
Parallel Multiple Counter-Examples Guided Abstraction Loop
— Applying to Timed Automaton—

Kozo Okano†, Takeshi Nagaoka‡, Toshiaki Tanaka‡, Toshifusa Sekizawa§, and Shinji Kusumoto‡

†Faculty of Engineering, Shinshu University, Japan
‡Graduate School of Information Science and Technology, Osaka University, Japan

§College of Engineering, Nihon University, Japan
†okano@cs.shinshu-u.ac.jp,

§sekizawa@cs.ce.nihon-u.ac.jp,
‡kusumoto@ist.osaka-u.ac.jp

Abstract - A model checking technique proves that a given
system satisfies given specifications by searching exhaustively
a finite transition system which represents the system’s whole
behavior. If the system becomes large, it is impossible to ex-
plore the whole states in reasonable time due to both of CPU
time used and memory space where the model is stored. This
is called the state explosion problem. One of the solutions to
avoid the state explosion problem is using a model abstrac-
tion technique. In usual, constructing such an abstract model
from the original model becomes error-prone. Hence, auto-
matic generation techniques of abstract models are studied.
Especially, Counter-Example Guided Abstraction Refinement
(CEGAR) is considered as a promising technique because it
automatically refines abstract model if the result is spurious,
starting from a small abstract model. We have already pro-
posed a concrete CEGAR loop for a timed automaton. This
iteration loop refines the model in fine granularity level. It
avoids the state explosion, however, the number of loops in-
creases. This paper proposes a revised technique where mul-
tiple counter-examples are simultaneously applied in the re-
finement step of CEGAR. This device reduces the number of
iteration loops. Experimental results show the improvement.

Keywords: CEGAR, Timed Automaton, Model Checking

1 INTRODUCTION

Recently, information systems play important roles in so-
cial activities, thus software reliability becomes important.
Model checking techniques [6] prove that a given system sat-
isfies given a specification by searching exhaustively a finite
transition system which represents the system’s whole behav-
ior. As systems become larger and more complicated, how-
ever, it is difficult to prove the reliability of the systems by
model checking, because they need searching for whole states
completely. For a large system, it is impossible to explore the
whole states in reasonable time. Sometimes its model size be-
comes larger than physical memory size of typical computers.
This is called the state explosion problem.

One of the solutions to avoid the state explosion problem is
a model abstraction technique.

In usual, constructing such an abstract model from the orig-
inal model becomes error-prone. Hence, automatic genera-
tion techniques of abstract models are studied.

However, such abstraction techniques in general cannot ap-
propriately control the model size. We want an appropri-
ate abstract model which is small enough to perform model
checking and also precise enough to obtain a correct answer
by model checking.

In order to obtain a better abstract model, automatic itera-
tion techniques to perform whole cycle of abstraction, model
checking, simulation, and refinement, have been studied.

Counter-Example Guided Abstraction Refinement (CEGAR)
[8] is the root of such studies.

In verification of real-time systems, a timed automaton is
used [4], which can represent behavior of a real-time system.
For a timed automaton, a real-valued clock constraint is as-
signed to each state of finite automaton (called a location).
Therefore, it has an infinite state space which is represented
in a product of discrete state space made by locations and
continuous state space made by clock variables. In a tradi-
tional way of model checking for a timed automaton, using
the property that we can treat the state space of clock vari-
ables as a finite set of regions, thus we can perform the model
checking on a timed automaton. The size of the model, how-
ever, increases exponentially with clock variables; thus, an
abstraction technique is needed.

Paper [18] firstly shows a concrete CEGAR loop for timed
automata based on predicate abstraction techniques. It uses
two abstraction models, over-approximation and under-approxi-
mation, while our previous approach [19] constructs an ab-
straction model based on only over-approximation. Their ap-
proaches are similar to our approach in a sense that a location
is divided into two state while abstraction. Paper [19] pro-
posed a concrete CEGAR loop for timed automaton. This
iteration loop refines the model in fine granularity level. It
avoids the state explosion, however, the iteration grows.

1.1 Contributions

This paper proposes a revised technique where multiple
counter-examples are simultaneously applied. This device re-
duces the number of iteration loops.

CEGAR automatically generates a moderate model to per-
form model checking, but sequential application of counter-
examples might consume time and memory space. Our method
reduces the number of iteration loops, therefore, it also re-
duces time and space.

The concrete contributions are summarized as follows.

103International Journal of Informatics Society, VOL.8, NO.2 (2016) 103-116

ISSN1883-4566 ©2016 - Informatics Society and the authors. All rights reserved.

1. We consider a new CEGAR loop (algorithm) in which
multiple counter-examples are simultaneously applied.

2. We give proofs for the algorithm including its termina-
tion.

3. We prototyped the algorithm, performed experiments
and obtained results which show effective performance
of our proposed algorithm.

1.2 Related Work

Other related work include papers [13, 9, 11, 7, 3, 14], and
[16].

He et al. [13] has proposed a time abstraction technique and
CEGAR loop with time abstraction technique and a composi-
tional technique. The compositional technique reduces state
explosion occurring when we produce a product automaton
from a network of timed automata. Paper [9] proposes ab-
straction using lattice structure and its based model checker.
Paper [11] mentioned an abstraction method for timed au-
tomata. Papers [7] and [3] deal with hybrid automata and
provide CEGAR for the model. Paper [14] proposes CEGAR
loop for probabilistic automata. Paper [16] use SAT solvers
for model abstraction.

None of these approaches, however, deals with refinement
with multiple counter-examples.

1.3 Organization of the Paper

This paper is organized as follows. Section 2 presents intro-
ductory material related to timed automata. Section 3 presents
a short review of our previous proposed CEGAR for timed au-
tomata. Section 4 will provide our proposed multiple counter-
examples abstraction refinement loop. Section 5 will shortly
give explanation on our prototype system. Section 6 and 7
provide experimental results and discussions, respectively. The
final section concludes the paper.

2 PRELIMINARIES

Here, we give a definition of a timed automaton and its
related notions.

2.1 Timed Automaton

No one can control flow of time. One can only measure
time using clocks.

A timed automaton also uses clocks to refer time. The
clocks can be regard as precise analog clocks. Every clock
autonomously uniformly and at the same rate increases the
value, independently from the behavior of timed automaton.
A timed automaton cannot control the clocks except for reset;
it can neither put some clocks forward, backward nor stop
them. It can only reset some of clocks. The reset clocks make
their values 0. they, however, immediately increase their val-
ues again.

Definition 2.1 (Clock setC). ByC we denote a finite set of
clocks. Byxi (0 ≤ i ≤ |C| − 1) we denote an element (each
clock) inC.

When there is no confusion we might use literals (without
index)x, y, z, and so on to denote clocks.

Since each clock has its time value as a non-negative real,
notion of “clock evaluation” is needed.

Definition 2.2 (Clock Evaluation). Clock evaluationν(∈ R|C|
≥0)

for clock setC is a |C|-dimension vector overR≥0.
An i-th elementνi of ν corresponds to the time value of

clockxi.

We use the term “evaluation” according to the original pa-
per [1]. Paper [1] defines the evaluation as a mapping from
clocks to reals, however, we defineν just as a real vector,
in this paper. Since clock evaluation changes according to
the elapsed time, and a timed automaton might reset some of
clocks to0 when a transition fires, we introduce two opera-
tions on clock evaluation.

