
A Lump-sum Update Method as Transaction in MongoDB

Tsukasa Kudo†, Masahiko Ishino‡, Kenji Saotome*, and Nobuhiro Kataoka**

†Faculty of Comprehensive Informatics, Shizuoka Institute of Science and Technology, Japan
‡Faculty of Information and Communications, Bunkyo University, Japan

* Hosei Business School of Innovation Management, Japan
** Interprise Laboratory, Japan

kudo@cs.sist.ac.jp

Abstract - Along with the progress of the cloud computing,
it became necessary to deal with various and large quantity
data in the distributed database environments. So, the various
NoSQL databases have been proposed and put to practical
use. However, as for the NoSQL databases, since it supports
the distributed environment, the integrity of the database up-
date is basically guaranteed only by the object unit. There-
fore, there are serious restrictions to update the plural objects
as a transaction. On the other hand, it is often necessary to
perform the lump-sum or long-time update as a transaction
in business systems. In this paper, we propose a method to
update plural objects in a lump-sum as a transaction in Mon-
goDB, which is a kind of the NoSQL database. Furthermore,
through the evaluations by a prototype, we confirmed that the
lump-sum update can be executed as a transaction without the
latency of the concurrent object unit update.

Keywords: database, NoSQL database, MongoDB, trans-
action processing, batch processing, concurrency control

1 INTRODUCTION

Nowadays, a large amount of data has been published, and
it is utilized in various fields as big data. As a feature of big
data, Volume (huge amount), Velocity (speed), Variety (wide
diversity) have been pointed [8]. For example, large amounts
of data, such as in the online shops and the video sharing sites,
must be accessed efficiently by worldwide users, though it has
more complex data structures than the conventional relational
databases, including images and videos as well as texts.

To cope with this situation, various kinds of NoSQL (Not
Only SQL) databases has been proposed and put to practi-
cal use [12]. As for the NoSQL database, to achieve the
above-mentioned feature for the above problems, it is com-
posed as the distributed database having a large number of
servers. That is, it ensures the efficiency and reliability by re-
dundancy such as replication and so on. Also, for example,
MongoDB, which is a kind of the NoSQL database, is the
document-oriented database and its structure is not defined
by the schema. So, it is possible to add necessary attributes
to its each data at any time and to manipulate various kinds of
data flexibly [1].

On the other hand, unlike the relational database manage-
ment system (hereinafter, ”RDBMS”), it is not guaranteed to
maintain the ACID property of the transaction processing in
the case of the plural data manipulation. That is, it is gener-
ally maintained only on the individual update units called the

atomic object. Also, as for the distributed environment, only
the eventual consistency is guaranteed, that is, its consistency
is not maintained until the completion of all the data manipu-
lation including such as the synchronization of the replication
[13]. They cause the serious restrictions on the data manipula-
tion, for example, the intermediate result of the update having
no consistency can be queried.

Here, even as for the RDBMS, there is a problem about
maintaining the ACID properties in the case to update a large
amount of data associated mutually in a lump-sum. That is,
since the lock method is used to perform above-mentioned
data manipulation concurrently with the other update, it causes
the long latency of the latter update. For this problem, we
have proposed the temporal update method using the trans-
action time database that manages the history of the time se-
ries of the data, and shown that it is possible to maintain the
ACID properties without this long latency even in the above-
mentioned case [6]. In this method, each update result of plu-
ral transactions is saved, and only the valid results are queried
after the update completion. So, it is expected that we can
update the plural data in MongoDB as the single transaction
by the method of applying the temporal update method.

In this paper, firstly, we propose an update method for Mon-
goDB, which utilizes the concept of the temporal update. And,
our goal in this paper is to show that the efficient lump-sum
update maintaining the ACID properties can be realized even
in the above-mentioned case. In other words, by this method,
we can update the plural data in a lump-sum as the single
transaction, which was difficult to be executed by the conven-
tional method of MongoDB.

The remainder of this paper is organized as follows. In
Section 2, we show the problem of MongoDB about the con-
currency control, and the abstract of the temporal update. In
Section 3, we propose the lump-sum update method for Mon-
goDB. In Section 4, we show the implementation and evalu-
ations of this method, and show the considerations about this
evaluation results in Section 5.

2 CONCURRENCY CONTROL OF
MONGODB AND TEMPORAL UPDATE

2.1 Target Case of Data Update Process
Currently, many databases of mission-critical business sys-

tems are built by the RDBMS, and a lump-sum updates of a
large amount of data spanning a long period of time are of-
ten performed. For example, in the banking systems, there

International Journal of Informatics Society, VOL.8, NO.1 (2016) 35-44

ISSN1883-4566 ©2016 - Informatics Society and the authors. All rights reserved.

35



is a large amount of account transfer business, which is en-
trusted by the card companies and so on. Meanwhile, users
update the database immediately for their deposits and with-
drawals by the ATM. These processes are not only performed
simultaneously by many users, but also the users in the latter
case are sensitive to the delay in the response of the system.
Furthermore, at present, these processes are provided as the
nonstop services. That is, the both of these processing have to
be executed concurrently. However, since the lock method is
generally used to maintain the ACID properties of the transac-
tions, there is the problem that the users are often kept waiting
for a long while by the update of large amount of data.

