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Abstract - Bayesian Network, which is a model of proba-
bilistic causal relationship, is an practically important graph-
ical model learned from observation data. To learn a near-
optimal Bayesian network model from a set of observation
data, efficient optimization algorithm is required to search
an exponentially large solution space, as this problem was
proved to be NP-hard. To find better Bayesian network mod-
els in limited time, several efficient approximated search algo-
rithms have been proposed such as genetic algorithms. Among
them, algorithms based on probability vectors such as PBIL
(Population-Based Incremental Learning) are regarded as a
better sort of algorithms to learn superior Bayesian networks
in a practical computation time. However, PBIL has a prob-
lem that it finishes executing when it converges. Namely, after
convergence, it cannot find any better solutions. To solve the
problem, in this paper, we propose PBIL-RS (PBIL-Repeated
Search), which is an improvement of PBIL. In PBIL-RS, if the
search area becomes sufficiently small in the process of con-
verging the probability vector, we in turn spread the search
area and again begin the converging process, repeatedly. We
performed an evaluation of PBIL-RS and showed that it out-
performs the existing algorithms in the PBIL-family. We fur-
ther explored the behavior of PBIL-RS and found several key
behaviors that lead the characteristics to find better solutions.

Keywords: Bayesian Networks, PBIL, Evolutionary Al-
gorithm, EDA, Information Criterion

1 INTRODUCTION

Bayesian Network is used as a probabilistic model to ana-
lyze causal relationship between events from data. Recently,
rapid growth of the Internet and processing speed of comput-
ers have made us possible to analyze the causal relationship
from a large amount of data, and Bayesian Network is one of
the important data analysis methods that are useful in various
research fields with large data such as bioinformatics, medi-
cal analyses, document classifications, information searches,
decision support, etc.

However, there is one difficulty that learning Bayesian Net-
work models is proved to be NP-hard [1]. In other words, so-
Iution space exponentially increases as the number of events
in the Bayesian Network increases. Therefore, several near-
optimal algorithms to find better Bayesian Network models
within a limited time have been proposed so far. Cooper et al.
proposed an algorithm to learn Bayesian Networks called K2
that reduced execution time by limiting the search space [2].
To limit the search space, K2 applies a constraint in the or-

der of events. The order constraint, for example, means that
future events cannot be caused of events in the past. How-
ever, in many practical cases, we cannot assume such an order
constraint. Therefore, to learn Bayesian Networks in general
cases, several approaches have been proposed. Many of them
use genetic algorithms (GAs), which find better Bayesian Net-
work models when we take more time for computation [3]-
[5]. Meanwhile, recently, requirements for large-data analy-
ses arise due to the growth of the Internet. To meet these re-
quirements, more efficient algorithms to find better Bayesian
Network models within smaller time are strongly expected.

On the background above, a number of authors have pro-
posed a new category of algorithms. Those algorithms called
EDA (Estimation of Distribution Algorithm) have been re-
ported to find better Bayesian Network models [6]-[8]. EDA
is a kind of genetic algorithms that evolves statistic distribu-
tions from which we produce individuals over generations.
Namely, EDA is a stochastic optimization algorithm. From
the result of Kim et al., PBIL-based algorithm performed the
best among several EDA-based algorithms [7].

Blanco et al. presented the first PBIL-based algorithm for
Bayesian Networks [9]. They showed that their PBIL-based
algorithm outperforms the traditional K2 algorithms. How-
ever, his algorithm has a drawback that his algorithm easily
falls into local minimum solutions because it does not include
any mutation operation to avoid converging into local mini-
mum solutions. To overcome this drawback, several mutation
operations were proposed for PBIL-based algorithms to learn
Bayesian Networks. Handa et al. introduced bitwise muta-
tion (BM), which apply mutation operations in which each
edge is added or deleted with a constant probability [6]. Kim
et al. proposed transpose mutation (TM) that is designed spe-
cific to Bayesian Networks [7]. This operation changes the
direction of edges in the individuals produced in each gen-
eration. Fukuda et al. proposed a mutation operator called
probability mutation (PM) for PBIL-based algorithms to learn
Bayesian Networks [8]. Probability mutation manipulates the
probability vector to avoid converging at local minimum solu-
tions. These mutation operators improved the performance of
PBIL-based algorithms to learn Bayesian Networks by avoid-
ing local minimum solutions. However, mutation operators
also have a drawback that the searching area jumps to other
areas due to mutations before searching the local areas deep
enough to explore good solutions.