Definition 2.3 (Operations on Clock Evaluation). For a real
valued, ν + d = (ν0 + d, ν1 + d, . . . , ν|C|−1 + d).

For a set of clocksr, r(ν) = (r(ν0), r(ν1), . . . , r(ν|C|−1)),
where

r(νi) =

{
0 : xi ∈ r,
νi : otherwise .

(1)

The first operation+d means that every clock increases its
value uniformly and at the same rate. The second operation
r(·) means that every clock specified inr are reset.

Next we define clock constraints onC, which are used as
guards and invariants of a timed automaton.

Definition 2.4 (Differential Inequalities onC). Syntax of a
differential inequalityin on a clock setC is given as follows:

in ::= xi − xj ∼ a

| xi ∼ a,

wherexi andxj ∈ C, a is a literal of an integer constant,
and∼∈ {≤,≥, <,>}.

Differential inequalitiesxi ∼ a andxi − xj ∼ a are true
iff νi ∼ a andνi − νj ∼ a are true, respectively.

Definition 2.5 (Clock Constraints onC). Syntax of a clock
constraintcc on a clock setC is given as follows:

cc ::= true | in | cc ∧ cc,

wherein is a differential inequality onC.
cci ∧ ccj is true iff both cci andccj are true.
By c(C), we denote whole set of clock constraints on a

clock setC.

Since clock constraintf can be regarded as a function

f : C → {true, false},

we introduce a notationf(ν). It is evaluated to true or false
by evaluating each clockxi asνi.

Now we can formulate a timed automaton. The semantics
of timed automaton, however, will be defined later through a
labelled transition system.

K. Okano et al. / Parallel Multiple Counter-Examples Guided Abstraction Loop —Applying to Timed Automaton—104

Figure 1: An Example Timed Automaton Representing Mug-
light

Definition 2.6 (Timed Automaton). A timed automatonA is
a six-tuple(A,L, l0, C, I, T), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;
C: a clock set;
I : L → c(C): a mapping from a location to a clock con-
straint, called a location invariant, or simply an invariant;
and
T ⊂ L × A × c(C) × 2C × L is a set of transitions, where
c(C) is a set of clock constraints; and2C is a super set of sets
of clocks.

Elements of the first and lastL stand for locations the tran-
sition starting from and going to, respectively. An element of
A is an action associated with the transition. A clock con-
straint in c(C) of the transition is called a guard. An element
in 2C is called a set of clocks to be reset.

We denote(l1, a, g, r, l2) ∈ T by l1
a,g,r→ l2.

Example 1. Figure 2.1 is an example of a timed automaton,
AL = ({press}, {off, dim, bright}, off, {x}, ∅, T), whereT =

{off press,true,{x}→ dim,

dim
press,x≤10,∅→ bright,

dim
press,x>10,∅→ off,

bright
press,true,∅→ off} .

Please note that guards with valuetrue, and empty clock
resets are omitted in Fig. 2.1,

Example 1 shows a timed automaton representing behavior
of a mug-light with two brightness modes. Here, we infor-
mally explain the behavior of this time automaton. The ini-
tial state is location “off” and the value of clockx is 0. If
“press” action fires, then state is changed to location “dim”,
which means that the mug-light is dim. With this transition
the value of clockx is reset to 0. The control of a timed
automaton can stay in a location as long as its invariant is sat-
isfied. Unfortunately, the example has no location invariants.
At location “dim,” the control can stay any unit of time. If
the value of clockx is greater than 10 units of time, “press”
action changes the location to location “off,” which means
the mug-light is switched off. Otherwise,i.e., the value of
clock x is less than or equal to 10 units of time, “press” ac-
tion changes the location to location “bright,” which means
that pressing twice immediately makes the mug-light bright.
At location “bright,” “press” action changes the location to
location “off,” regardless of the value of clockx.

Example 2 is another example to explain evaluation of a
guard and an invariant.

Example 2. Let assume thatC andI(l2) (a location invari-
ant for l2) are {x, y} and y > 6, respectively. Consider a

transitionl1
a,x>0∧y≥3,{y}→ l2.

For a clock evaluationν = (8.2, 5.1), the values ofr(ν),
g(ν), and I(l2)(r(ν)) are (8.2, 0), true, andfalse, respec-
tively.
the following expressions are the deriving processes.
r(ν) = r(8.2, 5.1) = (8.2, 0)
g(ν) = g(8.2, 5.1) = 8.2 > 0 ∧ 5.1 ≥ 3 =true
I(l2)(r(ν)) = I(l2)(8.2, 0) = 0 > 6= false.

Dynamic of a timed automaton can be expressed via a set
of locations and a set of clock evaluations. Changes of one
state to a new state can be as a result of firing of an action or
elapse of time.

In order to define the semantics of a timed automaton, we
firstly define a labelled transition system.

Definition 2.7 (Labelled Transition System).A labelled tran-
sition system (LTS) is three-tuple(S, s0, T), whereS, s0 ∈ S
andT are a finite set of states, an initial state, and a set of
transitions, whereT ⊂ S × (A ∪ R≥0)× S.

The first and last elements inS stand for states the transi-
tion starting from and going to, respectively.A is a finite set
of actions.

Transition(s, α, s′) of LTS is denoted bys
α⇒ s′ .

We can define a run of an LTS.

Definition 2.8 (A Run of an LTS). A run of LTS(S, s0, T) is
defined as follows.
s0

α⇒ s′ is a run of(S, s0, T), if s0
α⇒ s′ ∈ T .

Let σi be a run of(S, s0, T), ending with statesi. For
si

α⇒ sj ∈ T , andσi, σi
α⇒ sj is also a run of(S, s0, T).

Definition 2.9 (Semantics of a timed automaton). For a given
timed automatonA = (A,L, l0, C, I, T), its corresponding
LTS(S, s0, T) can be formalized as follows.

S = L× R|C|
≥0 .

s0 = (l0,0), where0 is a |C|-dimension vector and each
of whose elements is 0.

Transitions
α⇒ s′ is defined by Definition 2.10.

Definition 2.10(Semantics of transion of a timed automaton).
For transition l1

a,g,r→ l2, its corresponding transition of LTS
can be defined as follows.

g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

The first one is called an action transition, while the other
is calleda delay transition.

The first rule can be interpreted as follows. If the current
clock evaluation satisfies the guard, and after some of clocks
in r are reset, the new evaluationr(ν) also satisfies the invari-
ant of locationl2, then(l1, ν)

a⇒ (l2, r(ν)) can be fired.
The rest rule can be interpreted as follows. For some real

d, and anyd′ such thatd′ ≤ d, the obtained clock evaluation
ν + d′ satisfies the invariant of locationl1, then the control

105International Journal of Informatics Society, VOL.8, NO.2 (2016) 103-116

can stay in locationl1, but d units of time has elapsed. In
other words, thecontrol can stay inl1 until d units of time has
elapsed.

Please note that an action transition does not consume time,
while a delay transition consumes time staying in the same
location.

Definition 2.11 (run of a timed automaton).For a timed au-
tomatonA , a runσ is a finite or infinite run of its correspond-
ing LTS.
σ = (l0, ν0)

α1⇒ (l1, ν1)
α2⇒ (l2, ν2)

α3⇒, . . . ,
whereα ∈ A ∪ R≥0.