Here, the ACID properties are the properties that the trans-
actions should maintain, and it is composed by the following
four properties [2].

Atomicity Transactions execute all or nothing.

Consistency Transactions transform a correct state of the
database into another correct state.

Isolation Transactions are isolated from one another.

Durability Once a transaction commits, its updates persist in
the database, even if there is a subsequent system crash.

For the above-mentioned problem due to the lock method,
the mini-batch is used widely to shorten the wait time of users,
by which the process for a large amount of data update is
divided into several update processes and they are performed
one after another. So, the long wait does not occur.

Meanwhile, we showed that the ACID properties cannot be
maintained by the mini-batch in the case where the data as-
sociated mutually. Furthermore, we proposed the temporal
update method to update the data with maintaining the ACID
properties even in this case [5]. On the other hand, as well
as the mini-batch, the ACID properties of the transactions are
maintained only on the update of the atomic object in Mon-
goDB. So, in the case of updating plural data in a lump-sum, it
has been pointed out that the same problems as the mini-batch
occurs [1].

That is, the aim of this paper is to propose the update method
for MongoDB, in which we apply the concept of the tempo-
ral update method, to update plural data in a lump-sum with
maintaining the ACID property. In this paper, “online entry”
represents the update on the atomic object, in which the ACID
property is maintained in MongoDB; “batch update” repre-
sents the update composed of plural data manipulation in a
lump-sum, in which the ACID property is not maintained to
the contrary. Incidentally, as for the relational databases, the
former corresponds to the update of the single transaction; the
latter corresponds to the update composed of the plural trans-
actions such as the mini-batch.

In this section, we show these related works below: first,
the overview of MongoDB, and the issue intended by this pa-
per; second, the temporal update method for the relational
databases.

Figure 1: Composition of MongoDB document.

2.2 Overview of MongoDB and Issue in
Concurrency Control

MongoDB is a kind of document-oriented NoSQL database,
which data is the documents expressed by JSON (JavaScript
Object Notation) format shown in Fig. 1 [15]. The docu-
ment is composed of the fields. For example, in this figure,
{“ id”: 1} is a field, of which identifier is “ id” and value is 1.
Here, “ id” corresponds to the primary key of the relational
database. And, the field is able to have a nested structure.
For example, the name field (name) in the figure is composed
of the following fields: the first name field (first) and the last
name field (last). Since the document structure of MongoDB
is not defined by schema, any necessary fields can be added to
any document at any time. So, each document is able to have
different fields except “ id”. Furthermore, since it is possi-
ble to store the various kinds of objects, such as images and
videos to its fields, it can handle a variety of data compared to
the RDBMS. Here, the set of documents is called the collec-
tion. So, the collection and document correspond to the table
and record in the relational database, though it is not strict.

As for the data manipulations, the following CRUD oper-
ations are provided as well as the RDBMS: insert, find (cor-
responding to select), update and remove (corresponding to
delete). Furthermore, since findAndModify command is also
provided to execute both of the query and update exclusively,
they can be executed as the atomic operation. That is, the up-
date of the atomic object such as the single document can be
performed as the single transaction.

However, unlike SQL of the RDBMS, it does not provide
the command to update the plural documents as the single
transaction. That is, there is a problem that the ACID proper-
ties of the transaction, especially the isolation and atomicity,
cannot be maintained in the case where the plural documents
are updated in a lump-sum.

For this issue, two phase commit protocol is shown [10].
In this method, for example, in the case of performing the ac-
count transfer from the account X to the account Y of a bank,
its processing ID is saved in the document of the account
transfer management collection, which has the status about
this processing: initial, pending, applied and done. These
accounts are updated one after another in pending; mean-
while, this processing ID is saved to the documents of these
accounts, and the updating accounts can be managed. Then,
the status transit to applied. In the case of successful comple-
tion, this processing ID is deleted from the documents to exit.
And, in the case of abnormal termination, the compensation
transaction is performed to cancel the updates of the accounts
and recover to a consistent state [10].

It is considered that this method is same as the saga for
the RDBMS [9], which executes a mass update sequentially
as divided plural update set. And, in the case of failure, the
compensation transactions are executed to recover the data.

T. Kudo et al. / A Lump-sum Update Method as Transaction in MongoDB36



Before online entry 

Online entry 

Figure 2: Data manipulation by temporal update.

On the other hand, it has been shown that the ACID prop-
erties of the transaction is not maintained in the case of the
concurrent execution with the other transactions [3]. For ex-
ample, in the case where the failure occurs in the transaction
after the account X was updated and the result was queried by
the other transaction, the former transaction must be canceled.
However, since the result of this transaction has been already
queried by other transactions, it causes the problem in the ac-
tual system operations, such as the cascading aborts. This is
due to the fact that the entire update cannot be processed as
the single transaction in the same as the mini-batch.

2.3 Temporal Update Method for Relational
Database

In Section 2.1, we mentioned that we proposed the tempo-
ral update method for the problem as for the mini-batch in
the RDBMS. In Fig. 2, we show the data change of the time
series about the transaction time in this method [7]. The con-
cept of the temporal update method is the following: all the
update results of each kind of transactions are saved, in which
the online entries and batch update are included; and only the
valid data is queried [5], [6].

