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Abstract - Because phenotypes of living creatures are ex-
pressed reflecting on interactions among genes and proteins,
relations among phenotypes and proteins (or genes) have been
regarded as a key issue to be clarified to understand the sys-
tem of creatures. In this paper, we try to find the relation
among two proteins A, B, and a phenotype P, where there is a
group of samples G, whose expression levels of A and B are
both close to one another, and they always have close values
of P. In this paper, we propose a method to extract a pair of
proteins that effect on a target phenotype, from a dataset that
consists of protein expression profiles and phenotype values.

Keywords: Proteomic Analysis, Two-Dimensional Elec-
trophoresis, Phenotype, Expression Profile, Data Mining

1 INTRODUCTION

After the entire human DNA sequence was made public,
many post-genome researches started to investigate the sys-
tems of living creatures. Proteome analysis is a field of such
a post-genome research. The proteome analysis is a research
field to analyze comprehensively the entire protein sets, in
which functions and interactions of proteins that maintain liv-
ing creatures are actively investigated.

As a method in proteome analyses, there is a technique
called 2D electrophoresis [1]. The 2D electrophoresis enables
us to measure expression levels of thousands of proteins in a
biological tissue simultaneously. From the protein expression
profiles obtained by the technique, we can clarify the func-
tions and the interactions of proteins.

In many researches, major goal of researchers is to iden-
tify proteins that effect on a certain phenotype. For this pur-
pose, a method for discovering the relationship between one
protein and one phenotype is often used. One of the most
basic methods is to calculate the correlation coefficient be-
tween protein expression levels of a protein and values of a
phenotype item. Relationship between two items can be re-
vealed by a relatively simple statistical method. However, the
correlation coefficient evaluates only the liner relationship be-
tween two items. In contrast, Qu, et al. proposed a method
to discover the nonlinear relationship between a gene and a
phenotype using orthogonal polynomials [2].

On the other hand, there are a few researches that try to dis-
cover relationships in which more than one proteins effect on
one phenotype. Zhang, et al. studied the interaction among
a triplet of genes by comparing the correlation coefficients of
genes A and B between two cases where another gene C ex-
presses and does not express [3]. As another method, Inoue,

et al. developed an algorithm to predict interactions among
three proteins A, B and C based on correlation coefficient [4],
and Fujiki, et al. developed an algorithm to predict interac-
tions among three proteins A, B and C based on conditional
probability [5]. If we regard C as a phenotype, those methods
can be used to investigate the relationship between proteins
and phenotypes.

In this paper, we propose a new method to detect interac-
tions from different approaches. Specifically, we try to find
the relation among two proteins A, B, and a phenotype P,
where there is a group of samples G, whose expression levels
of A and B are close to one another, and they always have
close values of P. We evaluate the proposed method by apply-
ing the proposed method to the real data set.

Note that, to the best of our knowledge, this study is the
first study that tries to find a set of two proteins that effect on a
phenotype by finding a group of samples G whose expression
levels of proteins A and B are close to one another that also
have close values of a phenotype P.

The remainder of this paper is organized as follows. In
Section 2, we describe the relation among two proteins and a
phenotype assumed in this paper. In Section 3, we describe
the proposed algorithm in detail. In Section 4, we evaluate our
method by applying it to a real protein expression profile and
a data set of phenotype. Finally, in Section 5, we conclude
our study.

2 THE RELATIONSHIP BETWEEN
PROTEINS AND PHENOTYPE WE
SUPPOSE

2.1 Phenotype of Creature
Phenotype is a character that a creature has. For example,

phenotype is an individual’s traits, such as a size of body, a
color, a pattern, etc. It is generally said that phenotype is
largely determined by genes, but also considerably depends
on growth environment of individuals. Many researches try
to investigate the system of creatures that determines pheno-
types. Such kind of researches are especially valuable when
they target on several economically important phenotypes.
For example, beef marbling scores and carcass weight of Wagyu
beef have direct impact on the economical price of beef.

2.2 Protein Expression Profile
Protein expression levels are the amount of each proteins

included in a biological sample. The protein expression levels

ISSN1883-4566 © 2015 - Informatics Society and the authors. All rights reserved.