In usual, as a run of a timed automaton, we only consider an
alternate run of delays and actions, in which delay transitions
and action transitions alternately occur.

Example 3. One of possible runs ofAL is

(off, (0))
0.5⇒ (off, (0.5))

press⇒ (dim, (0))
9.8⇒ (dim, (9.8))

press⇒ (bright, (9.8)) · · · .

Please note that in the run of Example 3, delay transitions
and action transitions alternately occur.

For further detail about time automata, refer to [4] and [20].

2.2 Model Checking

Model checking of an automaton can be formulated as fol-
low.

Definition 2.12 (Model Checking).
Input1: an automatonA
Input2: a temporal logic expressionp
Output:A |= p or A ̸|= p
Output(optional): IfA ̸|= p, then a counter-exampleCE

In usual, Computational Tree Logic (CTL) is used as a tem-
poral logic for a timed automaton [4].

Intuitively A |= p means that the behavior (possible runs)
of A satisfies the property expressed inp. AutomatonA is
also called a model. Thus, model checking is checking pro-
cess whether a logic expressionp holds under the model rep-
resented inA.

Typical properties areAGq, EFq and so on.AGq andEFq
mean that “for any path, alwaysq holds,” and “for some path,
eventuallyq holds,” respectively.AG andEF are called tem-
poral operators.

For a states, we can consider a property¬EFs, which
means that starting from the initial state, the automaton can-
not reach the states.

Definition 2.13(Reachability Problem). Model checking of a
property¬EFs (onA) is called reachability problem (onA).

Reachability problem is a fundamental and essential prob-
lem for model checking since the algorithm for reachability
problem is core of that of general model checking algorithm.

In this paper, we consider only reachability problem.
Counter-exampleCE is usually a run of automatonAwhich

specifies concretely that propertyp does not hold.
For reachability problem, its counter-example is a run to

reach states.

Nevertheless the number of states produced by a timed au-
tomaton is infinite due to the cardinality of reals, reachability
problem is decidable [4], since time space can be divided into
finite equivalence classes.

In papers [4] and [10], a data structure DBM is introduced
to represent clock constraints. Several operations on DBM are
also introduced. Using these operations, we can efficiently
calculate time space of timed automata.

Definition 2.14 (DBM (Difference Bound Matrix)).DBM is
a set of differential inequalities on two clock variables, and
represents a state space which satisfies all inequalities over it
(the state space is called azone).

DBM represents these set of inequalities as a|C0| × |C0|
matrix, whereC0 = C∪{ 0 }. Symbol0 is a special variable
which means a constant value0.

The(i, j)-th entry (Di j) of the matrix stands for a differ-
ential inequality ofxi − xj for xi, xj ∈ C0.

Suppose there is an inequalityxi − xj ⪯ n for ⪯∈ { <
,≤ }, the(i, j)-th entryDi j is represented by(n,⪯). When
xi − xj is unbounded, the entryDi j is represented by∞.

In addition, the upper bound and lower bound ofxi itself
are indicated byD0,i andDi,0, respectively.

A zone is the solution set of a clock constraint that is the
maximal set of clock assignments satisfying the constraint
[4]. It is well-known that such sets can be efficiently rep-
resented and stored in memory as DBMs.

There are several model checkers. Typical model checkers
produce one counter-example when a property does not hold.

Algorithms of model checking are essentially exhaustive
search of whole possible runs. Therefore, if the number of
states becomes larger, the complexity becomes larger expo-
nentially or intractable. Such a situation is called “state ex-
plosion.” Thus, we have to reduce the number of states by
automatic abstraction.

3 CEGAR FOR TIMED AUTOMATA

In usual, CEGAR loop firstly generates small abstract model
from the original model. The first abstract model is small
enough to perform model checking, however it is usually “over-
approximated,”i.e., many states are extremely merged into a
same state. Therefore, model checking process usually pro-
duces a spurious counter-example for the first abstract model.
Using the counter-example, CEGAR loop automatically gen-
erates a next abstract model, which has more states than the
former. Using the next abstract model, we perform model
checking again. Such iteration relaxes the over-approximation
step by step. At some point of the iteration, we would obtain
an appropriate abstract model for model checking.

3.1 Basic Algorithm

This section provides the base algorithm on abstraction re-
finement technique for the timed automata given in [18] and
[19]. As mentioned above the algorithm in [18] and that of
[19] is similar in abstract level. However, this paper proposes
an extended method of [19], therefore, we describe the base
algorithm based on [19].

K. Okano et al. / Parallel Multiple Counter-Examples Guided Abstraction Loop —Applying to Timed Automaton—106

Figure 2: Basic Flow of CEGAR

Definition 3.1 (Abstraction assumption).The following con-
dition is called Abstraction assumption.∀i > 0 : (Mi |=
p → M0 |= p), whereMi is i-th abstract model. ModelM0

is the original model.

The abstraction assumption should hold during CEGAR
loop.

CEGAR loop [8] consists of the following four steps, namely
Initial abstraction, Model checking,Simulation, andRefine-
ment.

Figure 2 shows the basic flow of CEGAR loop.

1. Initial abstraction
An original modelM0 and a propertyp are given as
input, and we abstract the original modelM0 and obtain
an initial abstract modelM1.

We abstract the model preserving the abstraction as-
sumption.

2. Model checking
We perform model checking on the abstract modelMi.
If a model checker outputsMi |= p, then we can con-
clude thatM0 |= p by the abstraction assumption. Then,
we stop the loop. Otherwise,i.e., the model checker
outputsMi ̸|= p. Also a counter-examplêρi is gener-
ated. We have to check every counter-example inPi on
the original modelM0, wherePi is a set of concretized
runs onM0, each of which is obtained from̂ρi by ap-
plying inverse of abstraction functionh.

3. Simulation
We check every concretized run inPi on the original
modelM0. If one of them is executable onM0, then
we conclude thatM0 ̸|= p, because the found run is
a real counter-example onM0 and the propertyp. If
none of them is executable onM0, we have to refine
Mi so that model checking onMi+1 does not produce
the counter-examplêρi.

We should notice that checking every run inPi onM0

can be performed symbolically using symbolical pre-
sentation onPi or ρ̂i. We say that̂ρi is spurious when
none inPi is executable onM0.

4. Refinement
If ρ̂i is spurious, then we refineMi so that model check-
ing onMi+1 does not produce the counter-exampleρ̂i.

TheMi+1 is obtained automatically usinĝρi. We re-
peat the loop by go to Model checking withMi+1.

In our previous work [19], we give a concrete algorithm of
CEGAR for a timed automaton. In the work, we only consider
the reachability property asp. Thus, we check that¬EFle,
wherele is an error location. The error location is a location
where we think the control never reach.

The following subsections describe the details of each step.

3.2 Initial Abstraction

In Initial abstraction, we remove all of clock attributes from
the given timed automaton [19].

Definition 3.2 (Abstraction Functionh). For a timed automa-
ton A and its semantic model (LTS)(S, s0,⇒), an abstrac-
tion functionh : S → Ŝ is defined as follows:

h((l, ν)) = l.

The inverse functionh−1 : Ŝ → 2S of h is also defined as
h−1(ŝ) = (l,DI(l)) whereŝ = l andDI(l) is a region satis-
fying I(l) representing by DBM.