This method utilizes the concept of the transaction time
database, which is a kind of temporal database that manages
the time history of its data [14]. And, the transaction time
expresses when some fact existed in the database, so its re-
lation is expressed by R(K,Ta, Td, A). Here, K shows the
primary key attribute of the data of above-mentioned fact;
Ta shows the transaction time when the data was inserted
into the database; Td shows the transaction time when it was
deleted from the database; A shows the other attribute. In
other words, though the data is deleted logically from the
database by setting the deletion time to Td, it remains phys-
ically in the database. So, all the CRUD operations on the
data of the database can be managed as a history of the time
series. Here, until the data is deleted, the value now is set to
Td, which indicates the current time [16].

The feature of this method is that we avoid the conflicts
between the batch updates and online entries by expanding
the concept of the transaction time into the future. That is, as
for the batch update, the data at the past time tq is queried,
and the processing result is stored at the future time tu. On
the other hand, as for the online entries, the data at the cur-
rent time now is manipulated. Thus, the conflict between the
both processing can be avoided without using the long locks.

Updated field by batch update 

Updated fields by online entry Remarks: 

Figure 3: Data structure of document in proposal method.

Here, the batch update processing must be applied to the re-
sult of the online entries performed between the time tq and
tu. So, the batch update processing is applied individually to
the results of the online entries, and these processing results
are stored into the database as the OB update in Fig. 2.

As a result, three kinds of update result data is stored at
the time tu as shown in Fig. 2: (1) the batch update, (2) the
online entry and (3) the OB update. Therefore, the valid data
has to be queried by the query processing, which is shown by
(4) query. It is achieved by querying these data in the follow-
ing order of priority: the OB update, online entry and batch
update. To be concrete, in the case where both of the batch
update and online entry are executed, the OB update result
is queried; in the case of only the batch update, its result
is queried; in the case of only the online entry, its result is
queried; Therefore, we can query the same update result as
in the case where the batch update is executed on the online
entry results at the time tu, without the long latency of the
online entry by the lock method.

Moreover, to apply this method to the distributed database
environment, we improved it not to have to determine the
completion time tu beforehand [7]. It was implemented by
the view, which has the feature that the above-mentioned valid
data is changed at the batch update completion time tu.

3 PROPOSAL OF LUMP-SUM UPDATE
METHOD FOR MONGODB

In this section, we propose a lump-sum update method for
MongoDB, which is based on the concept of the temporal up-
date method mentioned in Section 2.3. First of all, since there
is the restriction about the transaction processing in MongDB
as mentioned in Section 2.2, we have to adopt the method to
fit the characteristics of MongoDB.

Concretely, since the plural document cannot be updated
as a transaction in MongoDB, the following modification is
necessary. First, all the update result must be stored in the
single document: the online entry, batch update and OB up-
date. So, the data structure must be modified. Second, for
the same reason, the transaction time database cannot be con-
structed. So, the update process must be managed according
to the processing stage, instead of the transaction time.

3.1 Data Structure of Document in Proposed
Method

If we applied the temporal update intended for the RDBMS
to the lump-sum update in MongoDB, multiple documents of
the update result would be created for one fact of the real
world: by the online entry, batch update and OB update. It

International Journal of Informatics Society, VOL.8, NO.1 (2016) 35-44 37



means, for example, in order to execute the OB update with
the online entry, the two documents represented by (2) and (3)
in Fig. 2 must be manipulated as one transaction. However,
as mentioned above, plural documents cannot be updated as
one transaction in MongoDB. So, if we applied this method to
MongoDB just as for the RDBMS, the problem would occur:
the consistency among data is not maintained. Meanwhile,
since the document structure of MongoDB is not defined by
the schema, its fields can be added flexibly. And, more im-
portantly, the data manipulations on the different fields of the
same document do not conflict.

For this reason, in this study, we propose the following
lump-sum update method for MongoDB as shown in Fig. 3.
In this method, all the results of the online entry, batch up-
date and OB update are saved in the same document, and
each field is indicated by “o”, “b” and “OB”. And, the valid
field is queried in the same way as the temporal update for the
RDBMS.

Here, as shown in Section 2.1, we defined the online en-
try as the process updating each document individually. And,
it can be executed by the transaction feature of MongoDB.
Furthermore, OB update, which accompanies with the online
entry, updates the same data as the online entry. So, it can
be executed by the transaction feature, though both of the OB
update and online entry cannot be executed by the transac-
tion feature in a lump-sum. On the contrary, since the batch
update updates plural documents in a lump-sum, it cannot be
executed by the transaction feature as the whole process.

For example, Fig. 3 shows the document of the balance of
the deposit account: the account number (account), balance
(balance) and update number (last). In addition, in the fol-
lowing, we omit to write “ id” of documents. Here, “last”
corresponds to the time stamp, and it is increased by one for
each update of the balance. In addition, it is used for the opti-
mistic concurrency control as described later. Also, “temp” is
the temporal field that is added temporarily during the execu-
tion of the batch update, and the update results are inserted to
the corresponding field with the processing classification: the
field of identifier “b” is for the batch update; “o” is for the on-
line entry; “OB” is for the OB update. In addition, “balance”
and “last” fields are also updated by the online entry.