International Journal of Informatics Society, VOL.7, NO.3 (2015) 115-122 115



Expression level of protein A!

E
x

p
re

ss
io

n
 l

ev
el

 o
f 

p
ro

te
in

 B
!

P
h

en
o

ty
p

e 
v

al
u

es
!

Low!

High!

Figure 1: Example of Area That We Want to Demand.
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Figure 2: Good or Bad Shape of Area.

are typically measured by the 2D electrophoresis method [1].
This method is used for protein expression measurement widely.

The 2D electrophoresis is a method to separate proteins
with 2-dimensions through two steps of electrophoresis. Gen-
erally, proteins are separated with isoelectric point in the first
dimension, then they further are separated by molecular weight
in the second dimension. Typically, the number of proteins in-
cluded in a profile ranges from several hundred to thousands.

The expression profiles are the data that consists of expres-
sion levels of proteins included in a biological sample. The
expression profiles are obtained by 2 steps. First, we obtain
a 2D electrophoresis image through the 2D electrophoresis
experiment. Second, we measure the areas of the islands re-
vealed by the first step using image processing techniques.

2.3 Relationship of Two Proteins and A
Phenotype We Suppose

We suppose two proteins that effect on a phenotype. In
this paper, we try to find the relation among two proteins A,
B, and a phenotype P, where there is a group of samples G,
whose expression levels of A and B have close values a and b
with each other, and they always have close value p of P.

Figure 1 shows an example of this relationship. We con-
sider a 2-dimensional plane that has two axes of expression
levels of proteins A and B. Each sample is plotted in this
plane, and the deepness of the color of the samples repre-
sents phenotype values (i.e., samples with deep color repre-
sent high phenotype values and those with light color repre-
sent low phenotype values). Here, if there are no relationship
among those two proteins and the phenotype, the distribution
of the color of the samples would be uniform, i.e., the sam-
ples with various colors are plotted uniformly. In contrast,

Table 1: Data Format of Protein Expression Profiles.

Sample ID 
Protein ID!

A! B! C! "!

1! 0.000582! 0.000107! 0.000541! "!

2! 0.000563! 0.000111! 0.000458! "!

3! 0.000495! 0.000126! 0.000333! "!

…! …! …! …! …!

Table 2: Data Format of Phenotype Data Set.

Sample ID 

Phenotype!

Beef 

Marbling 

Standard!

Carcass 

Weight!
Rib-eye Area! "!

1! 4! 422.7! 44! "!

2! 9! 470.7! 53! "!

3! 7! 433.5! 50! "!

…! !! !! !!

…!

if some relationships exist, it is thought that the distribution
would not be uniform. In this paper, as shown in Fig. 1, we
extract the area in which all the samples have close phenotype
values. We consider that the existence of such areas indicates
the relationship between proteins and phenotype. Namely, by
extracting such areas, it is possible to estimate the combina-
tion of two proteins and the expression levels that control a
phenotype.

3 EXTRACTION METHOD OF AREA
WITH CLOSE PHENOTYPE VALUES

3.1 Format of Input Data

We use two sets of input data in the proposed method. One
is a protein expression profile and the other is a set of phe-
notype data. We assume that the protein expression profile
is obtained from the 2D electrophoresis experiment. The ex-
pression profile consists of the expression levels of each pro-
tein contained in each biological sample. We let i(1 ≤ i ≤ I)
be a sample, and let j(1 ≤ j ≤ J) be a protein. Then, the
expression level eij of a protein j included in a sample i is a
real value. We show an example of the expression profile in
Table 1.

We assume that a phenotype data set is represented by a
table. Then the phenotype data set consists of the real val-
ues that represent the degree of phenotype (hereafter, we call
them the phenotype values). We let p(1 ≤ p ≤ P ) be a
phenotype, and the phenotype value pi of a phenotype p in-
cluded in a sample i is a real value. We show an example
of the phenotype data set in Table 2. This example shows a
case of brand cattle, in which we have BMS (Beef Marbling
Standard), carcass weight, rib-eye area, etc. as phenotypes.

3.2 Areas That We Wish to Extract

In this paper, we extract a pair of proteins A and B that
effect on a target phenotype p, by finding an area in which
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Figure 3: Overview of Our Proposed Method.

there is a set of samples whose expression levels of A and B
are close to one another that also have close values of p on the
2-dimensional plane. In this section, we describe the criteria
that the area should satisfy.