Definition 3.3 (Abstract Model). An abstract modelM̂ =
(Ŝ, ŝ0, ⇒̂) of a given timed automatonA is defined as fol-
lows:

• Ŝ = L;

• ŝ0 = l0; and

• ⇒̂ = {(l1, a, l2) | l1
a,g,r→ l2 ∈ T}.

For A , using its LTS(S, s0,⇒), we can say that̂⇒ is

{(h(s1), a, h(s2)) | s1
d⇒ s1′ , s1′

a⇒ s2 ∈⇒}.
The i-th abstract modelM̂i = (Ŝi, ŝi,0, ⇒̂i) is obtained

from thei-th timed automatonAi = (Ai, Li, li,0, Ci, Ii, Ti)
by Definition 3.3.

Definition 3.4 (Abstract Counter-Example). A counter-example
onM̂ = (Ŝ, ŝ0, ⇒̂) is a run of states of̂S and labels. An ab-
stract counter-examplêρ of lengthn is represented in̂ρ =

ŝ0
a1⇒ ŝ1

a2⇒ ŝ2
a3⇒ · · · an−1⇒ ŝn−1

an⇒ ŝn. A setP of runs onA
obtained by concretizing a counter-exampleρ̂ is also defined
as follows using the inverse functionh−1:

P = {s0
d0⇒ s′0

a1⇒ s1
d1⇒ s′1

a2⇒ s2
d2⇒ · · · an⇒ sn |∧n−1

i=0 (si ∈ h−1(ŝi) ∧ di ∈R≥0 ∧ si
di⇒s′i ∧ s′i

ai⇒si+1}.

We assume that a counter-example is a finite run [19]. We
restrict the property to check as reachability, this assumption
is reasonable. For a case of loop structures, see [19].

Example 4 shows an example of Initial Abstraction.

Example 4. Figure 3 shows a timed automaton and its ab-
stract model.

The original timed automaton isA0 (= M0). Its abstract
modelM̂0 is just an automaton without clock constraints.

107International Journal of Informatics Society, VOL.8, NO.2 (2016) 103-116

Figure 3: An Example of Abstraction

Figure 4: An Example of Simulation

3.3 Model Checking

Abstract modelM̂i is a just automaton, therefore, wecan
use several model checkers at this step. In Paper [19], we use
UPPAAL to model check. In our new proposed method, how-
ever, we use our original model checker in order to produce
multiple counter-examples.

Example 5. For an abstract modelM̂0 in Fig. 3, a property
¬EFC does not hold, since clearly we can reach stateC from
the initial stateA.

Any appropriate model checker outputŝM0 ̸|= ¬EF C and
its counter-exampleA → B → C.

3.4 Simulation

Using the DBM library provided by UPPAAL team, we
have developed a simulation program. LetPi be a set of con-
cretized counter-examples produced byρ̂i, which is a counter-
example ofM̂i.

Instead of checking each element ofPi, we use DBM and
ρ̂i to simulate onA0 using symbolic simulation technique.

Example 6 shows an example process of Simulation.

Example 6. Figure 4 shows an example process of Simula-
tion.

Simulation checks whetherA → B → C is possible on the
original A0 using symbolic simulation technique. At location
A, we use a DBM structure representingx = 0 ∧ y = 0,
which stands for the initial state. SinceA has no invariant, we
change the DBM structure to representx = y, which shows
that clocksx and y increase their values at the same rate.
According to the counter-example, we move to locationB.
At locationB, we obtain a DBM structure representingx =

Figure 5: Relation among the Models derived by Refinement

Figure 6: An Example of Refinement

y ∧ x ≤ 1. At this point, we find that transitionB → C
cannot fire since the guard of transitionB → C, i.e.,y = 2
and current clock constraintx = y∧x ≤ 1 are conflict. Thus,
x ≤ 1 ∧ y = 2 ∧ x = y is false.

We can find that at locationB there are no transitions due
to time constraints.

3.5 Refinement

The (i + 1)-th abstract modelM̂i+1 is obtained from a
timed automatonAi+1 using the abstraction functionh. The
(i + 1)-th timed automatonAi+1 is obtained from thei-th
timed automatonAi and a counter-examplêρi.

Paper [19] shows a concrete algorithm for refinement (see
Appendix A). We call the algorithm Algorithm 1 (or Refine-
ment). Algorithm 1 has two inputsAi and ρ̂i, and outputs
Ai+1.

Figure 5 summarizes the relation among the models.
In usual, Algorithm 1 appends additional locations and tran-

sitions toAi so thatM̂i+1 can tell two states which are merged
in M̂i as a result of over-approximation.

Example 7 shows an example process of Refinement.

Example 7. We use the same example in Example 6. Figure
6 depicts the result of applying of Refinement t the original
timed automaton.

K. Okano et al. / Parallel Multiple Counter-Examples Guided Abstraction Loop —Applying to Timed Automaton—108

Applying Algorithm 1, the refinement algorithm, we can ob-
tain the refined timed automatonA1 and its corresponding
abstract automatonM̂1.

We can also see that on̂M1 we cannot reach the error lo-
cationC.

Paper [5] shows that clock conditions in a form ofx−y < c
cannot be dealt with. Therefore, we assume that the following
assumptions in the paper.

Assumption 1.

1. We only check reachability:¬EFle for model checking.

2. The target timed automaton is diagonal-free, which means
that the timed automaton does not contain clock condi-
tions in a form ofx− y < c[5].

3. We assume that a counter example is a finite run.

Hereafter, we assume that Assumption 1 always holds in
this paper.

4 OUR NEW REVISED CEGAR LOOP

Our revised CEGAR loop differs in Model Checking, Sim-
ulation, and Refinement from the previous one.

Here, we describe each of them.

4.1 Model Checking

Normally, a model checker produces at most one counter-
example. In our algorithm, we use master-worker configu-
ration. Each worker performs model checking and generates
a counter-example which we expect to be different to others.
We describe how each worker generates a counter-example
which we expect to be different to others, in Section 5.

4.2 Simulation

If one of counter-examples obtained by workers can be ex-
ecuted onA0 = M0 symbolically, then we conclude that
A ̸|= ¬EFle. Otherwise we perform Refinement using the
counter-examples.

4.3 Refinement

The master gathers counter-examples from the workers, and
performs MultipleRefinement (Algorithm 2) shown in Fig. 7.

Using Algorithm 1, Algorithm 2 in Fig. 7 applies each
counter-examplêρ in a givenSi. The result is sequentially
reflected in the given timed automatonAi+1. In the “for loop
body,” if a ρ̂ is not executable on the current tentativeAi+1,
then for such a counter-example, Algorithm 1 is not applied.
The next counter-example inSi is chosen and the process is
repeated.

4.4 The Difference between Our Previous
Approach and the New Approach

Here, we describe the difference between our previous ap-
proach [19] and the new proposed approach.

MultipleRefinement
InputsAi, Si

OutputAi+1

/* Si = {ρ̂0, ρ̂1, · · · , ρ̂k} */
/* ρ̂j is a counter example produced by workerj */
Ai+1 := Ai

for ρ̂ : Si do
if ρ̂ is executable onAi+1 then

Ai+1 :=Refinement(Ai+1, ρ̂)
end if

end for
return Ai+1

Figure 7: Algorithm 2: MultipleRefinement

Figure 8: Relation between CE and Abstract Models

Hereafter, we use a simple figure showing the relation be-
tween counter-examples and abstract model like as Fig. 8,
instead of Fig. 5.