In this paper, we propose a new PBIL-based algorithm called
PBIL-RS (PBIL-Repeated Search), which is an improvement
of PBIL. In PBIL-RS, if the search area becomes sufficiently
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small in the process of converging the probability vector, we
in turn spread the search area and again begin the converg-
ing process, repeatedly. By searching local areas deeply un-
til the probability vector converges into a sufficiently small
area, PBIL-RS improves the performance of PBIL-based al-
gorithms to learn Bayesian Networks. We performed an eval-
uation of PBIL-RS, clarified its characteristics, and showed
the superiority in its performance.

The rest of this paper is organized as follows: In Section 2,
we give the basic definitions on Bayesian Networks and also
describe related work in this area of study. In Section 3, we
propose a new efficient search algorithm called PBIL-RS to
achieve better learning performance of Bayesian Networks.
In Section 4, we describe the evaluation of PBIL-RS, and fi-
nally we conclude this paper in Section 5.

2 PRELIMINARY DEFINITIONS

2.1 Bayesian Network

A Bayesian Network model visualizes the causal relation-
ship among events through graph representation. In a Bayesian
Network model, events are represented by nodes while causal
relationships are represented by edges. See Fig. 1 for a con-
cise example. Nodes X1, Xo, and X3 represent distinct events,
where they take 1 if the corresponding events occur, and take
0 if the events do not occur. Edges X1 — X3 and Xy — X3
represent causal relationships, which mean that the proba-
bility of X3 = 1 depends on events X; and X, . If edge
X1 — X3 exists, we call that X is a parent of X3 and X3
is a child of X;. Because nodes X; and X5 do not have their
parents, they have own prior probabilities P(X;) and P(X5).
On the other hand, because node X3 has two parents X; and
X, it has a conditional probability P(X35|X1, X2). In this
example, the probability that X3 occurs is 0.890 under the
assumption that both X; and X5 occur. Note that, from this
model, Bayesian inference is possible: if X3 is known, then
the posterior probability of X; and X, can be determined,
which enables us to infer more accurately the occurrence of
events.

The Bayesian Networks model can be learned from the data
obtained through the observation of events. Let O = {o;},
(1 < j < 5) be a set of observations, where S is the num-
ber of observations. Let o; = (zj1,2j2,...,2;n) be j-th
observation, which is a set of observed values x;; on event
X, forall i(1 < ¢ < N), where N is the number of events.
We try to learn a good Bayesian Network model 6 from the
given set of observations. Note that, good Bayesian Network
model 6 is the one that creates data sets similar to the origi-
nal observation O. As an evaluation criterion to measure the
level of fitting between 6 and O, we use AIC (Akaike’s In-
formation Criterion) [10], which is one of the best known cri-
terion used in Bayesian Networks. Formally, the problem of
learning Bayesian Networks that we consider in this paper is
defined as follows:

Problem 1: From the given set of observations O, compute
a Bayesian Network model 6 that has the lowest AIC criterion
value.

X PX}) e e X POXG)
0 0.79 0 0.88
1 0.21 e 1 0.12

X, x, OP(Xlel,Xz) 1

0 0 0.999 0.001
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1 1 0.110 0.890

Figure 1: A Bayesian Network Model

2.2 PBIL

Recently, a category of the evolutionary algorithms called
EDA (Estimation Distribution Algorithm) appears and reported
to be efficient to learn Bayesian Network models. As one of
EDAs, PBIL was proposed by Baluja et al. in 1994, which is
based on genetic algorithm designed to evolve a probability
vector [13]. Later, Blanco et al. applied PBIL to the Bayesian
Network learning, and showed that PBIL efficiently works in
this problem [9]. In PBIL, an individual creature s is defined
as a vector s = {vy,v9,...,vr}, where v;(1 < i < L)
is the ¢-th element that takes a value O or 1, and L is the
number of elements that consist of an individual. Let P =
{p1,p2,-..,pr} be aprobability vector where p;(1 < i < L)
represents the probability to be v; = 1. The algorithm of
PBIL is described as follows:

(1) Asinitialization, we letp; = 0.5 forall: =1,2,..., L.