As shown in Fig. 3 by the underline and double underline,
the online entry, including the OB update, updates the differ-
ent fields from the batch update field. So, there is no conflict
between these update processing. Then, the valid update re-
sult can be queried similarly to the temporal update method,
that is, by querying the update result data with the following
priority: the OB update, online entry and batch update.

In summary, as for the temporal update method in RDBMS,
we avoid the conflicts between the batch update and online en-
try by storing the each update results to the different records.
In this method for MongoDB, we avoid this conflicts by stor-
ing each update result to the different fields.

3.2 Transition of Processing Stage in
Proposed Method

In MongoDB, since plural documents cannot be updated
as the single transaction, the transaction time database also

Figure 4: Processing stage transition in update

  

Figure 5: Correspondence between update process and pro-
cessing stage

cannot be composed. For example, in Fig. 2, two data is ma-
nipulated to update one fact at time now: the data “Before
online entry” is logically deleted, and the update result “(2)
Online entry” is added. In other words, the transaction time
database needs to manipulate two data as a single transaction.

On the other hand, as for the temporal update in RDBMS,
as shown in Fig. 2, since the batch update starts at the time tq
and completes at tu, the OB update must be executed during
this time period, which accompanies with the online entry.
Furthermore, the batch update is performed to the data of the
transaction time tq . That is, these control is required for the
proposed method, too.

To address this issue, we define the following four process-
ing stage like the two phase commit protocol in MongoDB,
which was shown in Section 2.2, as shown in Fig. 4. And,
the update processing is performed with transitioning among
them sequentially: “initial” shows that the stage is before
batch update; “pending” shows it is during the batch update;
“applied” shows batch update has completed, and the data of
temporal field is being reflected to the regular field; “done”
shows all the processing has completed. Incidentally, in the
case where the failures occur in the batch update processing,
the processing stage transitions from “pending” to “rollback”.
In the “rollback” stage, the batch update results are canceled,
and the processing stage transitions to “done”.

We show the correspondence between the update process
and processing stage as for the “real” time in Fig. 5. Here-
inafter, we use real time t̂q corresponds to tq in Fig. 2, and
t̂u corresponds to tu. At the transition time t̂q from “initial”
to “pending”, the batch update and OB update start. And, at
t̂q the time from “pending” to “applied”, the both complete.

T. Kudo et al. / A Lump-sum Update Method as Transaction in MongoDB38



Figure 6: Data change in update

Here, as mentioned above, since MongoDB is not the trans-
action time database, the batch update cannot query the data
history at the time t̂q . So, in the case where the target data
is updated by the online entry before the batch update, this
batch update must perform on this update result. However,
the result of the OB update, which accompanies with the on-
line entry, reflects both of the batch update and online entry
results, and finally this is queried based on the query priority.
So, the query result of the proposed method is same as the
result of the temporal update method.

Here, the query data as of the proposed method is decided
at the time t̂u, and the query results do not change after t̂u.
That is, as shown in Fig. 5, the batch update and OB update
result can be also queried corresponding on the query priority.
The transition from “applied” and “rollback” to “done” means
only the delete completion of the unnecessary intermediate
results.

Figure 6 shows the data at the end of each processing stage.
(1) shows the data at the end of “initial”. Since it is prior to
batch updates, “temp” field does not exist. Also, (2) shows
“pending”. Since the batch update has completed, the data
has been set to temp field. In the case of this figure, the batch
update debited 500 from the account. Meanwhile, the on-
line entry deposited 1000 to the same account, and OB update
debited 500 from this result. Then, all the results were stored
in the temp field. At this time, “balance” and “last” fields have
been also updated by the online entry. Incidentally, since the
value is set only to the fields corresponding to the executed
updates, all the fields of temp field are not always set.

While the processing stage is “applied”, the valid data is
queried by the online entry transactions. In the case of this
figure, the balance of 1500 in “ob” field is queried. Further-
more, in this stage, the valid data is reflected into balance
field, then temp field is deleted. This is the processing for the
next batch update. At the end of this stage, each field has the
value shown in (3), and 1500 is set to balance field, which is
the result of the OB update. In this way, the query results of
the online entry do not change through this stage.

On the other hand, in the case where the batch update pro-
cessing fails, the processing stage transitions to “rollback”.
In this stage, only balance field is queried by the online entry
continually; temp field is ignored. And, temp field is deleted
without affecting the online entry. So, when the rollback has

transition 

find 

findAnd- 

Modify 

(update) 

Synch 

class 
find 

get 

findAnd- 

Modify 

get 

Figure 7: Software structure of prototype

completed, balance field is not changed and this document
become the state shown in (4).

In this way, the processing stage transitions to “done”, and
we get the result (3) in the case of successful completion; we
get (4) in the case of abnormal termination.