The previous approach [19] performs model checking on
an abstract model̂Mi. If a model checker says false, then
it also produces a counter-example. Based on the counter-
example, it performs Refinement and obtains the next abstract
model ˆMi+1.

In general, for a model, multiple counter-examples may
exit, if the property to check is not valid for the model. The
conventional CEGAR loop including our previous method,
the criterion which chooses a counter-example as its output
from such candidates of counter-examples, is fixed through
the loop.

For example, we might use a criterion that always chooses
the fast found one; we might use other criteria that always
chooses the shortest counter-example; and so on. For ease of
discussion, we call such a criterion a “Selection Scheme.”

The conventional approach first fixes its Selection Scheme,
then it repeats model checking and refinements from the ini-
tial abstract modelM̂0 and it finally obtains an adequate ab-
stract modelM̂n . Let us assume that the sequence of counter-
examples used in the process is[ρ̂0, · · · , ρ̂n−1].

Please note that̂ρi is generated from the fixed Selection
Scheme and the current abstract modelM̂i.

On the other hand, our new proposed approach first gener-
ates simultaneously multiple counter-examplesρ̂′0, · · · , ρ̂′k−1

from the the initial abstract model̂M0. It then applies these
ρ̂′0, · · · , ρ̂′k−1, regardless of the order, and obtains an abstract

109International Journal of Informatics Society, VOL.8, NO.2 (2016) 103-116

Figure 9: Difference between the Original and the Proposed
CEGARs

modelM̂ ′
k.

Please note that our new method does not fixes its Selection
Scheme. In other words, its Selection Scheme dynamically
changes in every sequence in the loop.

We summarize the difference between the original CEGAR
and the proposed CEGAR in Fig. 9.

The following question arises.
Even we assume thatk < n holds, we cannot conclude that

M̂ ′
k is the same as one of̂M1, . . . , M̂n. The reason is that the

set{ρ̂′0, · · · , ρ̂′k−1} is not subset of{ρ̂0, · · · , ρ̂n−1}. Please
recall thatρ̂i is determined by the fixed Selection Scheme and
a current abstract model̂Mi, while ρ̂′i is determined by any
uncertain Selection Scheme and the initial abstract modelM̂0

(of course in general,̂Mi).
Regardless the difference, we have to prove thatM̂ ′

k is an
adequate abstract model.

In this paper, we don’t prove that̂M ′
k is one ofM̂1, . . . , M̂n,

because it is not correct in logical.
Instead of it, we prove that̂M ′

k preserves Abstraction as-
sumption for the reachability problem.

4.5 Proof of the Algorithm

The problem is to ensure that Abstraction assumption is
preserved for simultaneous application of multiple counter-
examples.

Theorem 1 proves that Abstraction assumption is always
preserved nevertheless the order of applying multiple CEs
might vary.

Theorem 1. For a given set of counter-examplesSi, each of
which are generated from model checking onAi, M̂i+1 ob-
tained by Algorithm 2 (and abstraction functionh) preserves
Abstraction assumption.

Before the proof of Theorem 1, we describe the following
propositions.

Proposition 1. Termination of Algorithm 1 [19]
Algorithm 1 terminates for reachability problem.

Proposition 2. Preservation of Abstract Assumption [19]
Algorithm 1 preserves Abstraction assumption.

First we give proof of Theorem 2, which is weaker than
Theorem 1.

Theorem 2. For a given set of counter-examplesSi, each of
which are generated from model checking onAi, if M̂i pre-
serves Abstraction assumption, then̂Mi+1 obtained by Algo-
rithm 2 (and abstraction functionh) also preserves Abstrac-
tion assumption.

Please note thatSi is a set of counter-examples generated
from Ai with one application of model checking.

The previous approach obtains eachAi+1 by applyingρi
which is generated fromAi to Ai.

We have to take care of a counter-example which is inSi

but not inS.
Theorem 2 holds nevertheless above difference exists. The

proof, therefore, uses divide cases.
The following proposition Lemma 4.1 is used in both proofs

of Theorems 2 and 3.

Lemma 4.1. If ρj is executable onA(i+1)(j−1) thenρj is also

a counter-example on̂M(i+1)(j−1).

A proof of Theorem 2 can be given by induction on the
number of application of “for loop body” of Algorithm 2.

Proof. Let j be the number of application of “for loop body”
of Algorithm 2.

We denote a tentative timed automaton and its abstract model
by Aij andM̂ij , respectively.Aij stands for a tentative timed
automaton obtained fromAi by j times application of “for
loop body.” M̂ij also stand for its corresponding abstract
model. Therefore,Ai = A(i+1)(0) andM̂i = M̂(i+1)(0) hold.

We use proof by induction, induction onj.
Basis:
A(i+1)(0) = Ai. Thus,M̂(i+1)(0) is alsoM̂i. Hence, from the

precondition of Theorem 2, we can saŷM(i+1)(0) preserves
Abstraction assumption.
Inductive Step:
Let us assume that we have already performed(j − 1) times
the loop body, and obtained a tentative timed automaton namely,
A(i+1)(j−1).

Let also assume that̂M(i+1)(j−1) preserves Abstraction as-
sumption as an inductive assumption.

Now we consider a counter-exampleρj in Si.
Case 1:ρj is not executable onA(i+1)(j−1):
In such a case, Algorithm 1 is not applied. ThusA(i+1)(j) =

A(i+1)(j−1) holds. Hence,M̂(i+1)(j) = M̂(i+1)(j−1) also

holds. M̂(i+1)(j) also preserves Abstraction assumption by
the inductive assumpition.
Case 2:ρj is executable onA(i+1)(j−1):
In such a case, Algorithm 1 can be applied. The condition
“ρ j is executable onA(i+1)(j−1)” implies that “ρj is also a

counter-example on̂M(i+1)(j−1),” by Lemma 4.1. By this
fact, Proposition 2 and the inductive assumpition, we can con-
coclude thatM̂(i+1)(j) also preserves Abstraction assump-
tion.

In any case,M̂(i+1)(j) preserves Abstraction assumption.

Proof by induction, we can say that̂Mi+1 preserves Ab-
straction assumption.

K. Okano et al. / Parallel Multiple Counter-Examples Guided Abstraction Loop —Applying to Timed Automaton—110

Figure 10: Model Correspondence between the Methods

Now a proof of Theorem 1 can bealso given By induction
on i.

Proof. Basis:
SinceM̂0 preserves Abstraction assumption [19], we can say
M̂0 preserves Abstraction assumption.
Inductive Step:
We assume that̂Mi preserves Abstraction assumption. By
Theorem 2 we can prove that̂Mi+1 preserves Abstraction as-
sumption.

Theorem 3. Termination of CEGAR loop
CEGAR loop using Algorithm 2 terminates.

Proof. By Proposition 1and the fact thatSi is finite set, Al-
gorithm 2 also terminates.

Next we prove the termination of CEGAR loop.
Let a sequencêρ0, ρ̂1, . . . , ρ̂d which are executable counter-

examples selected fromSi using Algorithm 2. The index is
selection order in Algorithm 2.

From Lemma 4.1, we can say that there is a correspond-
ing loop sequence where each of the loop is application of
ρ̂j(0 ≤ j ≤ d), in a VIRTUAL CEGAR loop (See Fig. 10).
VIRTUAL CEGAR loop is a simlar CEGAR to our original
CEGAR, but it uses different Selection Schemes for each ap-
plication of the loop body.