(2) Generate a set .S that consists of C' individuals accord-
ing to probability vector P, i.e., element v; of each in-
dividual is determined by the corresponding probability

Di-

(3) Compute the evaluation score for each individual s € .S
(In this paper we use AIC as the evaluation score).

(4) Select a set of individuals S’ whose members have eval-
uation scores within top C” in S, and update the proba-
bility vector according to .S’ . Specifically, the formula
applied to every p; to update the probability vector is
shown as follows.

new

P = ratio(i) X a+p; x (1 — a), ()

where p}*" is the updated value of the new probability
vector (p; is soon replaced with pl**™), ratio(i) is the
function that represents the ratio of individuals in S’
that include edge ¢ (i.e., v; = 1), and « is the parameter

called learning ratio.
(5) Repeat steps (2)-(4) until P converges.

By merging top-C"’ individuals, PBIL evolves the probabil-
ity vector such that the good individuals are more likely to
be generated. Different from other genetic algorithms, PBIL
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does not include “crossover” between individuals. Instead, it
evolves the probability vector as a “parent” of the generated
individuals.

2.3 PBIL-based Bayesian Network Learning

In this section, we describes a PBIL-based algorithm that
learns Bayesian Network models. Because our problem (i.e.
Problem 1) to learn Bayesian Network models is a little dif-
ferent from the general description of PBIL shown in the pre-
vious section, a little adjustment is required. In our prob-
lem, individual creatures correspond to each Bayesian Net-
work model. Namely, with the number of events NV, an indi-
vidual model is represented as s = {v11, v12,..., V1N, V21,
V22, ..., UN1,UN2, - - -, UNN | Where v;; corresponds to the
edge from an event X; to X, i.e., if v;; = 1, the edge from X;
to X exists in s, and if v;; = 0 it does not exist. Similarly, we
have the probability vector P to generate individual models as
P = {Pu,pm, -3y PIN,P21,P225-- -, PN1,PN2, - - - ,pNN}
where p;; is the probability that the edge from X; to X; exists.
A probability vector can be regarded as a table as illustrated
in Fig. 2. Note that, because Bayesian Networks do not allow
self-edges, p;; is always 0 if ¢ = j. The process of the pro-
posed algorithm is basically obtained from the steps of PBIL,
as described in the following.

(1) Initialize the probability vector P as p;; = 0if i = j,
and p;; = 0.5 otherwise, for each ¢, j(1 < 4,5 < N).

(2) Generate S as a set of C' individual models according
to P. (This step (2) is illustrated in Fig. 3)

(3) Compute the evaluation scores for all individual models
seSs.

(4) Select a set of individuals S” whose members have top-
C’ evaluation values in .S, and update the probability
vector according to the formula (i). (These steps (3)
and (4) are illustrated in Fig. 4.)

(5) Repeat steps (2)-(4) until P converges.

Same as PBIL, the proposed algorithm evolves the proba-
bility vector so that we can generate better individual models.
However, there is a point specific to Bayesian Networks, that
is, a Bayesian Network model is not allowed to have cycles in
it. To consider this point in our algorithm, step 2 is detailed
as follows:

(2a) Consider every pair of events (4, j) where 1 < i,7 < N
and ¢ # j, create a random order of them.

(2b) For each pair (4, j) in the order created in step (2a), de-
termine the value v;; according to P; every time v;; is
determined, if v;; is determined as 1, we check whether
this edge from X; to X creates a cycle with all the
edges determined to exist so far. If it creates a cycle, let
Vij be 0.

(2c) Repeat steps (2a) and (2b) until all the pairs in the order
are processed.
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Figure 2: A Probability Vector

These steps enable us to learn good Bayesian Network mod-
els within the framework of PBIL. Note that the algorithm in-
troduced in this section does not include mutation operators.
Therefore, naturally, it easily converges to a local minimum
solution. To avoid converging to the local minimum solution
and to improve the performance of the algorithm, several mu-
tation operations have been proposed. A mutation operator
called bitwise mutation (BM) was introduced by Handa [6].
BM applies mutations to each edge in each individual with a
certain mutation probability. Kim et al. proposed a mutation
operator called transpose mutation (TM), which is specifically
designed for Bayesian Networks [7]. TM changes the direc-
tion of edges in the individuals produced in each generation.
Fukuda et al. proposed a mutation operator called probabil-
ity mutation (PM) for PBIL-based Bayesian Network learn-
ing [8]. PM manipulates the probability vector to avoid con-
verging at local minimum solutions. These mutations avoid
converging at local minimum solutions, and it improves the
efficiency to learn Bayesian Networks with PBIL-based algo-
rithms.