4 IMPLEMENTATION AND
EVALUATIONS

4.1 Implementation of Prototype

To evaluate the proposed method, we constructed a proto-
type intending to manipulate the deposit accounts of the bank-
ing system. We use MongoDB Ver. 2.6.7 for the database;
Java Ver. 1.6 for the programming language; MongoDB Java
Driver Ver. 2.13 to access MongoDB from Java [11]. In ad-
dition, OS is Windows 7 (64bit). Figure 7 shows its software
construction. The batch update and online entry programs
are implemented by Thread class of Java to execute the both
concurrently. Each program executes the following processes
as shown in this figure: it query the data of the deposit ac-
count from the database (find); then, it updates the data of the
database (findAndModify, update).

The batch update program executes the processing to debit
from the deposit account collection (Account) in a lump-sum,
based on the account and amount information stored in the
debit data collection (Debit data). As shown in Fig. 4, the
processing stage transitions from “initial” to “pending”. This
process is executed at the first (transition) of the batch up-
date program (Batch update), then the batch update is exe-
cuted. After its completion, the processing stage transitions
to “applied”, and the data in temp field is reflected into bal-
ance field. Incidentally, in the case of abnormal termination,
it transitions to “rollback”. Finally the processing stage tran-
sitions to “done”. The information of the processing stage
is stored in the transition status collection (Transition status),
and it is accessed through “Synch class” by the batch update
and online entry programs.

Meanwhile, the online entry executes the processing to de-
posit to each deposit account individually. As for this proto-
type, it was configured to perform deposits of certain amount
of money from the plural terminals concurrently. Here, the
online entry has to be accompanied by the OB update dur-
ing the processing stage of the batch update is “applied”. So,

International Journal of Informatics Society, VOL.8, NO.1 (2016) 35-44 39



its program was configured to query the processing stage by
Synch class (get). And, to query this data efficiently by the
program without accessing the database, it is saved in the in-
stance of Sync class, However, in the case where the process-
ing stage transitions from one stage to the next stage during
the online entry executing, there is the possibility of the incor-
rect OB update execution. In other words, in the case where
the transition occurs between the “find” and “findAndMod-
ify” in Fig. 7, there may be the unnecessary OB update exe-
cution or the lack of it.

For this issue, We implemented Synch class using Synchro-
nized keyword of Java, by which only one program can call it
at the same time by the synchronization control. Then, we
configured the online entry program to query the process-
ing stage before not only “find” but also “findAndModify”
as shown by the “get” in Fig. 7. And, in the case where the
transition occurs between them, the online entry program per-
forms a retry. Furthermore, in order to prevent the transition
between “get” prior to findAndModify and the completion of
findAndModify, we configured Synch class to wait a certain
time before transition, which is requested by the batch update
program. That is, the executing update of the online entry
program can be completed before the transition by this way.
Incidentally, while the processing stage is “applied”, not only
“balance” field but also the valid field has to be queried from
this document. We implemented a class to manipulate the
fields, and these manipulations were implemented by using
the method of this class.

Since the online entries are executed from plural terminals
concurrently, it is necessary to execute the concurrency con-
trol. So, we implemented the optimistic concurrency control
by “last” field (update number) using findAndModify com-
mand, which is a method to perform the query and update of
a document at the same time exclusively as mentioned in Sec-
tion 2.2. And, in the case where the query condition matches
to no data, the update is not performed and null is returned as
the query result. Therefore, we set the query condition of fin-
dAndModify command {“account”:account number, “last”:
read updated number by “find” }, that is, the value of “last” is
the result queried by find command just before. As a result, in
the case where the target document was updated by the other
program after the execution of this “find” command, no data
matches this condition. And, in this case, the online entry
program has to retry these processes from the beginning.

Table 1 shows the target fields at each processing stage,
which is queried and updated. As for the batch update, it is
not executed when the processing stage is “initial” or “done”;
it updates the different fields from the online entry when the
processing stage is “pending” or “rollback”. So, there is no
conflict between the batch update and online entry. However,
when the processing stage is “applied”, the both update the
same fields: “balance”, “last” and “temp”. That is, there is the
conflict between them. Therefore, as for the batch update pro-
gram, we also implemented the optimistic concurrency con-
trol using findAndModify command similarly to the online
entry program. Incidentally, the batch update program queries
“balance” when the processing stage is “pending”, which is
updated by the online entry program at the same time. That

Figure 8: Lost update example of transaction

0

10000

20000

30000

40000

50000

60000

70000

1 11 21 31 41 51

Before

After

(A) 

(B) 

(C) 
(A') 

Figure 9: Result of case of successful completion

is, there is conflict between them. However, as we already
mentioned in Section 3, the case where the online entry is ex-
ecuted, the OB update result becomes valid, which is created
based on the execution result of the former. In other words,
the batch update result is not used. Therefore, the concurrency
control for this query is not required.

4.2 Evaluations of Concurrency Control
The proposal method does not lock the target documents

through the duration of the batch update. That is, similar to
the relational database, it has to be confirmed the inconsisten-
cies by the concurrent execution of transactions do not occur.
So, we performed the following three kinds of experiments to
evaluate the concurrency control between the batch updates
and online entry, using the prototype shown in Fig. 7.