We consider two criteria with which we evaluate areas.
Two criteria are on the phenotype values, and on the shape
of the area, respectively. First, we describe the criterion on
the phenotype values included in the area. It is required that
the variance of the phenotype values included in the area is
significantly smaller than those of all samples. Namely, it
means that the samples that take a narrow range of phenotype
values are included in it.

Next, we describe the criterion on the shape of the area.
The criterion on shape is that the shape does not have big
unevenness on a boundary line, i.e., the shape is “not warped”
or “distorted”. Namely, in this paper, we regard the circle as
the best shape, whereas we regard the “warped” shape as bad
shape. (See Fig. 2). Without this criterion, i.e., if an area is
allowed to be any shape, we can extract areas of any distorted
shape by choosing arbitrary samples freely that have close
phenotype values. By limiting shape of areas, we can evaluate
the area properly based on the sample distribution.

3.3 Overview of Proposed Method
We designed an algorithm to find the area that holds the cri-

terion we described in Section 3.2. Note that the problem we
treat is a combinatorial optimization problem whose search
space is exponentially large so that we can hardly find the op-
timal solution. Thus, we designed our algorithm as a greedy
one that explores areas from a small one by expanding it grad-
ually with the best samples that forms the best areas at that
time. We describe the overview of the proposed method as
follows. (See Fig. 3 in parallel.)

(a) We select one phenotype to analyze (Fig. 3(I)).

(b) We compose all the possible pairs of proteins for the phe-
notype selected in step (a) (Fig. 3(II)).

(c) We generate an adjacency graph from the samples on a
2-dimensional plane whose two axes are the expression
levels of proteins A and B (Fig. 3(III)). We generate the

adjacency graph as the Delaunay graph. We will give a
short explanation of the Delaunay graph in the following
Sections 3.4.

(d) We repeat extending the area using the graph that is gen-
erated in step (c) (Fig. 3(IV)). We start with the area that
includes one arbitrarily sample (we call this sample start-
ing sample). Then, we repeat extending the area with the
most suitable samples until it comes to contain all sam-
ples. We perform this process from every starting sample.
We describe this extending process in the following Sec-
tion 3.5.

(e) We calculate the variance of the phenotype values for all
the areas throughout the extending process i.e., we calcu-
late the variance every time after extending the area with
one sample. Then, for each individual area, we calculate
its z-value (we call it the area-score) that indicates the
statistical probability that the value of the variance oc-
curs (Fig. 3(V)). We extract the areas whose area-score is
greater than the threshold. We describe about the calcu-
lating area-score in the following Section 3.6.

3.4 Step(c): Generating the Adjacency Graph
from Samples

In this Section, we explain the algorithm to generate the ad-
jacency graph from the samples on the 2-dimensional plane.

First, we generate a Voronoi diagram [6] on the 2-dimensional
plane. A Voronoi diagram (Fig. 4) is a diagram obtained by
dividing space into a number of areas. The boundary lines
(dotted lines) between samples are composed of perpendicu-
lar bisectors between two samples. The plane is divided into
areas (called Voronoi area) corresponding to each sample by
the boundary line.

By connecting every pair of samples corresponding to two
adjacent Voronoi areas, the Delaunay diagram (Fig. 5) that
represents the adjacency among samples is generated. Then,
we let N(i) be the sample set adjacent to sample i.
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Figure 4: Volonoi Diagram.
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Figure 5: Delaunay Diagram.

3.5 Step(d): Extension of Areas
3.5.1 Overview of Extension Algorithm

We describe an algorithm to extend the area we wish to
extract. We show the overview of the process as follows.

(1) An initial area consisting of one sample is determined by
selecting a starting sample arbitrarily.

(2) We select a set of extension candidate samples from the
samples that are adjacent to the current area so as not to
make the shape of the extended area distorted.