3 PROPOSED ALGORITHM: PBIL-RS

We propose PBIL-RS (PBIL- Repeated Search), which is
an algorithm to learn Bayesian Networks based on PBIL. To
search for good Bayesian Networks efficiently, we introduce
a new technique instead of mutation operators. Because mu-
tation operators work with a certain mutation probability, they
tend to change the search space before we deeply search the
current search area to explore good solutions. As a result, effi-
ciency of the algorithm decreases by skipping the search areas
where many superior solutions are likely to be buried. In con-
trast, in PBIL-RS, we transit the search space only after we
search the current search area deeply, i.e., only after PBIL-RS
judged that the search space gets converged. With this tech-
nique, we can search deeply the specific space in which supe-
rior solutions would exist while avoiding local minimums.

Figure 5 shows the outline of PBIL-RS. In general, in the
search space of Bayesian Network models, there are many
local minimum points. Because models with similar struc-
tures tend to have similar evaluation scores, superior solutions
would likely be collected at several local areas in the search
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Figure 3: Generating Individuals from Probability Vector

space. Our algorithm PBIL-RS explores these areas with the
following steps: (1) Initially, PBIL-RS sets the search space
as the whole solution space. (2) As the algorithm proceeds
and the generation grows, the search space usually gets smaller
by focusing on an area in which superior solutions would be
likely to exist. When the search space converges to a suffi-
ciently small area, and PBIL-RS judges that the current area
is sufficiently searched out, and (3) PBIL-RS in turn spreads
the search space to explore different local minimum areas.
Here, if the size of the spread search space is not sufficiently
large, it may again fall into the same local minimum area.
In order to avoid this, PBIL-RS spreads it to be larger search
spaces step-by-step. Specifically, the size of the spread search
space is firstly small to search near local minimum areas, and
if we cannot find superior solutions in the next convergence,
we then try to spread to larger search spaces to reach more
distant search areas.

PBIL-RS controls the search space with probability vector
P. Each element p; ; of vector P represents the probability to
have the corresponding edge (i, 7) in the generated Bayesian
Network models. Thus, if each element p; ; approaches to 0
or 1, then naturally we have a probabilistic bias in the struc-
ture of the generated Bayesian Network models: The closer
to 0.5 each element of probability vector P is, the larger the
variation of generated models, and the closer to O or 1 each el-
ement is, the smaller the variation is. Namely, the probability
vector P controls the variation and the bias of the generated
structures of Bayesian Network models. Based on this, for
probability vector P, we define convergence level S as fol-
lows:

5= N(N —1)

(ii)

Generated models §

Step(4).Updating the probability vector

~ = according to the selected models.

p Parent Node
X1 X2 X3 4 Because all the h
X, 00 028 0.24 selected models
04 00 0321~

include edge
X,—= X5, pys
X, 054 (073 Y%v ],

increases.

Child Node
5

Figure 4: Step(3)(4): Updating Probability Vector

Convergence level S takes the average of the difference
between O (or 1) and each element of probability vector P.
Namely, the less this value is, the smaller search space is. In
PBIL-RS, generally convergence level S gets smaller as gen-
eration proceeds. Thus, PBIL-RS spreads the search space
when the search space shrinks to be sufficiently small. To
judge that the search space is sufficiently small, we introduce
the number of search limitation k. Specifically, when conver-
gence level S does not update the smallest value in the past
k generations, i.e., the convergence level S in the k-th last
generation takes the smallest value in the past k£ generations,
PBIL-RS judges that the search space is sufficiently small and
has converged.

When PBIL-RS detects the search space convergence, it in
turn spreads the search space. We define H as the level to
spread the search space. PBIL-RS modifies the probability
vector P to increase the convergence level S to H. Specif-
ically, we choose an element of P randomly, and reset it as
P;; = 0.5. This operation repeats until S < H holds.