First, we performed the experiment in the case of success-
ful completion of the batch update. The purpose of this exper-
iment is to confirm that there is no lost update occurred by the
illegal interface between the batch updates and online entries.
Figure 8 shows the example of the lost update, in which the
time series manipulations on the data a are executed by the
transaction T1 and T2: Ri indicates the query; Wi indicates
the update. And, the column “Value of a” shows the value of
a in the time series. As for the value of a, T1 queries it by
R1 and updates by W1; meanwhile, T2 updates it by W2. So,
since the update result of T2 is overwritten by T1, it is lost.
That is, the lost update has occurred.

In this experiment, as shown in Fig. 9, the number of the
target deposit account is 60. And, its balance data is set prior
to the experiment, which is calculated by the following equa-
tion as shown by the broken line.

balance = account number × 1000 (1)

T. Kudo et al. / A Lump-sum Update Method as Transaction in MongoDB40



Table 1: Read and write fields in each processing stage

Processing Batch update Online entry
stage find findAndModify find findAndModify
Initial — — balance, last balance, last
Pending balance temp.b balance, last balance, last, temp.o, temp.ob
Applied last, temp balance, last, temp (delete) balance, last, temp balance, last, temp (delete)
Rollback — temp (delete) balance, last balance, last
Done — — balance, last balance, last

Figure 10: Data at end of pending

Here, the horizontal axis shows the account number of the de-
posit account; the vertical axis shows its balance. Then, the
batch update program debits 20000 from the deposit accounts
which account number is between 11 and 60. Here, the ac-
count, which balance is less than 20000 at this debiting time,
is excluded from this processing. In this experiment, since the
batch update is successfully completed, the processing stage
shown in Table 1 transitions from “pending” to “applied”.

Meanwhile, the online entries are executed from five termi-
nals concurrently, and each entry deposits 1000 to the deposit
account which account number is between 1 to 50. Here, in
order to avoid the conflict among the online entries, the differ-
ent first update account number is assigned to each terminal:
1, 11, 21, 31, 41. Then, Each terminal updates the deposit
account one after another. Here, after the program has pro-
cessed the account which account number is 50, it processes
the account which account number is 1. In this way, 50 de-
posit accounts are updated from each terminal.

The solid line in Fig. 9 shows this experimental result. The
account indicated by (A) is not the target of the batch update
or its balance was less than 20000. So, the batch update did
not debit from it, and only the online entries deposited 5000.
The account indicated by (B) is the target of the batch update,
and the batch update or OB update debited 20000. Also, the
online entries deposited 5000. So, the balance became 15000
reduction. The account indicated by (C) is not the target of the
online entry, and only the batch update debited 20000. That
is, even in the case where the batch update was executed con-
currently with the online entry, no lost update occurs in both
of the processes. As a result, we got the consistent update
result.

Second, to investigate the change point from (A) to (B) in

Figure 11: Dirty read example of transaction

0

10000

20000

30000

40000

50000

60000

70000

1 11 21 31 41 51

Before

After

(A) 

(D) 

Figure 12: Result of rollback of batch update

Fig. 9, which is shown by (A’), we performed the experiment,
in which both of the online entry and batch update were in-
terrupted when the processing stage transitioned to “applied”.
Incidentally, the other experimental environment is the same
as the first experiment. Figure 10 shows the query results of
the deposit account data at the end of the experiment, which
is in the vicinity of (A’).

Since the intermediate results of “temp” field at this time
remained, the following data was queried. As for the account
number 15 and 16, since the balance was less than 20000, nei-
ther of the batch update and OB update were performed. As
for 17 and 18, since the balance was less than 20000 when
the batch update was performed, the batch update was not
performed. However, since the online entries deposit after
this time, the balance exceeded 20000 and the OB update was
performed. Lastly, as for 19 and 20, both of the batch update
and OB update were performed. Incidentally, in the first ex-
periment result, since the online entries were continued even
after the transition to “applied”, every balance of deposit ac-
counts are grater than 0.

Third, we experimented the case of the abnormal termina-

International Journal of Informatics Society, VOL.8, NO.1 (2016) 35-44 41



tion of the batch update, and the processing stage was transi-
tioned from “pending” to “rollback”, which is shown in Table
1. The purpose of this experiment is to confirm that the dirty
read of the online entry does not occur, even in the case of
the abort and rollback of the batch update. Figure 11 shows
the example of dirty read, and the representations are same as
Fig. 8, and A1 shows the abort of T1. Though T1 was aborted
after updating a, T2 had already queried this updated data.
That is, since T2 was executed using the data, which did not
actually exist, the consistency of its result was not maintained.

We show the result of the third experiment in Fig. 12. Sim-
ilar to Fig. 9, the broken line shows the balance data at the
beginning of this experiment; the solid line shows the data
at the end of this experiment. The former is the same as in
the first experiment. In this experiment, the processing stage
transitioned from ”pending ” to ”rollback” to execute the roll-
back of the batch update, then “temp” field was deleted. As
a result, as for the balance data in the range of (A), only the
deposit of 5000 was executed by the online entries. On the
contrary, the balance data does not change in the range of
(D), which is outside of the online entry. Therefore, there was
no dirty read of the online entries, and the consistency of the
result was maintained. Therefore, the batch update could be
canceled without affecting the online entry.