Please note that the correspondingρ̂ is choosed from the
set of possible counter-examples of the corresponding timed
automaton with a certain Selection Scheme. Thus, each Se-
lection Scheme is not the same but dynamically changed in
VIRTUAL CEGAR.

In a similar way to paper [19], we can say the size of states
in M̂i is also finite. Therefore, CEGAR loop terminates.

Figure 11 shows the difference between VIRTUAL CE-
GAR and our OriginalCEGAR [19]. Please note that Selec-
tion Scheme is dynamically changed in VIRTUAL CEGAR.
Therefore, the refined abstract models might be different.

Example 8 shows that the case the order does not affect the
refined abstract model.

Example 8. Let consider a timed automaton in Fig. 4.5. Due
to the clock constraints, neither a transition fromB to C nor
fromD toE is firable.

There are two counter-examples:A → B → C → E and
A → B → D → E.

Figure 11: Difference between VIRTUAL CEGAR and our
Original CEGAR

Figure 12: An Example Timed Automaton

First, let’s consider the case thefirst counter-example is
applied. Algorithm 1 generates a copyB1 from locationB,
and generates a transition fromB1 to D as well as a transi-
tion fromA to B1. Finally it removes transition fromA to B
(in Fig. 4.5). Next it applies the second counter-example. It
generates a new locationD1 and removes a transition from
B1 toD (in Fig. 4.5).

Next let’s consider the case the second counter-example is
firstly applied. It generates a new locationD1 then gener-
ates alsoB1. Finally, it removes a transition fromA to B.
The result is the same as Fig. 4.5. The application of the
first counter-example does not affect the shape of the timed
automaton.

Therefore, this example produces the same refinement. Note
that we cannot reach locationE fromA in Fig. 4.5.

4.6 Modularity of Our Parallel Execution
Scheme

Our proposed parallel execution algorithm is independent
of the original CEGAR loop algorithm, therefore for any cor-
rect CEGAR loop algorithm, our parallel execution scheme
also works correctly. The above proofs also are performed in-
dependently of the original CEGAR loop algorithm because
it uses assumptions on correctness of it. In other words, these
proofs are performed based on modularity scheme.

5 PROTOTYPE SYSTEM

Figure 15 depicts the overview of our prototype system.
We use RMI framework on Java for communication between

111International Journal of Informatics Society, VOL.8, NO.2 (2016) 103-116

Figure 13: Timed Automaton Refined withB-C Transition

Figure 14: Timed Automaton Refined withD-E Transition

the master and workers. Eachworker performs Model Check-
ing and Simulation for its assigned abstract model.

For efficiency, we introduce a modified algorithm, Algo-
rithm 2’ shown in Fig. 16.

The major differences between Algorithms 2 and 2’ is that
Algorithm 2’ does not check the executability. It improves the
efficiency. However, it means that Algorithm 2’ might per-
form Refinement using pseudo counter-example information.
Such a situation, however, does not occur because Algorithm
1 reconstructssucc list = ⟨(l0, D0), (l1, D1), · · · , (lk, Dk)⟩
before it transforms the timed automaton.succ list is a fea-
sible path with regard to the counter-example. Therefore,the
counter-example is not executable if and only ifsucc list is
an empty list. Ifsucc list is empty, no transformation is per-
formed. Consequently, Algorithm 2’ also works correctly.

In our implementation, each worker performs model check-
ing and simulation in the same cycle. This invent reduces cost
of exchange of data among model checking and simulation
steps.

The abstract model is the same among workers. Thus, we
have to give different parameters to workers in order for each
worker to generate different counter-examples.

As described after we use two strategies to generate counter-
examples: shortest traces and the fastest traces. For both of
the shortest traces and the fastest traces, the following param-
eter is used to generate different counter-examples. There
might be many shortest (fastest) counter-examples. Among
them, what counter-example is chosen by the worker can be a
parameter. In order to select different counter-example, we
use worker id and random selection for the selection. Of
course, if the number of worker is less than that of shortest

specification

concrete model

counter-example

specification

is satisfied

specification

is unsatisfied

Initial

abstraction

Broadcast

Refinement

Consolidate

Model Checking

Simulation

Worker

Master

abstract model

specification

refined model

specification

Figure 15: Master-Worker Configuration for Our CEGAR

MutltipleRefinement (revised)
InputsAi, Si

OutputAi+1

/* Si = {ρ̂0, ρ̂1, · · · , ρ̂k} */
/* ρ̂j is a counter example produced by workerj */
Ai+1 := Ai

for ρ̂ : Si do
Ai+1 :=Refinement(Ai+1, ρ̂)

end for
return Ai+1

Figure 16: Algorithm 2’: MultipleRefinement Algorithm
(Revised)

counter-examples, then some workers mightchoose the same
counter-example.

6 EXPERIMENTS

6.1 Overview

We have performed experiments using two typical exam-
ples. One is Fischer’s mutual exclusion protocol. Severalp
processes with the same shape of an automaton share a critical
section. Mutual exclusion is established in a protocol using
clock variables. Therefore, it is a typical symmetric structure.

Another one is Gear Controller [17]. It is a model consist-
ing of an engine, a gearbox, a human interface, a gear con-
troller, and a clutch. It is a parallel system of hetero six com-
ponents.

Before applying our tool, we need to obtain a single timed
automaton presentation of Fischer’s protocol (and Gear con-
troller) since our proposed method cannot deal with a network
of timed automata, which is used in UPPAAL verifier in gen-
eral.

We performed the experiments under the following envi-
ronment.
Master

CPU: Intel(R) Core
TM

2 Duo
CPU L7700 1.80GHz

MM: 2.00GB

K. Okano et al. / Parallel Multiple Counter-Examples Guided Abstraction Loop —Applying to Timed Automaton—112

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T

h

e

N

u

m

b

e

r

o

f

I

t

e

r

a

t

i

o

n

s

The Number of Nodes

shortest trace

fastest trace

Figure 17: The Number of Iterations : Fischer’s protocol

OS: Ubuntu 10.0.4
Workers(14 cpus)

CPU: Dual Core AMD Opteron
TM

Processor 2210 HE 1.80GHz
MM: 6.00GB
OS: CentOS 5.4

The purposes (research questions) of the experiments are
as follows.

1. How efficiently our proposed method works?

2. Are there any difference between:

(a) types of model structures?

(b) types of counter-examples used in CEGAR?

Research question 1 can be observed from how CPU times
and the number of iteration are reduced in increasing the num-
ber of workers.

Research question 2(a) can be observed by comparing the
two examples.

Research question 2(b) is hard to answer. We, however,
compare using two strategies, the fastest trace and the shortest
trace. The fastest trace uses multiple counter-examples with
smallest time delay. The shortest traces use multiple counter-
examples with shortest (in number of steps) traces. There are
many strategies on producing counter-examples. UPPAAL,
however, only supports the above two options. Therefore, we
think it is reasonable that we compare the two options.

6.2 Results

As CPU time, we measure the elapsed times for the com-
putation. The results are averages of five trials of the same
configurations.

Figures 17 and 18 show the results of the number of itera-
tion. The number of nodes stands for the number of workers.