In addition, as mentioned previously, we change the value
H dynamically to spread the search space and so avoid con-
verging to the same local minimum areas repeatedly. More
specifically, (a) we firstly initialize H with the initial value
H,in, (b) secondly every time the search space is converged
we increase H by a constant value spread width H;,,., and (c)
lastly when we find the solution that has the best score so far,
we again initialize H with the initial value. This operation
enables PBIL-RS to leave a local area quickly when good so-
lutions would hardly be found, and guide to the bigger search
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Figure 5: PBIL-RS Method

space.

The formal description of PBIL-RS is as follows. Processes
(1)-(iv) are inserted into the steps (4) and (5) described in sub-
section 2.3.

(1) If the Bayesian Network model that has the best score

so far is found, H is initialized by the initial value H,,;, .

(ii) Choose an element p;; in P randomly, and reset it as

(iii) If S < H, then return to step (ii).

(iv) Augment H by spread width H;...

4 EVALUATION

4.1 Purpose of Evaluations

We evaluate PBIL-RS to measure the performance and also
to explore the key behavior of PBIL-RS to find better solu-
tions. In our evaluation, we first clarify that PBIL-RS per-
forms well even if the number of events vary, and next we
investigate the effect of several parameter variables on the
performance. Clarifying the good parameter values would
be helpful for us in determining the parameter values in the
practical scenes. Through these evaluation results, we would
find that the behavior of PBIL-RS is favorable to find better
Bayesian Network models efficiently.

4.2 Performance Comparison with Existing
Methods

We designed our evaluation procedure as follows: We se-
lect Bayesian Network models used in our evaluation. In
this paper, we use two well-known Bayesian Network models
called Alarm Network [11] and Pathfinder [12], where Alarm
Network represents the causal relation among events to mon-
itor patients in intensive care units, and Pathfinder represents
that related to the diagnosis of lymph node diseases. Note
that Alarm Network includes 37 nodes and Pathfinder does

Data set
Observation
No. X | X X5
0 1 0
1 0
3 1 1 1

[ . \
1 Repeatedly determine values of all nodes i
| to generate a data set

.

Figure 6: Generating an Observation Data Set

Table 1: Parameters of PBIL-RS

Parameters

| Values

# of observations 1000
Individuals in a generation (C') 1000
# of selected individuals (C") 10

Learning Ratio («) 0.1
Search limitation (k) 10
Initial spreading level (H ,,;,,) 0.2
Spread width (H ;) 0.05
Evaluation Score AIC

135 nodes. We generate an observation data set from each of
the two models. In a Bayesian Network model, each node has
a set of conditional probability so that we can obtain a set of
values corresponding to all nodes according to the probability.
Figure 6 shows an example of the data set generated from the
example of Bayesian Networks shown in Fig 1, where j-th
row represents an example of j-th observation set o; gener-
ated according to the conditional probabilities of the model.
We generated a data set that consists of 1,000 observations
from each of two models. We use AIC criterion as the evalua-
tion score, which is one of the representative criterion to mea-
sure the distance between the input data set and a Bayesian
Network model.

We perform an evaluation of PBIL-RS in comparison with
existing methods. We compare the performance of PBIL-RS
with K2 that order restriction is evolved by genetic algorithms
(K2-GA) [3], PBIL without mutations, and PBIL with three
different mutation operators BM, TM, and PM. Parameter
values used in the evaluation are shown in Table 1. Note that
the mutation probability for BM, TM, and PM that performs
the best is different for each mutation operators. Thus, we
carefully chose those through preliminary experiments. For
BM we use 0.005 that is the best performance mutation prob-
ability in range [0.001:0.2]. Similarly, for TM and PM, we
use 0.1 and 0.002 that are the best in range [0.001:0.2] and
[0.001:0.009], respectively.

Table 2 shows the comparison result summarizing the value
of AIC calculated by each method. In Table 2, we show the
performance of each method running 500 generations for two
Bayesian Network models. In this result, we use the mean
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Table 2: AIC Values at 500 Generations

Methods Bayesian Network Models
Alarm Pathfinder

(37 events) | (135 events)
PBIL-RS 8536.4 30138.6
PBIL 8627.2 30243.7
PBIL + BM 8563.1 35240.9
PBIL + TM 8654.3 34784.2
PBIL + PM 8582.9 33003.0

K2-GA 13347.7 -

13500

12500

o 11500

Al

10500

9500

8500
0 100 200 300 400 500
Generation

PBIL-RS BM ™ —PM PBIL ---K2_GA

Figure 7: AIC Transition in Case of Alarm Network

of 10 repetitions. Also, in Fig. 7, we show the transition of
AIC values in the case of Alarm Network. From these results,
we found that the PBIL-series methods perform far better
than the traditional K2 although its order restriction is evolved
by genetic algorithms, which proves the excellent ability of
PBIL-based algorithms. Note that we could not compute the
score of K2-GA for Pathfinder because it requires very large
amount of time; it took 650 hours to proceed only 45 genera-
tions, whereas PBIL-RS took only 3 hours.