5 CONSIDERATIONS

First, we consider whether the ACID properties of the trans-
action are maintained by the proposal method. As for the
atomicity, the batch update completes as either of the follow-
ing state: its update results are queried after the processing
stage transits to “applied” as shown in Fig. 9; it is canceled in
the stage of “rollback” without affecting the online entry as
shown in Fig. 12. Therefore, the consistency was also main-
tained, that is, the collection transitions from a consistent state
to another consistent state.

Next, as for the isolation, the batch update updates the dif-
ferent fields from the online entry, and the intermediate results
of each processing are not queried by the other when the pro-
cessing stage is “pending” as shown in Fig. 3. Furthermore, in
the both case of the successful completion and rollback, the
batch update could be executed without affecting the online
entries. So, the isolation is maintained. Lastly, as for the dura-
bility, the integration processing of the online entry and batch
update results is executed when the processing stage is “ap-
plied”. However, since the update results have been already
reflected into the database, the durability is maintained by
database management system of MongoDB. And, the query
results do not change even if this process is interrupted.

Thus, the ACID properties of the transaction can be main-
tained by this method in MongoDB, even if the batch update
is executed concurrently with the online entries. As shown
in Section 3, this batch update corresponds to updating plural
documents in a lump-sum. In other words, the update of plu-
ral documents in MongoDB can be executed as a transaction
concurrently with the update of individual document.

Second, we consider the efficiency, which is the latency on
the online entries by the batch update. As shown in Table 1,
the batch update and online entry update the different fields

from each other while the processing state is not “applied”.
So, the latency does not occur by the concurrency control for
the conflict. On the other hand, since the both update the same
fields, “balance” and “last”, while the processing stage is “ap-
plied”, the concurrency control is needed for these conflicts.
Here, the concurrency control is executed by the optimistic
concurrency control for not only the online entries but also
each individual update of the batch update. Therefore, it can
be executed without a long latency, such as waiting for the
completion of the entire batch update.

In addition, when the processing stage transitions to “ap-
plied”, the batch update itself was already completed and the
online entry is executed using a valid data reflecting the batch
and OB update results. So, for example, in the case where the
batch update is not executed often, its processing in “applied”
can be wait to execute until the frequency of the online entry
becomes less comparatively. Incidentally, in this experiment,
the delays of certain period of time were put in Sync class in
order to prevent the transition of the processing stage during
the updating of the online entry, by a simple way. And, this
causes the latency of the other online entries. As for this issue,
we consider it can be shortened by the immediate transition
after the completion of this online entry.

Third, through our experiments, we found that the differ-
ent concurrency control method from the relational database
can be applied to MongoDB, which is a kind of document
oriented NoSQL database. As for the relational database,
the row lock method is generally used, and a key-range lock
method supports the concurrency control for the wide range
of rows of tables [3]. On the other hand, it is controlled as
an update of the entire row even when a part of the row is
updated. As for MongoDB, in contrast, although there is a
restriction of the concurrency control to update plural docu-
ments collectively, there is no conflict among the update of
the different fields. This shows, while the long-lived trans-
action is updating the large-capacity field such as videos, the
other fields can be updated by the other transactions concur-
rently. In other words, though there is little necessity for the
concurrency control in the NoSQL database now, we consider
the different update model from the relational database will be
necessary according with the spread of its application fields.

Lastly, the update of plural documents in a lump-sum is
often executed in the actual business system operations. In
particular, the case of the experiment in this paper is taken as
a typical example [3]. On the other hand, it had been the prob-
lem in the MongoDB and other NoSQL databases. With the
expansion of the application fields of the NoSQL databases,
it is considered that the request for the data manipulation like
this shall increase, which the lump-sum update is executed as
the single transaction as well as the relational databases. So,
we consider that this method is valid for such a data manipu-
lation.

6 CONCLUSION

Recent years, the utilizations of the NoSQL databases are
spreading. However, there is the problem that the plural ob-
jects cannot be updated with maintaining the ACID proper-
ties of transactions. In this paper, we proposed the lump-sum

T. Kudo et al. / A Lump-sum Update Method as Transaction in MongoDB42



[1] K. Banker, MongoDB in Action, Manning Pubns Co.
(2011).

[2] C.J. Date, An Introduction to Database Systems,
Addison-Wesley (2003).

[3] J. Gray, A. Reuter, Transaction Processing: Concept and
Techniques, San Francisco: Morgan Kaufmann (1992).

[4] Mitsubishi Electric Information Systems Corp., T.
Kudo, Database System, Japan patent 4396988 (2009).

[5] T. Kudo, Y. Takeda, M. Ishino, K. Saotome, and N.
Kataoka, “Evaluation of Lump-sum Update Methods for
Nonstop Service System,” Int. J. of Informatics Society,
Vol. 5, No. 1, pp. 21–28 (2013).

[6] T. Kudo, Y. Takeda, M. Ishino, K. Saotome, and N.
Kataoka, “An implementation of concurrency control
between batch update and online entries,” Procedia
Computer Science, Vol. 35, pp. 1625–1634 (2014).

[7] T. Kudo, Y. Takeda, M. Ishino, K. Saotome, and N.
Kataoka, “Application of a Lump-sum Update Method
to Distributed Database,” Int. J. of Informatics Society,
Vol. 6, No. 1, pp. 11–18 (2014).

