Zhang and J.F. Paris, “A Channel-based Heuristic

Distribution Protocol for Video-on-Demand,” Proc.

IEEE International Conference on Multimedia and Expo,

Vol. 1, pp. 245-248 (2002).

[12] T. Yoshihisa and S. Nishio, “A Division-based

Broadcasting Method Considering Channel Bandwidths

for NVoD Services,” IEEE Transactions on

Broadcasting, Vol.59, Issue 1, pp. 62-71 (2013).

(Received September 26, 2015)

(Revised March 10, 2016)

Tomoki Yoshihisa received his

Bachelor’s, Master’s, and Doctor’s

degrees from Osaka University,

Osaka, Japan, in 2002, 2003, 2005,

respectively. Since 2005 to 2007, he

was an assistant professor at Kyoto

University. In January 2008, he

joined Cybermedia Center, Osaka

University as a senior lecturer and

in March 2009, he became an associate professor. From

April 2008 to August 2008, he was a visiting researcher

at University of California, Irvine. His research interests

include video-on-demand, broadcasting systems, and

webcasts.

International Journal of Informatics Society, VOL.8, NO.3 (2016) 141-149 149