We also found that PBIL-RS has the best performance among

those PBIL-based algorithms. This is because PBIL cannot
continue searching after convergence (e.g., it finishes running
at 160 generations in Alarm and 302 generations in Pathfinder),
while BM, TM, and PM frequently change the searching area
before exploring there deeply.

In Table 3, we show the execution time of those algorithms
for 500 generations. PBIL finished in especially short time,
which is because it finishes execution whenever the search
space converges. On the other hand, K2-GA takes very long
time because of large searching time of K2 algorithm. Ex-
cept for those two, we found that the execution time of the
variations of PBIL are comparable.

Table 4 shows the variance of AIC scores at the 400th gen-
eration with 10 repeated executions. From this result, we
found that the variance of PBIL-RS is the smallest in both

Table 3: Computation Time (sec) for 500 Generations

Methods Bayesian Network Models
Alarm Pathfinder

(37 events) | (135 events)
PBIL-RS 8914.9 125195.6

PBIL 2791.9 75618.1
PBIL + BM 7992.4 156114.0
PBIL + TM 7920.7 161241.2
PBIL + PM 8724.9 142665.1
K2-GA 474327.0 -

Table 4: Variances of AIC Values at 400 Generations

Methods Bayesian Network Models
Alarm Pathfinder
(37 events) | (135 events)
PBIL-RS 508.3 43594.1
PBIL + BM 2708.1 56006.6
PBIL + TM 7458.2 235816.8
PBIL + PM 2498.9 108321.9

Alarm and Pathfinder, meaning that PBIL-RS most stably com-
putes good solutions.

As above, we showed that PBIL-RS has the best perfor-
mance among the methods compared in this evaluation. In the
following sections, we examine the effect of several essential
parameters on the performance of PBIL-RS, and investigate
the key behavior of PBIL-RS that contributes to the superior
ability.

4.3 Effect of Learning Ratio o

We examine the effect of two essential parameters through
several evaluations. First, we focus on the effect of Learning
Ratio a. We execute PBIL-RS with several learning ratios in
range [0.05:0.7], and compare AIC values of Bayesian Net-
work models.

Figure 8 shows the transition of AIC scores of each Bayesian
Network models as generation proceeds. In Fig. 8, we show
the average AIC values of 30 repetitions, where the horizontal
axis represents generations, and the vertical axis represents
the best AIC score found as generation proceeds. Also, in
Fig. 9, we show the AIC scores at 500th generation for each
learning ratios.

From those results, we found the property that the final AIC
scores are better when learning ratio « takes lower values.
Simultaneously, however, if « takes lower values, the speed
to find better solutions goes slower than the case of higher
a. From this trade-off, we found that lower learning ratio « is
better, but if we have limitation on the executable generations,
we have to determine « carefully.

4.4 Effect of Spreading Level /7

PBIL-RS increases the spreading level step-by-step to search
larger search spaces to avoid falling into the same local mini-
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Figure 8: AIC Values under Variation of Learning Ratio «

mum area. In this section, we clarify the relationship between
spreading level and the similarity of the Bayesian Network
model structures in PBIL-RS. Also, by focusing on the con-
vergence point of probability vector P, we find the key prop-
erty of PBIL that show the superior performance of PBIL-RS.

Recall that each element p;; of the probability vector gets
closer to 0 or 1 as the algorithm proceeds and generation
grows. In most cases, p;; actually converges to 0 or 1, where
P always generate the same individual. Thus, we can regard
each convergence point as a string of binary digits. We mea-
sure the similarity of two convergence points using Hamming
distance of the corresponding strings in order to grasp the dis-
tribution of the convergence points under various values of the
spreading level.