(3) We select an extension sample from the set of extension
candidate samples and extend the area by adding this ex-
tension sample．

(4) If the area does not include all samples, we return to (2)．

Our algorithm searches for good areas through the process
that expands an area by adding samples one by one greed-
ily. Thus, the result largely depends on selection of starting
samples. So, as for (1), the strategy to select starting sam-
ples should be determined according to the practical require-
ments. For instance, if users are interested in retrieving areas
in which high-value samples are collected, it is recommended
to start with high-value samples. Similarly, users may bene-
fit from starting with low-value or middle-value samples for
some cases. The strategy should be determined according to
the situation. As for (2) and (3), details are described in the
following sections 3.5.2 and 3.5.3, respectively.

3.5.2 Method to Select Extension Candidate Samples

In this Section, we explain the method to select the set of
extension candidate samples mentioned in Section 3.5.1 (2).
We let C be a set of extension candidate samples, and let D
be the current area. C is a set of samples that satisfy condi-
tions (i) and (ii) among the samples that is adjacent to D. We
prevent extensions from creating donut-shape by setting these
conditions as follows.

(i) Candidate sample must be adjacent to more than one
samples that are included in D.

(ii) Samples on the boundary of D adjacent to the candidate
sample must be continuous on the boundary.

We explain that the area does not become donut-shape us-
ing an example. In the area shown in Fig. 6, the samples that
are surrounded by a black square are the samples that satis-
fies condition (i). Among them, the X-marked sample does
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Figure 6: Conditions of Extension Candidate Sample.

not satisfy the condition (ii) because the three samples on the
boundary line of D adjacent to this X-marked sample are not
continuous on the boundary line. If we add this X-marked
sample to D, the area that is extended becomes the donut-
shape.

3.5.3 Method to Select Extension Sample

We explain the algorithm to select a extension sample men-
tioned in Section 3.5.1. An extension sample is the sample
that is the most desirable to be added to D from a set of ex-
tension candidate sample. As described in Section 3.2, the
sample that is the most desirable is the sample that satisfies
the two criteria on the phenotype values and on the shape of
the area, respectively.

We describe the steps to select the extension sample from
the extension candidate sample set C. First, we calculate the
shape-cost T (x) for every extension candidate sample x ∈ C.
T (x) evaluates the shape of the area that is created by adding
the sample x to the current area D. Now, we let Dx be the
area that is created by extending D with x. The less T (x) is,
the more the shape of Dx is distorted.

Next, we calculate the phenotype-cost Z(x) to evaluate the
phenotype value of the samples included in Dx. If Z(x) is
small, the phenotype value of x take a value close to the sam-
ples in D, and x would not increase the variance of the phe-
notype values of samples included in D. Therefore, we select
the extension sample x such that Z(x) is the smallest in C,
and satisfy T (x) ≥ Tthresh, where Tthresh is the threshold to
the T (x). Here, we consider the shape of the area that satis-
fies T (x) ≥ Tthresh to ensure the area has a good shape. If
there is no x to satisfy T (x) ≥ Tthresh we regard x such that
Z(x) is the smallest in C as the extension sample.

We explain the method to calculate the shape-cost T (x).
We calculate T (x) based on the ratio between the boundary
length of Dx and the area of Dx. In general, if the area is the
same, the boundary length is shorter when the shape is close
to circle. We calculate T (x) using this property. First, we
let Lx and Sx be the length of the boundary line and the area
of Dx, respectively. Here, the radius rx of the circle whose

circumference is just Lx is written as rx =
Lx

2π
. Similarly,

the radius r′x of the circle whose area is just Sx is written as

r′x =

√
Sx

π
. Finally, We define T (x) as the ratio of rx and r′x
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as follows:

T (x) =
r′x
rx

=
2
√
πSx

Lx
.

Note that, T (x) takes a value between 0 and 1, and the larger
T (x) is, the closer the shape is to a circle.

The phenotype-cost Z(x) evaluates the variance of pheno-
type values included in Dx, which is created by extending D
with x. We calculate Z(x) as the z-value, which is known as

a kind of statistic. Z(x) is defined as Z(x) =

∣∣∣∣px − µx

σx

∣∣∣∣ ,
where px is the phenotype value of x, and µx and σx are the
average and the standard deviation of the phenotype values of
samples in Dx. Note that, Z(x) represents the amount of dif-
ference between the phenotype value px and the average µx

of phenotype values in Dx, which is measured as the number
of the unit value σx. If the absolute value of Z(x) is small,
it means that px is close to the phenotype values of samples
in Dx. Namely, if we add such px to D, the variance of D
would not be increased.