In both of Fischer’s protocol and Gear Controller, the num-
ber of iteration decreases according to the number of workers.
The shortest trace for Gear Controller has little effect.

Figures 19 and 20 show the results of the CPU times. The
performance is improved according to the number of work-
ers, in Fischer’s protocol while Gear Controller shows worse
behaviors. The fastest trace also loses its acceleration but the
shortest trace requires more time from four workers.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T

h

e

N

u

m

b

e

r

o

f

I

t

e

r

a

t

i

o

n

s

The Number of Nodes

shortest trace

fastest trace

Figure 18: The Number of Iterations : Gear Controller

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C

P

U

t

i

m

e

The Number of Nodes

shortest trace

fastest trace

Figure 19: Execution Times : Fischer’s protocol

7 DISCUSSIONS

We can see thatthe numbers of iteration are improved in
both of the cases, while CPU times are not. This observa-
tion supports that our proposed method is potentially effective
(w.r.t RQ1). Also w.r.t RQ2(a) and RQ2(b), we find there are
some differences.

However, we have to consider the reason why CPU time is
not improved. Two possibilities are considered on the results.

One is the following hypothesis: Refinement with multi-
ple counter-examples certainly refines parts of the automaton,
however, which are not essential parts of of the automaton for
verification of propertyp. Thus, the refinement increases the
size of the automaton, which increases CPU time.

The other one is the following hypothesis: The same counter-
examples are generated. If some of workers generate the same
counter-examples, then the efficiency becomes worse. Such
a phenomenon occurs because the random selections do not
guarantee that every counter-example is different to others.

Based on the above observations, we have performed the
following additional experiments. For the first hypothesis, we
have evaluated the number of states. If it increases according
to the number of workers, then we can conclude that unnec-
essary states are generated.

Second we have also evaluated the ratio of unique counter-
examples, which is a good index for the second hypothesis.

7.1 The Number of States

Figures 21 and 22 show the number of states. Fisher’s pro-
tocol has gradual increase, while fastest trace of Gear Con-

113International Journal of Informatics Society, VOL.8, NO.2 (2016) 103-116

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C

P

U

t

i

m

e

The Number of Nodes

shortest trace

fastest trace

Figure 20: Execution Times : Gear Controller

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T

h

e

N

u

m

b

e

r

o

f

S

t

a

t

e

s

The Number of Nodes

shortest trace

fastest trace

Figure 21: The Number of States : Fischer’s protocol

troller has strong increase.

7.2 The Quality of Counter-Examples

Figures 23 and 24 show the ratio of unique counter-examples.
If the ratio is equal to 1.0 then it means that every counter-
example is different to each other. The shortest traces show
that increase of the same counter-examples according to the
number of workers.

7.3 A Solution

The results support both of the hypotheses. In order to
icrease the quality of the counter-examples, priority among
the counter-examples is considered. Using the priority, we
can control level of the refinement by filtering counter-examples
used for refinement. We think, however, that there is no silver
bullet, in other words the priority cannot be determined stat-
ically and in advance. As an approximate solution, we adopt
threshold on the length of counter-examples. The idea is that
we only use shorter counter-examples than threshold by the
length of the shortest counter-example. From Fig. 19 and 21,
we can observe that the shortest trace option is good. There-
fore, it is said that the shorter counter-examples are worth to
use.

In order to avoid duplication of counter-examples, we think
k-shortest path algorithm is worth to try. The algorithm is
provided by Eppstein [12] and Jiḿenez [15].

Since UPPAAL uses more sophisticated data structure than
DBM which we use and it also uses partial order reduction
technique whereas we don’t use any further improvements.

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T

h

e

N

u

m

b

e

r

o

f

S

t

a

t

e

s

The Number of Nodes

shortest trace

fastest trace

Figure 22: The Number of States : Gear Controller

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T

h

e

R

a

t

i

o

o

f

u

n

i

q

u

e

C

E

The Number of Nodes

shortest trace

fastest trace

Figure 23: The Ratio of the Same Counter-Example : Fis-
cher’s protocol

Therefore, we show the comparison between naı̈ve approach
and our approach in order to show the improvements.

We think that the experiments show our approach reduces
the number of iteration, which also will improve the size of
states of abstraction models. The proposed method works bet-
ter than näıve CEGAR loop does. It is because the proposed
method can deal with larger system than the naı̈ve CEGAR,
in some cases. The CPU time is also improved. It implies
that the main idea that we simultaneously apply the multi-
ple counter-examples will improve the performance because
it reduces the number of iteration. We also have to find further
improvements such as detecting redundant counter-examples
and reducing applies of counter-examples which do not con-
tribute to refinement.

As a conclusion we can say that the main idea that we si-
multaneously apply the multiple counter-examples will im-
prove the performance, however, there is some room to im-
prove the performance.

8 CONCLUSION

8.1 Summary

This paper proposed a CEGAR loop for timed automata
where multiple counter-examples are simultaneously applied.
This device strongly reduces the number of iteration loops.
The experiments show the promising results. Also we have
obtained a candidate criterion for more effective multiple CE-
GAR.

K. Okano et al. / Parallel Multiple Counter-Examples Guided Abstraction Loop —Applying to Timed Automaton—114

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

T

h

e

R

a

t

i

o

o

f

U

n

i

q

u

e

C

E

The Number of Nodes

shortest trace

fastest trace

Figure 24: The Ratio of the Same Counter-Example : Gear
Controller

8.2 Future Work

It is a good idea that if the model becomes too large against
to a reasonable CPU time deadline, we reconstruct the model
using a subset of the previous set of the counter-examples.
Such a scheme can control the size of the abstract model finer.

Another idea of future work will be finding effective cri-
teria for filtering better multiple counter-examples. We also
want to try the idea that utilizing modular checking provided
in paper [13] and to reconstruct our method based on ap-
proach in [18]. Extension of the class of the property is also
considered. For example, we want to try to provide CEGAR
loop for some subset TCTL [2].

ACKNOWLEDGMENTS

This work is partially being conducted as Grant-in-Aid for
Scientific Research S (25220003), C (26330092) and also C
(16K00094).

References

[1] R. Alur, “Techniques for automatic verification of real-
time systems,” Ph.D. dissertation, Stanford University
(1991) .

[2] R. Alur, C. Courcoubetis, and D. L. Dill, “Model-
checking for real-time systems,” in Proceedings of the
5th Annual Symposium on Logic in Computer Science,
pp. 414-425, IEEE (1990) .

[3] R. Alur, T. Dang, and F. Ivancic, “Counter-example
guided predicate abstraction of hybrid systems,” in Pro-
ceedings of Tools and Algorithms for the Construction
and Analysis of Systems TACAS 2003, pp. 208-223
(2003) .

[4] J. Bengtsson and W. Yi, “Timed automata: Semantics,
algorithms and tools,” in Lecture Notes on Concurrency
and Petri Nets, Vol. 3098, pp. 87-124 (2004) .

[5] P. Bouyer, F. Laroussinie, and P.-A. Reynier, “Diag-
onal constraints in timed automata: Forward analysis
of timed systems,” in FORMATS’05, Lecture Notes in
Computer Science, Vol. 3829, pp. 112–126 (2005) .

[6] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking, MIT Press (2000) .

[7] E. M. Clarke, A. Fehnker, Z. Han, J. Ouaknine,
O. Stursberg, and M. Theobald, “Abstraction and

counterexample-guided refinement in model checking
of hybrid systems,”International Journal of Founda-
tions of Computer Science, Vol. 14, No.4, pp. 583-604
(2003a) .