We examine the distance among convergence points under
variation of spreading levels. Specifically, we varied the ini-
tial spreading level H,,;, in [0.05:0.45] under fixed spread
width H;,. = 0, and ran PBIL-RS with 1000 generations
to examine the Hamming distance between every pair of the
convergence points in a single run. Figure 10 shows the re-
sult as a box plot where the above and the below of the boxes
show the maximum and minimum values, and the top and the
bottom of the boxes show the values of the first and third quar-
tiles of all the data. From Fig. 10, we see that the spreading
level is clearly related to the Hamming distance between the
convergence points, meaning that large spreading levels has
an ability to change search space and to avoid converging to
local minimum areas.

Next, we examine the behavior of the algorithm, especially
on the timing at which good models are found. We ran PBIL-
RS for 1000 generations with parameter values H,,;, = 0.2
and H;,. = 0. Figure 11 shows the result where the line
represents the transition of convergence level S and the dot-
ted points represents the timing where the best model is up-
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Figure 10: Hamming Distances among Convergence Points
under Variation of Spreading Levels

dated. From Fig. 11, we see the basic behavior of PBIL-RS
such that each time P converges it spreads the search space.
Please pay attention to the behavior of PBIL-RS that the point
it updates the best models is concentrated on where the con-
vergence level S is very small. Figure 12 is the scatter dia-
gram that shows the distribution of the updated points. Each
dotted point represents the updated point, and the horizontal
axis shows the the updated amount of AIC, i.e., the differ-
ence between the new AIC value and the previous one. From
Fig. 12, one sees that the best Bayesian Network model is
updated when convergence level S is in the range of small
values [0.0005:0.015]. The above results have clarified that
deep exploration of local areas is an efficient strategy to find
good Bayesian Network models.

4.5 Behavior in Varied Spread Level

In the previous section, we found two important properties
of PBIL-RS that, first, large spread levels have an ability to
avoid local minimum areas, and second, deep exploration of
alocal area is a preferable strategy to find good models, which
support the superior performance of PBIL-RS.

In this section, we examine the behavior of the original
PBIL-RS in which the value of spreading width is varied. We
ran PBIL-RS in 3000 generations. Figure 13 shows the result



22 Y. Yamanaka et al. / PBIL-RS: Effective Repeated Search in PBIL-based Bayesian Network Learning

0.5

0.25

Convergence level S

0 —
0 200 400 600 800 1000

Generation
—Convergence level S Timing of solution update

Figure 11: Transition of Convergence Levels, and the Up-
dated Timing

0.1

0.05

Convergence level S

".. “ig .. :.'g,. o T
o KRR
0 5 10 15 20
Difference of AIC value

Figure 12: Convergence Levels at Each Update Point

where the line shows the transition of convergence levels as
generation proceeds, and the dotted points shows the timing
at which the best model is updated. From Fig. 13, we see that,
as we found in the previous section, PBIL-RS finds the best
model when the spread level comes to be low, and PBIL-RS
continues finding better models even around 3000th genera-
tions by changing the exploring areas adaptively. We con-
clude that the good properties found in the previous section
also work in the original behavior of PBIL-RS in which the
convergence level is changed adaptively.

S CONCLUSION

In this paper, we proposed a new algorithm called PBIL-
RS, which is an algorithm to learn Bayesian Network models.
PBIL-RS is an extension of PBIL that avoids convergence to
local minimum solutions by means of spreading the search
space repeatedly whenever it converges to a small area. Note
that PBIL-RS is somewhat similar to the simulated anneal-
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Figure 13: Behavior of PBIL-RS in Changing Convergence
Levels

ing, but PBIL-RS is different from it in that PBIL-RS uses
statistic property to find good solutions whereas the simu-
lated annealing uses only the random effect. We evaluated
the performance of PBIL-RS in comparison with existing al-
gorithms, and we showed that PBIL-RS outperforms other
existing algorithms regardless of the number of nodes in the
Bayesian Network models used in the evaluation. In addition,
we showed that the learning ratio significantly effects on effi-
ciency of the algorithm, which clarified that selecting suitable
learning ratio according to the planned execution time is im-
portant. Moreover, by examining the behavior of PBIL-RS,
we verified that it properly controls the search space depend-
ing on the situation, and which leads to the superior perfor-
mance.

As future work, more extensive evaluation using various
Bayesian Network models is important. Especially, we would
like to apply the models that include several thousands of
nodes.
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