3.6 Step(e) Calculating Area Score
In this Section, we explain the retrieval of the areas we wish

to extract.
In this paper, we wish to extract the area with small vari-

ance of the phenotype values of the samples in the area. How-
ever, in general, if the number of samples in the current area is
low, the variance is small. Therefore, in this paper, in order to
retrieve the good area under variation of the number of sam-
ples, we calculate the variance of every area throughout our
process to extend areas, and aggregate the variance of all the
areas. Then, we judge whether each area is the one we wish
to extract, by calculating the area-score of each area as a rel-
ative “position” of its variance in the distribution of variances
of all areas that includes the same number of samples.

Now, we let (i1, i2) (1 ≤ i1 < i2 ≤ J) be the pair of
proteins, and let n (1 ≤ n ≤ I) be the number of samples in
the area. We suppose the extending process of the area with
a starting sample m on the plane whose axes are two proteins
(i1, i2). Here, we define the area where number of samples in
the area is n as D(n)

m,(i1,i2)
. Note that, D(n)

m,(i1,i2)
is determined

uniquely by n, m and (i1, i2). Now, we let pi be the phe-
notype value of sample i (i ∈ D

(n)
m,(i1,i2)

), and E[D
(n)
m,(i1,i2)

]

and V [D
(n)
m,(i1,i2)

] be the average and the variance of the phe-

notype values of samples in D
(n)
m,(i1,i2)

.
We explain the method to calculate the area-score. First,

we calculate E[D
(n)
m,(i1,i2)

] corresponding to combination of
n, m and (i1, i2) as follows:

E[D
(n)
m,(i1,i2)

] =
1

n

∑
i∈D

(n)

m,(i1,i2)

pi.

Similarly, we calculate V [D
(n)
m,(i1,i2)

] as follows:

V [D
(n)
m,(i1,i2)

] =
1

n− 1

∑
i∈D

(n)

m,(i1,i2)

(pi − E[D
(n)
m,(i1,i2)

])2.

Next, we calculate the average µn and the standard devia-
tion σn of V [D

(n)
m,(i1,i2)

] with all areas whose number of sam-
ples in the area is n as follows:

µn =
1

|M | × J(J − 1)/2

∑
m∈M

∑
1≤i1<i2≤J

V [D
(n)
m,(i1,i2)

],

σn =

√√√√∑
m∈M

∑
1≤i1<i2≤J(V [D

(n)
m,(i1,i2)

]− µn)2

|M | × J(J−1)
2 − 1

.

Finally, we calculate the z-value for the variance V [D
(n)
m,(i1,i2)

]

of each area using µn and σn as the area-score R(n)
m,(i1,i2)

. The

area-score R
(n)
m,(i1,i2)

is defined as follows:

R
(n)
m,(i1,i2)

=
V [D

(n)
m,(i1,i2)

]− µn

σn
.

If R
(n)
m,(i1,i2)

is small, it means that the area rarely appears

statistically. Therefore, we expect the area D
(n)
m,(i1,i2)

whose

are-score R(n)
m,(i1,i2)

is small enough for the output of the pro-
posed method. For such areas D, we suppose there would be
an interaction among two proteins i1, i2, and the phenotype.

4 EVALUATION AND DISCUSSION

4.1 Evaluation Method

We evaluate the proposed method by applying it to real pro-
tein expression profiles and a phenotype data set obtained by
the author’s collaborative work in Wakayama [7]. The protein
expression profiles that we use in our evaluation are obtained
by a 2D electrophoresis-based experiment [8].

A measurement error occurs in the measurement of the
protein expression levels. Therefore, we performed 2D elec-
trophoresis twice for each sample to confirm the accuracy of
each electrophoresis experiment. From the result of the du-
plicated measurement, we removed the values considered to
be low reliability from expression profiles. Specifically, we
measured two expression values for each pair of a protein and
a sample. If the larger expression level is larger than 1.3 times
the value of the smaller expression level, we consider the ex-
pression level for the protein and the sample to be a null value
as they are not reliable. Otherwise, the average of the two
expression levels is used for each sample-protein pair. As a
result, the expression profiles used for our evaluation consist
of 90 samples and 47 proteins. In addition, the expression
profiles are standardized in advance so that the average and
the standard deviation of the expression levels with each sam-
ple are 0 and 1, respectively.