[8] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Hel-
mut, “Counterexample-guided abstraction refinement
for symbolic model checking,”Journal of the ACM, Vol.
50, No.5, pp. 752-794 (2003b) .

[9] A. E. Dalsgaard, R. R. Hansen, K. Y. Joergensen, K. G.
Larsen, M. C. Olesen, P. Olsen, and J. Srba, “opaal: A
lattice model checker,” in Proceedings of the 3rd NASA
Formal Methods Symposium (NFM’11), Lecture Notes
in Computer Science, Vol. 6617, pp. 487–493 (2011) .

[10] A. David, J. Hakansson, K. G. Larsen, and P. Petters-
son, “Model checking timed automata with priorities us-
ing dbm subtraction,” in Proceedings of the 4th Interna-
tional Conference on Formal Modelling and Analysis of
Timed Systems, pp. 128-142 (2006) .

[11] H. Dierks, S. Kupferschmid, and K. G. Larsen, “Au-
tomatic abstraction refinement for timed automata,” in
Proceedings of the 5th International Conference on For-
mal Modelling and Analysis of Timed Systems, Vol.
4763, pp. 114-129 (2007) .

[12] D. Eppstein, “Finding the k shortest paths,” in 35th An-
nual Symposium on Foundations of Computer Science,
pp. 154–165 (1994) .

[13] F. He, H. Zhu, W. N. N. Hung, X. Song, and M. Gu,
“Compositional abstraction refinement for timed sys-
tems,” in Proceedings of 2010 Fourth International Sym-
posium on Theoretical Aspects of Software Engineer-
ing, pp. 168-176 (2010) .

[14] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic
cegar,” in Computer Aided Verification, Lecture Notes
in Computer Science, Vol. 5123, pp. 162-175 (2008) .

[15] V. M. Jimènez and A. Marzal, “Computing the k shortest
paths: A new algorithm and an experimental compari-
son,” in Algorithm Engineering 1999, Lecture Notes in
Computer Science, Vol. 1668, pp. 15–29 (1999) .

[16] S. Kemper and A. Platzer, “Sat-based abstraction refine-
ment for real-time systems,” in Proceedings of the Third
International Workshop on Formal Aspects of Compo-
nent Software, Vol. 182, pp. 107-122 (2006) .

[17] M. Lindahl, P. Pettersson, and W. Yi, “Formal design
and analysis of a gear controller: An industrial case
study using uppaal,” in Lecture Notes in Computer Sci-
ence, Vol. 1384, pp. 289-297 (1998) .

[18] M. O. Mollera, H. Rueß, and M. Soreab, “Predicate ab-
straction for dense real-time systems,”Electronic Notes
in Theoretical Computer Science, Vol. 65, No.6, pp.
218–237 (2002) .

[19] T. Nagaoka, K. Okano, and S. Kusumoto, “An ab-
straction refinement technique for timed automata based
on counterexample-guided abstraction refinement loop,”
IEICE Transactions on Information and Systems, Vol.
E93-D, No.5, pp. 994-1005 (2010) .

[20] F. Wang, K. Schmidt, G. D. Huang, F. Yu, and B. Y.
Wang, “Formal verification of timed systems: A survey
and perspective,” in Proceedings of the IEEE, Vol. 92,
No.8, pp. 1283-1307 (2004) .

115International Journal of Informatics Society, VOL.8, NO.2 (2016) 103-116

(Received September 30, 2015)
(Revised April 13, 2016)

Kozo Okanoreceived his BE, ME, and PhD de-
grees in Information andComputer Sciences from
Osaka University in 1990, 1992, and 1995, respec-
tively. From 2002 to 2015, he was an Associate
Professor at the Graduate School of Information
Science and Technology of Osaka University. In
2002 and 2003, he was a visiting researcher at the
Department of Computer Science of the Univer-
sity of Kent in Canterbury, and a visiting lecturer
at the School of Computer Science of the Univer-
sity of Birmingham, respectively. Since 2015, he

has been an Associate Professor at Department of Computer Science and En-
gineering, Shinshu University. His current research interests include formal
methods for software and information system design. He is a member of
IEEE, IEICE, IPSJ.

Takeshi Nagaokareceived the MI, DI degrees from
Osaka University in 2007 and 2010, respectively.
He currently works for Toshiba Solutions Corpo-
ration. His research interests include abstraction
techniques in model checking, especially a timed
automaton and a probabilistic timed automaton.

Toshiaki Tanakareceived the BE, MI degrees from
KobeUniversity in 2009 and from Osaka Univer-
sity in 2011, respectively. He currently works for
Sony Corporation. His research interests include
parallelization of model checking, especially a timed
automaton.

Toshifusa Sekizawareceived his MSc degree in
physics from GakushuinUniversity in 1998, and
Ph.D. in information science and technology from
Osaka University in 2009. He previously worked
at Nihon Unisys Ltd., Japan Science and Technol-
ogy Agency, National Institute of Advanced In-
dustrial Science and Technology, and Osaka Gakuin
University. He is currently working at College
of Engineering, Nihon University. His research
interests include model checking and its applica-
tions.

Shinji Kusumoto received his BE, ME, and DE
degrees in Information andComputer Sciences from
Osaka University in 1988, 1990, and 1993, respec-
tively. He is currently a Professor at the Graduate
School of Information Science and Technology of
Osaka University. His research interests include
software metrics and software quality assurance
techniques. He is a member of the IEEE, the IEEE
Computer Society, IPSJ, IEICE, and JFPUG.

Refinement
InputsAi, ρ̂
OutputAi+1

/* ρ̂ = l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln(ln = e) */
/* succ list = ⟨(l0, D0), (l1, D1), · · · , (lk, Dk)⟩,
where(lj , Dj) represents thej-th reachable statesetalong
with ρ̂, andlk is the last location reachable from the initial
state. */
succ list := tr(ρ̂)
/* function tr () obtainssucc list form ρ̂ */
Ai+1 := Ai

for j := succ list.lengthdownto 1 do
ej := (lj−1, aj−1, gj−1, rj−1, lj)
Ai+1 := Duplication(Ai+1, succ listj, ej)

/* Duplication of the Location and Transitions */
if IsRemovable(Ai+1, succ listj , ej) then

Ai+1 := RemoveTransition(Ai+1, ej)
/* Removal of Transitions */

break
else ifj = 1 then

Ai+1 := DuplicateInitialLocation(Ai+1, (l0, D0))
/* Duplicate the initial location and transitions

from the initial location */
end if

end for
return Ai+1

Figure25: Algorithm 1: Refinement Algorithm for a counter-
example

Appendix A
Figure25shows the algorithm of Refinement, Algorithm 1.
Algorithm 1 uses a counter-examplêρ and generates a refined timed au-
tomaton. It uses functions, Duplication(), RemoveTransition(), and Dupli-
cateInitialLocation(). Functions Duplication(), RemoveTransition() and Du-
plicateInitialLocation() are functions to duplicate locations and transitions,
to remove unnecessary transactions, and to duplicate the initial location, re-
spectively. For the definitions of these functions, please refer [19].

K. Okano et al. / Parallel Multiple Counter-Examples Guided Abstraction Loop —Applying to Timed Automaton—116