[8] D. Laney, “3D Data Management: Controlling
Data Volume, Velocity and Variety,” META
Group (2012) http://blogs.gartner.com/doug-
laney/files/2012/01/ad949-3D-Data-Management-
Controlling-Data-Volume-Velocity-and-Variety.pdf.

[9] H. Garcia-Molina, and K. Salem, “SAGAS,” Proc. the
1987 ACM SIGMOD Int. Conf. on Management of data,
pp. 249–259 (1987).

[10] MongoDB Inc., The MongoDB 3.0 Manual,
http://docs.mongodb.org/manual/.

[11] MongoDB Inc., MongoDB API Documentation for
Java, http://api.mongodb.org/java/.

[12] E. Redmond, and J.R. Wilson, Seven Databases in Seven
Weeks: A guide to Modern Databases and The NoSQL
Movement, Pragmatic Bookshelf (2012).

[13] P.J. Sadalage, and M. Fowler, NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence,
Addison-Wesley Professional (2012).

[14] R. Snodgrass and I. Ahn, “Temporal Databases,” IEEE
COMPUTER, Vol. 19, No. 9, pp. 35–42 (1986).

[15] S.S. Sriparasa, JavaScript and JESON Essentials, Packt
Pub. Ltd. (2013).

[16] B. Stantic, J. Thornton and A. Sattar, “A Novel Ap-
proach to Model NOW in Temporal Databases,” Proc.
10th Int. Symposium on Temporal Representation and
Reasoning and Fourth Int. Conf. on Temporal Logic, pp.
174–180 (2003).

(Received September 29, 2015)
(Revised December 8, 2015)

Tsukasa Kudo received the M.E. from Hokkaido
University in 1980 and the Dr.Eng. in industrial
science and engineering from Shizuoka Univer-
sity, Japan in 2008. In 1980, he joined Mitsubishi
Electric Corp. He was a researcher of parallel
computer architecture, an engineer of application
packaged software and business information sys-
tems. Since 2010, he is a professor of Shizuoka
Institute of Science and Technology. Now, his re-
search interests include database application and
software engineering. He is a member of IEIEC

and Information Processing Society of Japan.

Masahiko Ishino received the master’s degree in
science and technology from Keio University in
1979 and received the Ph.D. degree in industrial
science and engineering from graduate school of
Science and technology of Shizuoka University,
Japan in 2007. In 1979, he joined Mitsubishi Elec-
tric Corp. From 2009 to 2014, he was a professor
of Fukui University of Technology. Since 2014,
he belong to Bunkyo University. Now, His re-
search interests include Management Information
Systems, Ubiquitous Systems, Application Sys-

tems of Data-mining, and Information Security Systems. He is a member
of Information Processing Society of Japan, Japan Industrial Management
Association and Japan Society for Management Information.

International Journal of Informatics Society, VOL.8, NO.1 (2016) 35-44

update method for MongoDB, which is a kind of NoSQL 
database. This method is based on the concept of the tem-
poral update method to execute the batch update as the sin-
gle transaction in the relational databases. Concretely, in this 
method, the results of the following update are stored in tem-
poral fields of the document and only the valid data is queried: 
the batch updates; the online entry; the OB update, which is 
applied the batch update individually to the online entry re-
sult.

And, we showed that the plural documents can be updated 
as the single transaction in MongoDB by this method, even 
while the documents are being updated concurrently by the 
other transactions, that is, the online entries. Furthermore, 
we confirmed that this method achieves the above-mentioned 
function through the experiments using a prototype, which 
intended the deposit account.

Meanwhile, in the actual business systems, large number of 
transactions which update the plural data are executed concur-
rently. So, the future study will be focused on the concurrency 
control of such a update in the NoSQL databases.

ACKNOWLEDGEMNTS

This work was supported by JSPS KAKENHI Grant Num-
ber 15K00161. Also, the motivation of this study is an exten-
sion of our method to the NoSQL database, which has aimed 
to execute the batch update as a transaction in the relational 
databases and has been registered as a patent [4]. We would 
like to appreciate the members of Mitsubishi Electric Infor-
mation Systems Corp. who supported to get this patent.

REFERENCES

43



Kenji Saotome received the B.E. from Osaka Uni-
versity, Japan in 1979, and the Dr.Eng. in In-
formation Engineering from Shizuoka University,
Japan in 2008. From 1979 to 2007, he was with
Mitsubishi Electric Corp., Japan. Since 2004, he
has been a professor of Hosei business school of
innovation management. His current research ar-
eas include LDAP directory applications and sin-
gle sign-on system. He is a member of the Infor-
mation Processing Society of Japan.

Nobuhiro Kataoka received the master’s degree
in electronics from Osaka University, Japan in
1968 and the Ph.D. in information science from
Tohoku University, Japan in 2000. From 1968 to
2000, he was with Mitsubishi Electric Corp. From
2000 to 2008, he was a professor of Tokai Univer-
sity in Japan. He is currently the president of In-
terprise Laboratory. His research interests include
business model and modeling of information sys-
tems. He is a fellow of IEIEC.

T. Kudo et al. / A Lump-sum Update Method as Transaction in MongoDB44