We performed an evaluation using “Carcass weight” as an
important phenotype among many items included in the phe-
notype data set of beef cattle. As a pre-processing, we also
standardized the phenotype data.

In order to evaluate the performance of the proposed method,
we implemented a simple method to extend areas to be com-
pared with the proposed method. The simple method is the
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method that replaces the extension algorithm explained in Sec-
tions 3.4 and 3.5. The simple method adds a sample that is
close in the Euclidean distance to the start sample m to the
current area D

(n)
m,(i1,i2)

. Consequently, the shape of the area

D
(n)
m,(i1,i2)

that is obtained by the simple method is nearly a
circle centered on the start sample m. Thus, the simple al-
gorithm is equivalent to the algorithm that retrieves the best
circular areas in the plane.

We evaluate the performance of the proposed method by
comparing it with the simple method by calculating the vari-
ance V [D

(n)
m,(i1,i2)

] and the average E[D
(n)
m,(i1,i2)

].
Here, we describe the parameters in the evaluation experi-

ment. We determined the threshold of the shape-cost T (x) as
Tthresh = 0.7 through a careful preliminary experiments to
find a balancing point under the trade-off between the shape-
cost and the area-score, and we set the number of samples
in the area between 20 and 40 in order to ensure the reliabil-
ity of the variance of the phenotype values in D

(n)
m,(i1,i2)

. In
addition, as the starting sample m, we use the sample whose
phenotype value is within the bottom 10% among all samples.
As actual requirements, because it is expected to extract the
areas whose samples have low phenotype values, we confirm
that the proposed method extracts the area whose phenotype
value is low.

4.2 Result and Discussion

Tables 3 and 4 show the results of the ranking of top 10
combinations of proteins with respect to the area-scores. Ta-
ble 3 is the result of the case where we applied the proposed
method to the expression profiles and the phenotype data. On
the other hand, Table 4 is the result of the simple method.
These tables include the columns of protein ID of proteins
A and B, the number of samples in the area, the area-score,
V [D

(n)
m,(i1,i2)

] and E[D
(n)
m,(i1,i2)

]. Note that, in Table 3 and
Table 4, we leave only the best area out of the same protein
pairs.

These results show that both V [D
(n)
m,(i1,i2)

] and E[D
(n)
m,(i1,i2)

]
in the proposed method are smaller than those in the sim-
ple method. It was found from the result that the proposed
method could extract areas better than the simple method. In
order to confirm it in detail, Fig. 7 shows the scatter plots
of the ranking of the top 50 areas extracted by the proposed
method and the simple method. The vertical axis represents
E[D

(n)
m,(i1,i2)

] and the horizontal axis represents V [D
(n)
m,(i1,i2)

].

As is apparent from Fig. 7, both E[D
(n)
m,(i1,i2)

] and V [D
(n)
m,(i1,i2)

]
extracted by the proposed method is found to be lower values
than those of the simple method. From these results, we con-
firmed that the phenotype values of the areas extracted by the
proposed method are lower than those extracted by the sim-
ple method, and the samples included in the area have close
phenotype value each other. In other words, it can be said that
the proposed method can extract “good area,” compared with
the simple method.

Next, we confirm whether the shape of the area extracted
by the proposed method is “good shape” or not. As a typical
example of the extracted areas, we show the shape of the rank-

Table 3: Ranking of Areas with Proposed Method.

Ranking Protein A Protein B
Number of

samples Area score
Variance
in area

Average
in area Shape score

1 3899 4491 39 -2.7545 0.2510 -0.5539 0.7003

2 5639 5735 31 -2.5615 0.1862 -0.6034 0.7012

3 3648 4491 38 -2.4033 0.3012 -0.4405 0.7057

4 828 5733 36 -2.3852 0.2832 -0.3981 0.7002

5 3648 5727 40 -2.3596 0.3283 -0.3444 0.7010

6 3899 3598 30 -2.3408 0.2153 -0.5549 0.7175

7 4491 5727 29 -2.3014 0.2090 -0.7281 0.7058

8 5636 5654 38 -2.3002 0.3193 -0.4944 0.7001

9 3648 5726 38 -2.2910 0.3209 -0.4495 0.7276

10 4491 5730 40 -2.2879 0.3406 -0.3662 0.7060

Table 4: Ranking of Areas with Simple Method.
Ranking Protein A Protein B

Number of
samples Area score

Variance
in area

Average
in area

1 3648 4491 31 -2.9546 0.3939 -0.3227

2 4491 5657 40 -2.8999 0.5544 -0.2364

3 4491 5688 40 -2.8186 0.5688 -0.2780

4 4491 5686 39 -2.8077 0.5571 -0.2671

5 4491 5721 26 -2.8066 0.3203 -0.4939

6 828 5660 38 -2.8003 0.5436 -0.1725

7 4491 5724 39 -2.6507 0.5856 -0.3966

8 4491 5734 36 -2.6493 0.5437 -0.2875

9 828 4991 40 -2.6394 0.6005 -0.2203

10 5637 5644 25 -2.6194 0.3477 -0.4936

1 area in Fig. 8.
Figure 8 shows the scatter diagram of the rank-1 area in

Table 3. The horizontal axis and the vertical axis represent
the standardized expression levels of protein A and B, respec-
tively. The shape-cost of the area is 0.7003, which is the value
close to threshold Tthresh = 0.7. We found that this area is
close to a circular shape to same extent and is allowable as an
area. That is, the shape of this area extracted by the proposed
method is “good shape.”

Then, we see whether this area is a “good area” or not by
examining the phenotype value of the samples in the rank-1
area in Table 3. Figure 9 shows the histogram of the phe-
notype values included in the area, and a histogram of the
phenotype values of all samples. The vertical axis represents
the number of samples and the horizontal axis represents the
carcass weight. Since the carcass weight has been standard-
ized, the average of the carcass weight of all samples is 0,
and the variance is 1. The phenotype values in the extended
area are distributed in a relatively narrow range between -
1.5 and 0.5, and the distribution is unimodal. We find that
V [D

(n)
m,(i1,i2)

] = 0.2510 is considerably lower than the whole

variance 1. Moreover, the E[D
(n)
m,(i1,i2)

] = −0.5539 is suffi-
ciently smaller than the whole average 0.

From the above reasons, we found that the area extracted by
the proposed method is the area that we want to find because
both V [D

(n)
m,(i1,i2)

] and V [D
(n)
m,(i1,i2)

] are small enough.
One of the essential future tasks is to explore how to uti-

lize the proposed method in practice. We do notice that the
approach of three-way interactions (i.e., interactions among
three proteins, or two proteins and a phenotype) generally
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Figure 7: Distribution of Areas Extracted by Proposed
Method and Simple Extension Method.
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Figure 8: Distribution of Areas of Rank 1 in Table 3.

involves a difficulty in clarifying the performance of meth-
ods because specific physical interactions or phenomena are
rarely connected directly to them. Thus, to reveal the practi-
cal capability of the analysis on three-way interactions, we re-
quire to design the processes in which these analytical meth-
ods effectively work. This is, in fact, a challenge that requires
a considerable deal. For example, we can try to connect some
physical interactions or phenomena to our analysis to clarify
the direct meaning of our analysis. Also, we can try to show
that our analytical result can support to explore biomarkers
that control a target phenotype, or accelerate to find proteins
included in some pathways or related to some biological func-
tionality. Anyway, these are generally a part of important fu-
ture work for the approach of three-way interaction analysis.

5 CONCLUSION

In this paper, we proposed a method to find areas with close
phenotype values to predict proteins that control phenotypes.
By extracting areas including samples with close phenotype
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Figure 9: Histogram of Areas of Rank 1 in Table 3.

values, which rarely occur statistically, it is possible to esti-
mate the relationship among two proteins and a phenotype.

We performed the evaluation experiment using real data set
obtained by the author’s collaborative work in Wakayama [7].
In order to evaluate the performance of the proposed method,
we implemented a simple method to be compared with the
proposed method. As a result, we found that the proposed
method extracted the area better than the simple method. That
is, the proposed method is able to extract the area that the
variance of the phenotype values in the area is small.
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